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Abstract 

Improving coupled Earth system models of current and future climate requires robust 

observations that accurately provide parameters and observations for evaluation across 

spatial scales relevant for the model. Photosynthetic parameters Vcmax and Jmax help to 

characterize the ability of vegetation to assimilate carbon, a required parameter in most 

land surface modules of climate models. Gross primary productivity (GPP) is a critical 

component of the global and regional carbon cycle and discrepancies arise when 

comparing estimates from various methods. Remote sensing, flux tower data, and field 

measurements were collected to develop a methodology to estimate the variability in 

these parameters across diverse landscapes in Southern California and the Sierras, regions 

experiencing prolonged drought and elevated ozone exposure which is expected to 

become more common in the future. Preliminary Vcmax maps were generated with NASA 

hyperspectral airborne AVIRIS imagery and produced expected temporal and spatial 

variability consistent with leaf level estimates. However, Vcmax estimated from inverse 

modeling of flux tower data did not fall in the range found in field measurements for the 

periods of extensive drought. GPP modeled from the tower data produced high 

correlation with the imagery, and partial least squares regression offers the ability to 

generate predictive models of GPP from hyperspectral remote sensing. 

Implementation of the methods described in this study on a broad scale will allow 

for an increased understanding of ecosystem productivity and impacts of drought and air 

pollution. This expanded dataset can be used to generate effective policy focused on 

mitigating the effects of drought, air pollution, and climate change. 
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Chapter 1: Overview of Flux Towers and Imaging Spectroscopy 

Introduction 

Increases in atmospheric carbon dioxide are well documented in the past century 

(Hofmann et al., 2006) and the resulting change in regional climates are predicted to have 

impacts on local vegetation, especially for Mediterranean climate systems, through 

changes in precipitation (Breshears et al., 2005). Vegetation shifts resulting from a 

changing climate have already been quantified in California (Kelly & Goulden, 2008). 

Meanwhile, there is a need to provide higher accuracy and increased spatial resolution 

data to models in order to better estimate ecosystem parameters during times of increased 

vegetative stress (Vargas et al., 2013). Uncertainty exists in our ability to model global 

photosynthesis and its sensitivity to future climate change. 

Recent work by Serbin et al. (2012) has indicated strong evidence for the ability 

to use hyperspectral imaging collected from high altitude airborne missions to detect 

photosynthetic rates. Spectroscopy was used to predict leaf metabolic properties Vcmax, 

the maximum rate of carboxylation of the enzyme RuBisCO, and Jmax, the maximum rate 

of electron transport necessary to regenerate the RuBP, across ecosystems. Vcmax and Jmax 

are used to predict photosynthetic capacity using an often employed biochemical model 

(Farquhar et al., 1980; Farquhar and von Caemmerer, 1982). A robust relationship 

between spectra and leaf was developed that is applicable across a wide range vegetation 

types. However, there lacks systematic observations for how leaf level photosynthetic 

rate constants vary with time and how they scale from leaf to canopy.  
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In this study, field measurements were made of Vcmax to calibrate concurrently 

collected remote sensing images. Eddy covariance flux tower data – a widely used 

method to measure ecosystem carbon, water and energy fluxes (Baldocchi and Meyers, 

1998) – were used to evaluate the scaling up of leaf level estimates to the canopy. This 

combination of ecosystem measurement techniques was used to test the hypothesis that 

imaging spectroscopy is able to simulate spatial and temporal dynamics of scaled Vcmax 

and GPP inferred from flux tower measurements across scrublands and forests of 

California, and that these parameters reflect response of plants to long-term drought.  

Successful inference and scaling estimates of ecosystem parameters across the 

diverse sites and climate in California will allow for robust methods and models that can 

be applied to other regions. Furthermore, understanding how these ecosystem traits 

respond to drought and air pollution have implications for future changes in climate and 

emission scenarios. Ozone exposure and increased drought severity induced by a 

changing climate may lead to vegetation mortality and shifts in the regional carbon cycle. 

Applying improved models which factor in potential effects of pollution and climate 

change on a broad scale will produce results that can form the foundation for policy 

recommendations. This can lead to significant political measures focused on mitigating 

anthropogenic-based stress on vegetation and ensure the vitality of these ecosystems in 

the future.  
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Literature Review 

Carbon Cycle 

Predicting the variability of climate to changes in atmospheric carbon requires a complete 

understanding of the carbon cycle. Changes in global atmospheric carbon can be 

confidently estimated and therefore amount of CO2 emissions that remain in the 

atmosphere (43% on average over the last half century), but are highly variable due to 

global carbon sinks (Le Quere et al., 2009). Currently, there are significant uncertainties 

surrounding the variability of carbon sinks which play an important role in influencing 

future atmospheric CO2 levels (Le Quere et al., 2009). Current modeled feedbacks 

between atmospheric carbon and terrestrial and aquatic sinks are speculative as there are 

numerous processes and reservoirs that are unaccounted for, including peat, permafrost 

soils, fires in addition to certain aquatic mechanisms for storing carbon (Le Quere et al., 

2009), which need to be examined to better predict future atmospheric carbon levels. 

Global GPP 

Gross primary productivity (GPP) is fundamental in understanding the carbon cycle. 

Globally, GPP for the period 1982-2008 is estimated at 120 Pg C/yr by the IPCC AR4 

(Denman et al., 2007), which is within the range of multiple upscaled FLUXNET tower 

data estimates at 119 ± 6 Pg C/yr (Jung et al., 2011) and 123 ± 8 Pg C/yr (Beer et al., 

2010). GPP is highly heterogeneous both spatially and temporally across the globe and 

within ecosystems. Spatially, GPP correlates with fluxes of carbon, with the largest 

values occurring in equatorial tropics and smallest in cold and dry environments (Jung et 

al., 2011). For most of the terrestrial systems globally, interannual variation in NEE is 
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driven by changes in GPP (Ciais et al., 2005; Jung et al., 2011), while variability 

predominately caused by ecosystem respiration is restricted to specific tropical areas 

(Jung et al., 2011). Certain temperate zones including parts of North America exhibit 

summer GPP values equaling or exceeding rates in the tropics (Jung et al., 2011). It is 

necessary to develop a strong understanding of GPP variability in temperate areas, as this 

has significant impacts on the global carbon cycle.  

There are large expanses of the globe categorized by vegetation not represented in 

the FLUXNET database. Additional measurement techniques that cover larger spatial 

areas are necessary to reduce error on current global and regional GPP estimates, such as 

remote sensing; remote sensing data from MODIS has been used to create a GPP product 

with global coverage. Heinsch et al. (2006) compared GPP estimated from tower data and 

the MODIS product. GPP was calculated for a range of sites using the method described 

in Desai et al. (2005), similar to the method used in this study. While the MODIS product 

correlates with tower estimates and summer estimates are similar, MODIS on average 

overestimated GPP by 20-30%, with periods of transition (particularly leaf onset in the 

spring) categorized by significant discrepancies between the two methods (Heinsch et al., 

2006). Furthermore, MODIS GPP did not capture the variability between sites of similar 

vegetation type (Heinsch et al., 2006). This study concludes that higher spatial resolution 

is required to accurately estimate GPP for areas of high productivity and heterogeneous 

landscapes. Given the limits of current remote sensing techniques to accurately detect 

spatial or temporal changes across small ecosystem gradients, new instrumentation such 

as imaging spectroscopy must be explored in order to capture these changes. 
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GPP and Drought 

Regional climate anomalies can cause changes in productivity which are significant on 

the global scale. Extreme drought in Europe lead to a 30% reduction in GPP which 

resulted in a pulse of 0.5 Pg C/yr to the atmosphere, equal to how much carbon 

sequestered in the region over four years (Ciais et al., 2005). Drought conditions were 

categorized by 6-8 *C increase in mean July temperature, and 50% reductions in annual 

precipitation, causing NPP for forested areas to drop 16 gC/m
2
/month in the summer of 

2003 compared to the previous 5 years (Ciais et al., 2005). Examining the impacts of 

drought on a specific region like the western US has implications on a global scale. 

Furthermore, understanding specific impacts of the current drought on ecosystem 

productivity is necessary to assess the effects of expected increased severe weather events 

brought on by climate change. 

Eddy Covariance Flux Towers 

Eddy covariance flux towers allow for the assessment of carbon exchange beyond the 

traditional tools of leaf cuvettes (Collatz et al, 1991), and whole plant (Denmead et al., 

1993) and soil (Goulden and Crill 1997) chambers. These methods which are confined to 

single plants or small areas poorly measure natural variation and often cause a 

disturbance of the vegetation (Baldocchi, 2003). Flux towers offer the ability to measure 

net ecosystem exchange (NEE) through the use of micrometeorological theory to 

interpret vertical wind velocity and scalar carbon concentration fluctuations (Baldocchi et 

al., 1998).  
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Baldocchi (2003) assessed the state of eddy covariance flux towers, already 

widely used with over 180 sites worldwide, and highlighted current concerns and future 

direction. At the time, concerns over data quality included ability to gapfill accurately, 

energy balance closure, and sites on complex terrain (Baldocchi, 2003). Research was 

aimed at addressing such criticism by reevaluating original meteorological theory used to 

interpret measurements in order to reduce bias errors (Massman and Lee, 2002), and 

comparing tower estimates with models (Baldocchi and Wilson, 2001; Wilson and 

Baldocchi, 2001). Future work was expected to estimate gross primary productivity 

(GPP), net primary productivity (NPP), and ecosystem respiration (Baldocchi, 2003).  

Baldocchi (2014) reexamined the growing use of eddy covariance flux tower and 

evaluated progress that has been made over the past decade. Further opportunities for 

their use have opened up, as methodologies have been developed to include 

measurements of trace gasses such as volatile organic carbon compounds, methane, 

nitrous oxide and aerosols (Baldocchi, 2014). Furthermore, many prospective methods 

utilizing flux data outlined in Baldocchi (2003) have been achieved, including estimating 

GPP and ecosystem respiration (Cook et al., 2004; Desai et al., 2005), as well as 

developing quality controls which allow for confident usage of tower data from complex 

terrain via low turbulence filtering (Reichstein et al., 2005). The 2014 review calls for 

expanding collection to a global level through the integration of towers with remote 

sensing and models, highlighting research involving vegetation indices from 

hyperspectral reflectance measurements (Ustin et al., 2004). 
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Vcmax inversion 

Vcmax, the maximum rate of carboxylation in plants, is a necessary parameter to estimate 

productivity in models employing Farquhar based photosynthesis equations. Flux towers 

have been used to estimate this photosynthesis parameter via inverse modeling 

Farquharian photosynthesis equations.  

Wolf et al. (2006) estimated leaf area index (LAI), Vcmax, the Bal-Berry parameter 

(m) and substrate-dependent ecosystem respiration rate using carbon and energy fluxes 

and meteorology variables. This method was solved iteratively, estimating the 

photosynthesis parameters by comparing a forward run model that predicted ecosystem 

fluxes to the original measured fluxes. This study focused on a grassland site and 

measured seasonal variation in the parameters. Groenendijk et al. (2011) followed a 

similar approach, but used Fluxnet data to include multiple sites and compared modeled 

LAI to the MODIS LAI product. Field measured LAI was compared to the MODIS and 

modeled values, with modeled LAI matching the field data better than the MODIS 

product. Both studies found large seasonal variations in Vcmax across all vegetation types 

and climates. Neither study compared modeled Vcmax to field estimates, which is notable 

as Bonan et al. (2012) showed that values for leaf-level Vcmax that yield realistic canopy-

scale GPP are often lower than observed in the global synthesis of Kattge et al. (2009). 

Although actual values from Wolf et al. (2006) and Groenendijk et al. (2011) were not 

validated and may be questioned due to the findings of Bonan et al. (2012), the predicted 

seasonal variation does match the field measurements of Wilson et al. (2000). This study 

measured Vcmax over two seasons and observed high Vcmax during high productivity and 

young leaf age with declining values occurring as the growing season wore on and 
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productivity slowed in the summer and fall, ranging from 7 to 68 µmol CO2/m
2
/s 

throughout the year for white oak. In order to validate tower based estimates of Vcmax, 

research is needed that compares these modeled values and estimates from field data 

collected at the leaf level. 

Spectroscopy 

The ability to estimate GPP from remote sensing data often relies upon work by Monteith 

(1972), where GPP is described as a function of light use efficiency and 

photosynthetically active radiation (PAR). The relationship is described in the equation:  

 

 GPP = ε∗fPAR∗PAR (Eq. 1) 

where ε is the radiation use conversion efficiency (RUE), fPAR is the fraction of incident 

PAR absorbed by the canopy, and PAR is that which reaches the canopy (Heinsch et al., 

2006). RUE is calculated as a relationship between the maximum RUE for a given biome, 

temperature, and vapor pressure deficit (VPD). Heinsch et al. (2006) finds discrepancies 

between GPP estimated by MODIS which follows the above equation and estimates 

derived from flux tower measurements. Part of the discrepancy lies with biome-wide 

assumptions that minimize the ability to capture true differences within classified regions. 

Serbin et al. (2012) provides a different method for using spectroscopy to 

calculate specific photosynthesis parameters. Through the use of imaging instruments 

with high spectral resolution, parameters Vcmax and Jmax were estimated from leaf level 

spectroscopy. Specific features within the reflected spectrum were used to determine 

narrow bands that are highly correlated with the desired parameter through the use of 
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partial least squares regression (PLSR) (Serbin et al., 2012). This method allows for the 

use of the entire spectrum and has the potential to be used at the canopy scale to 

determine ecosystem photosynthetic capacity within vegetation types, where previous 

broad band remote sensing techniques are lacking.  

Scaling up the methods developed by Serbin et al. (2012) to the canopy level 

requires the use of imaging spectroscopy, specifically NASA’s Airborne Visible / 

Infrared Imaging Spectrometer (AVIRIS). This sensor measures reflected solar energy in 

the 400-2500nm spectral region with 224 spectral bands, with an average bandwidth of 

10nm (Vane et al., 1993, Green et al., 1998). AVIRIS, involved in science research since 

1987, uses a whisk-broom imaging approach and is often mounted on an ER-2 high 

altitude aircraft (Vane et al., 1993, Green et al., 1998)). This platform is ideal for this 

sensor due to its stability, has a low velocity-to-height ratio which improves signal to 

noise performance, and has a long range allowing for collection of large areas up to 2,100 

km from launch site (Vane et al., 1993). The high spectral resolution data has the ability 

to capture variation in leaf water, chlorophyll, cellulose, lignin, nitrogen, and other leaf 

constituents (Green et al., 1998), and studies have shown the ability to use this data to 

map these traits (Ustin and Gamon, 2010; Singh et al., In Review). AVIRIS therefore 

provides the high resolution remote sensing data necessary to estimate photosynthetic 

parameters including Vcmax. 
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Chapter 2: Analysis of Imagery and Flux Tower Data 

Methods 

Site Descriptions 

The flux tower sites used in this study comprise two climate gradients, one located in 

southern California (transecting the San Jacinto Mountains) and the other in central 

California (rising from the San Joaquin Valley into the Sierra Nevada Mountains). These 

transects cover changes in elevation, climate, and ecosystems (Figure 2). The use of sites 

located along these climate gradients allows for numerous ecosystem types to be studied 

in relatively close space, ensuring the results from this study to be applicable and 

replicable in other regions. All sites are located within protected areas with limited 

human disturbance. Flux tower data is extensive for these sites, with data for the southern 

California transect beginning in 2006, and 2008 for the Sierra climate gradient. Over this 

time period, these sites have endured wide ranges of annual precipitation as California 

has experienced drought and non-drought years (Figure 3). Through 2013, however, 

mean annual temperature has not varied in the same way, with maximum internal 

variation in temperature at 2 °C and minimum annual temperature variation at some sites 

less than 0.2 °C. 

The southern California climate gradient covers the vegetation types grassland, 

coastal sagebrush, and an oak-pine forest on the western slope of the San Jacinto 

Mountains, and pinyon-juniper woodland, chaparral scrubland and desert scrub located 

on the eastern slope (Kelly & Goulden, 2008), rising from 470 m elevation to 1300 m and 

back down to 275 m in the desert (Table 1). The Coastal Sagebrush and Grassland sites 
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are situated within the enclosed Loma Ridge Park with minimal human disturbance 

outside of ecosystem management activity which includes prescribed burns. These sites 

have an average rainfall of 150 mm/year with a range of 110 to 750 mm per year, and a 

mean temperature of 16 °C with variation of 1 °C between years. The Oak-Pine Forest is 

located within the San Jacinto James Reserve, a University of California Natural 

Resource System field station, and is used only for research. The mean temperature of 14 

°C with 1 °C variation, and mean precipitation at 550 mm/yr with a range of 200 to 1050 

mm/yr. The Oak-Pine Forest is encompassed by the Santa Rosa-San Jacinto Mountains 

National Monument. This national monument located west of Coachella Valley is also 

the location of the Desert, Desert Chaparral, and Pinyon-Juniper Woodland sites. The 

Pinyon-Juniper Woodland and Desert Chaparral have a mean annual temperature of 16 

°C with 1 °C variation, and a mean precipitation of 100 mm/yr (range of 60 to 200 

mm/yr) and 160 mm/yr (80 to 350 mm/yr). The Desert site experiences the highest mean 

annual temperature of 24 °C with 2 °C variation between years, and mean precipitation of 

115 mm/yr (range of 70 to 250 mm/yr). 

The Sierra climate gradient is comprised of the three sites Oak-Pine Woodland, 

Ponderosa Pine, and Mixed Conifer (Figure 1), increasing in elevation from 405 m to 

2015 m (Table 1). These sites are situated within the Upper Kings River watershed, 

located on the western slope of the Sierra Nevada Mountains. The Oak-Pine Woodland is 

located within the San Joaquin Experimental Range, a US Forest Service enclosed area 

focused on research of the rangeland ecosystem. This site has a mean annual temperature 

of 17 °C with 0.5 °C variation between years, and mean annual precipitation of 400 

mm/yr, ranging from 100 to 750 mm/yr. The other two Sierra sites, the Ponderosa Pine 
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and Mixed Conifer forests, are situated in the Sierra National Forest. The Ponderosa Pine 

forest is the wettest with annual precipitation of 1350 mm/yr, ranging from 500 to 1600 

mm/yr with a mean temperature of 15 °C with 1 °C range. The Mixed Conifer site is at 

the highest elevation and thus the coldest (mean annual temperature: 9 °C with 2 °C 

internal variability), and mean precipitation of 400 mm/yr (range of 200 to 550 mm/yr).  

Remote Sensing Data Collection 

The two climate gradients used in the study were flown by the NASA HyspIRI 

(Hyperspectral Infrared Imaging) campaign, which includes a high altitude ER-2 aircraft 

collecting imaging spectroscopy and thermal imagery using the AVIRIS (Airborne 

Visible/Infrared Imaging Spectrometer) and MASTER (MODIS/ Advanced Spaceborne 

Thermal Emission and Reflection Radiometer Airborne Simulator) sensors (Figure 1). 

Flights were conducted at least once a season and timed to capture maximum variation in 

the ecosystems (Figure 4).  AVIRIS has a spectral resolution of around 10 nm and covers 

the electromagnetic range of 414–2447 nm (Vane et al., 1993; Green et al., 1998).  

Imagery provided by NASA is level two, meaning it is orthorectified and includes 

atmospheric corrections, with a spatial resolution of 18 m. The imagery used for this 

research is the apparent surface reflectance provided from NASA. This product is derived 

from the radiance measurements from AVIRIS and ATREM (ATmosphere REMoval), a 

program which determines scaled surface reflectance developed by the Center for the 

Study of Earth from Space at the University of Colorado, Boulder (Gao et al., 2000).  

Preliminary maps of Vcmax estimates made from the AVIRIS imagery were 

provided by members of the project team in order to provide evaluation of the tower 

estimates in addition to the leaf level measurements. These maps are estimates of leaf 
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level Vcmax at 25 °C for the tower area and surrounding region (Figure 7). Vcmax is 

estimated using the relationship between the photosynthesis parameter and nitrogen per 

unit lead area (Narea) as described in Kattge et al. (2009). Leaf mass per area (LMA) and 

percent nitrogen can be calculated from the AVIRIS imagery, which is used to estimate 

Narea (Singh et al., In Review).  

Field Data Collection 

In conjunction with the airborne measurements, ground-based measurements of canopy 

LAI and clumping, leaf reflectance, temperature, nutrient status, stomatal conductance, 

and photosynthetic CO2-response were conducted at two southern CA sites (Coastal 

Sagebrush and Oak-Pine Forest) and 3 Sierra sites (Oak-Pine Woodland, Ponderosa Pine, 

and Mixed Conifer Forest) in the spring and summer of both 2013 and 2014. These field 

measurements were designed to collect data for the calibration of remote sensing 

products. The field measurements coincided with the HyspIRI overflights.  

Leaf level gas exchange, which measures how assimilation varies with leaf 

internal CO2 concentration, was measured for all representative species at each site. 

These measurements allow for the estimation of Vcmax and Jmax, and were conducted 

using a LI-6400 portable photosynthesis system (Li-Cor Biosciences, Lincoln, NE, USA). 

For sites with tall vegetation, measurements were taken at the bottom, middle, and top of 

the canopy, with the youngest fully expanded leaves chosen for measurements, with 

collection techniques following the field methods described in Serbin et al., 2012.   

Flux Tower Data Collection  

Eddy covariance flux tower compute net ecosystem exchange (NEE) of trace gases, 

energy and momentum based on the turbulent conservation equation for fluids (Baldocchi 
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and Meyers, 1998; Massman and Lee, 2002). The eddy covariance method uses statistical 

analysis of instantaneous vertical mass flux density to determine their net difference 

between the canopy-atmosphere interface (Baldocchi, 2003). Estimating half-hourly NEE 

from CO2 fluxes is accomplished from the covariance between fluctuations in vertical 

velocity (w) and the CO2 mixing ratio (c = ρc/ ρa where ρc and ρa is the density of air and 

CO2, respectively):   

 𝐹 =  ρ𝑎̅̅ ̅ ∗ w′c′̅̅ ̅̅ ̅̅  (Eq.2) 

where overbars signify time averaging and primes as deviation from the mean 

(Baldocchi, 2003). Positive values denote net CO2 transfer to the atmosphere (the 

ecosystem is a carbon source), and negative values as CO2 into the canopy (ecosystem is 

a carbon sink). 

The theoretical exchange of carbon between canopy and atmosphere is guided by 

the conservation of mass equation. This equation states that the sum of the local time rate 

of change of the CO2 mixing ratio and advection is balanced by the sum of the flux 

divergence of CO2 in three dimensions and the biological source-sink strength. Under the 

assumptions that scalar concentrations and atmospheric wind velocities are steady with 

time, and the surface is homogenous and flat so that there is no advection, we can write 

the simplified conservation of mass equation as a balance between vertical flux 

divergence of CO2 and the source-sink strength:  

 𝜕𝐹𝑧

𝜕𝑧
=  −𝑆𝐵(𝑧) 

(Eq. 3) 

where 𝜕𝐹𝑧/𝜕𝑧 is the vertical flux divergence and 𝑆𝐵(𝑧) is the biological source-sink 

strength (Baldocchi, 2003).  
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Half-hourly fluxes were computed from the high-frequency (> 10 Hz) 

measurements at the nine Southern California and Sierra climate gradients sites, which 

are all managed and processed by Michael Goulden’s lab at the University of California-

Irvine. Measurements were collected near the top of triangular-cross-section aluminum or 

steel towers which rise 5 to 10 m above canopy height (Goulden et al., 2012). The high 

frequency wind velocity measurements were collected with a sonic anemometer 

(Campbell Scientific CSAT-3) and concentrations of CO2 and water vapor density with a 

closed-path Infrared Gas Analyzer (LiCor LI7000) (Goulden et al., 2012). These raw 

measurements were aggregated into half hour fluxes; other meteorological parameters 

including air temperature were collected at half hour intervals. 

Collection of eddy covariance data on sloped terrain presents issues due to 

potential vertical movement of air via cold air drainage instead of turbulent flow 

(Goulden et al., 2006). Our sites, located along an elevation climate gradient and thus 

sloped terrain, are impacted by this issue and require specific quality control. Daytime 

fluxes have been shown to be of comparable quality between flat and mountainous terrain 

(Turnipseed et al., 2002), while fluxes measuring advection can be removed by screening 

data collected during times of low turbulence (Reichstein et al., 2005). This is 

accomplished by setting a minimum threshold for friction velocities (u*). Thresholds 

were determined by choosing the u* value above which respiration was independent of 

friction velocity. This was conducted on a per site basis at a two year time interval.  

In order to generate a complete time series after removing data during the quality 

control process, we filled missing data points using the Desai-Cook gap filling model 



16 

(Cook et al., 2004; Desai et al., 2005).  This model was applied to the u* filtered data, 

utilizing the 30 minute values for NEE, photosynthetically active radiation (PAR), air 

temperature and site location. The model uses a variable moving-window mean diurnal 

variation method to estimate missing meteorological data, with the window size 

depending on the completeness of the dataset.  

The Eyring function (Cook et al., 2004; Eyring, 1935) was applied to the filled 

data to estimate ecosystem respiration (Reco). Gross Primary Productivity (GPP) was 

modeled from the difference between the 30 minute modeled Reco and the original NEE 

data. The computed GPP was fit to a Michaelis-Menton reaction rate equation (Falge et 

al., 2001; Ruimy et al., 1995) in order to fill gaps. The full time series of Reco and GPP 

was then used to estimate NEE and fill gaps in the original dataset.  

Footprint extraction 

In order to compare tower data with airborne imagery, the pixels falling within the 

footprint (area from which the tower senses fluxes) during the time of overflight need to 

be extracted from the flightline. A one dimensional online footprint model (A Simple 

Parameterization for Flux Footprint Predictions, 2004) based off the model developed by 

Kljun et al. (2004) was used to estimate the footprint at each overflight. This simplified 

model is based off of a wide variety of simulations from a three dimensional model that 

calculates the trajectories of a Lagrangian model in a backward time frame (Kljun et al., 

2002). The simplified model uses estimates for standard deviation of vertical velocity 

fluctuations, surface friction velocity, measurement height, boundary-layer height, and 

roughness length, all of which can be derived from the meteorological measurements 

made at the flux tower, for each overflight. The footprint length was chosen as the 
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distance from the tower which covers 90% of the vegetation contributing to the flux 

measured at the tower. The width was calculated as half the total length, so that the 

footprint was represented as a rectangle beginning from the base of the tower. The 

rectangle was then divided into squares matching the pixel size (18 m x 18 m), with the 

latitude and longitude for the center of each used to extract pixels containing the same 

coordinates from the imagery. 

Vcmax Inversion 

Estimates of Vcmax from flux tower data were made from inverse modeling a Farquhar-

based photosynthesis model following the method described in Wolf et al. (2006). The 

model developed in the Wolf study predicts leaf area index (LAI), Vcmax, the Ball-Berry 

parameter (m), and substrate-dependent ecosystem respiration rate. These require inputs 

from flux tower data including CO2, energy and water fluxes, in addition to 

meteorological parameters and soil water content. Output parameters were derived from 

the inversion of commonly used photosynthesis models, including a mechanistic 

biochemical model of leaf level carbon uptake (Farquhar et al., 1980), and a modified 

Ball-Berry equation (Collatz et al., 1991) for solving stomatal conductance. These 

equations comprised a two layer canopy model (de Pury and Farquhar, 1997) of sunlit 

and shaded leaves which accounts for direct and diffuse radiation. 

Gross assimilation in this model is dependent upon Vcmax and Jmax. Jmax scales 

linearly with Vcmax, and can therefore be estimated by a scaling factor (2.3) that is an 

intermediate value for the species found in our study sites, particularly scrub and 

grassland (Wullschleger, 1993). Assimilation rate (A) is reliant on the CO2 concentration 
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within the leaf (Ci), which itself depends on stomatal conductance of the leaf (gsCO2) 

and leaf surface CO2 concentration following the equation: 

 Ci = Cs – A/ gsCO2 (Eq. 4). 

Stomatal conductance can by estimated as a function of A, leaf surface relative humidity 

(rh), leaf surface CO2 concentration (Cs), minimum conductance (g0), and a 

proportionality constant (m) using the Ball-Berry equation (Collatz et al., 1991) as: 

 gs = m∗(A∗rh)/ Cs + g0 (Eq. 5). 

This equation can be solved using the model by estimating leaf surface CO2 

concentration with the equations: 

 Cs = Ca – A/ gb (Eq. 6) 

 gbCO2 = ρair/rbCO2 (Eq. 7) 

with gb (boundary layer conductance) in equation 5 derived using equation 6, where ρair 

is moist air density and rbCO2 is boundary layer resistance (Wolf et al., 2006). Due to the 

interdependency of these equations (A depends on Ci, Ci on gs, and gs on A), they must 

be solved iteratively. The approach to solving these equations for A described in 

Baldocchi (1994) was used to find an analytical solution for all equations. Wolf et al. 

(2006) determined that the correct root that provides a plausible value without an 

imaginary component is variable under changing environmental conditions. The correct 

root, chosen by an algorithm from a list provided in Baldocchi (1994), was determined by 

the program MATLAB (Mathworks Inc., 1999). 

Leaf energy balance was solved using a two-sided leaf model (Monteith, 1990; Su 

et al., 1996), which is necessary to account for the various surfaces exchanging sensible 

(H) and latent (LE) heat and allows for the exchange of longwave radiation between 
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sunlit and shaded leaves (Wolf et al., 2006). H and LE are modeled for both sunlit and 

shaded leaves using standard resistance analog equations with leaf temperature and 

stomatal conductance estimated from the carbon assimilation submodel (Wolf et al., 

2006). 

Respiration is accounted for in the model through three components: ecosystem 

respiration (Reco), the predominant factor, leaf maintenance respiration (Rd), and plant 

growth respiration (Rg). Root respiration and heterotrophic soil respiration of labile root 

exudates are the most significant portions of Reco (Chapin and Ruess, 2001). Rd is 

assumed to scale linearly with Vcmax due to its relationship with maintaining proteins 

during photosynthesis (Reich et al., 1998). Rg includes respiration attributed to stems, 

roots, leaves, seeds and woody material due to the biochemical synthesis of proteins, 

carbohydrates, lipids, lignins and organic acids (Amthor, 2000; France and Thornley, 

1984; Penning de Vries et al., 1974), and the partitioning of ecosystem growth between 

roots, stems and leaves was parameterized using field samples (Wolf et al., 2006). 

Respiration rate was modeled using the substrate-limited approach where the respiration 

rate is calculated at any timestep as a proportion of the previous 24 hour net assimilation 

(Wolf et al., 2006). This resulted in respiration following the diurnal cycle for soil 

temperature with minimum rates occurring immediately at predawn and maxima near 

sunset (Wolf et al., 2006).  

Comparing individual leaf Vcmax to flux tower measurements was resolved by 

upscaling to the canopy level with leaf area index (LAI). Total LAI was partitioned 

between sunlit and shaded leaves and calculated for each timestep as a function of solar 

zenith angle and extinction of light through the canopy (Wolf et al., 2006). Successively, 
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canopy photosynthetic capacity was calculated for sunlit and shaded leaves following 

equations (15), (22) and (23) in de Pury and Farquhar (1997). Initial Vcmax per leaf area at 

the top of the canopy was integrated over the canopy with the equation: 

 Canopy-Vcmax = LAI∗Vcmax∗(1-e
-kn

)/kn (Eq. 8) 

where kn is the N extinction coefficient (a median of reported values in literature (de 

Pury and Farquhar, 1997; Leuning, 2000) of 0.5 was used), and then partitioned into 

sunlit and shaded components taking into account the LAI divided into these components 

(Wolf et al., 2006). Canopy Vcmax is linearly scaled with Vcmax or LAI, with the other 

held constant, and is approximately equal to the product of LAI and Vcmax. 

The specific fluxes of H, LE, and A were summed and multiplied by their 

respective sun and shade leaf areas to estimate the total canopy fluxes of H, LE, and net 

ecosystem exchange (NEE) (Wolf et al., 2006). During periods when rain was detected at 

the flux tower, LE was modeled as the equilibrium evaporation from a wet surface 

(Monteith, 1990): 

 LEeq = (Rn – G)∗s/(s + γ) (Eq. 9) 

where Rn is net radiation, G is ground head flux (calculated as Rn – H – LE), s is the 

slope of the saturation vapor pressure-temperature curve, and γ is the psychrometric 

constant. 

In order to determine the collection of ecosystem parameters (LAI, Vcmax, m, and 

the rate of dark respiration as a fraction of net carbon assimilation rate) most consistent 

with the flux data, the modeled fluxes were fit to the measured employing a least squares 

procedure. Wolf et al. (2006) determined that modeling carbon flux alone would not 

provide an adequate test the ecosystem parameters due to correlation with LAI and Vcmax, 
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but including modeled total outgoing energy (H + LE) which is only weakly determined 

by Vcmax would provide a robust analysis. LAI can then be solved with an estimate of 

Vcmax using the energy balance as absorbed radiation is dependent on leaf area (Sellers et 

al., 1992). The model then ran iteratively, estimating ecosystem parameters and then 

modeling fluxes, until it converged upon the minimum sum of squares for the residuals. 

The model was computed using filtered and gapfilled NEE along with 

meteorological data collected at the flux tower site. Estimates were made for all sites in 

which field measurements were made, which include the Coastal Sagebrush, Oak-Pine 

Forest, Oak-Pine Woodland, Ponderosa Pine and Mixed Conifer ecosystems. The size of 

the window period was initially varied to maximize consistency of results while 

minimizing the amount of gap-filled data, and to test the sensitivity of the model to this 

factor. The Coastal Sagebrush site was the focus of a multi-year estimation of Vcmax, due 

to the continuity of the data recorded at this site and its close resemblance to the 

ecosystem used in the Wolf et al. (2006) study. 

Imagery-Flux Data Comparison 

Footprint cutouts of the AVIRIS imagery was compared against several parameters 

derived from the flux data, namely NEE, GPP, and the maximum value of NEE and GPP 

over a two week window centered around the overflight. Taking the maximum value 

ensured that the actual capacity of the ecosystem was compared with the imagery, as 

reflectance may align more closely with vegetative capacity than an instantaneous 

reading (Serbin et al., 2012). Several statistical methods were used to draw comparisons 

between the two sources, including correlation and linear regression to determine the 

wavelength regions most important to observing changes in the flux derived parameter.  



22 

Standard indices, including Normalized Difference Vegetation Index (NDVI) and 

Photochemical Reflectance Index (PRI), were calculated and correlated with the flux 

tower parameters. Normalized Difference Spectral Indices (NDSI), where each band’s 

reflectance value (R) is subtracted by all other bands and divided by their sum (for all 

possible bands i and j): 

 NDSI[i,j] = [Ri-Rj]/[Ri+Rj] (Eq. 10). 

This index offers the ability to examine all narrow band features and determine their 

relationship with ecosystem function (Inoue et al., 2008; Ryu et al., 2010). Due to the 

normalization of each index, values for NDSI range of -1 to 1. This normalization 

reduces certain undesirable effects of airborne imagery that would otherwise impact 

comparisons between image files, such as atmospheric disturbance or reflectance 

artifacts, in addition to standardizing spectral response. Correlation was determined 

between the resulting output and several flux derived ecosystem parameters, including 

GPP and NEE and their respective two week maxima, across all sites and within specific 

vegetative types. Various sets of sites were used when computing the indices, including 

all sites, only mountain sites (the forested sites with complete canopy cover), and the 

xeric sites. This categorization of sites was conducted to ensure that methods successful 

at determining GPP from imagery were not only observing broad differences in 

vegetation cover, which would be the case when comparing xeric sites with forested sites, 

but rather determining changes in specific features in the spectra for sites of the same 

vegetation type. 

Partial least squares regression (PLSR) was used to examine the relationship 

between imagery and tower data. PLSR generates a predictive model of specific 
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ecosystem traits developed from the AVIRIS data (Wolter et al., 2008; Serbin et al., 

2012). This method of creating predictive models has been widely used in remote sensing 

(Townsend et al., 2003; Ollinger and Smith, 2005; Martin et al., 2008; Wolter et al., 

2008), especially when there are more predictor variables than observations, as is often 

the case when using hyperspectral imagery (Serbin et al., 2012). For this study, all 

available AVIRIS bands were used as predictor variables, with GPPmax used as the 

observation. This was conducted with all site data, and subsets based on vegetation type 

in a similar fashion to the site subsets used with the indices. Verification was performed 

using a random set of sites to build the model, and the remaining sites data to validate the 

model. 

 

Results 

California Climate  

The Southern California transect can be divided into three climate categories: (i) coastal, 

which includes Coastal Sagebrush and Grassland, (ii) southern interior, consisting of 

Desert, Desert Chaparral, and Pinyon-Juniper Woodland, and (iii) southern montane 

which contains the Oak-Pine Forest site. The coastal sites receive most of their annual 

precipitation in the cooler winter months before an often dry and warm summer. The 

southern interior sites are the most xeric, with low precipitation usually in the late winter 

or spring, and intermittent throughout the rest of the year. The southern montane also 

receives its most significant rainfall in the winter and early spring, but has moderate 

temperatures relative to the other southern sites. 
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The Sierra sites are categorized as central interior (Oak-Pine Woodland) and 

montane (Ponderosa Pine and Mixed Conifer). All sites receive most of the annual 

precipitation in winter and spring, and at a lesser rate during the rest of the year. The 

montane sites experience cold winters and moderate summers, while the central interior 

has moderate winters and warm summers. 

California is currently enduring severe drought conditions since the 2012 calendar 

year (National Drought Mitigation Center, 2014) (Figure 16). This is evident in our data, 

as annual precipitation has steadily declined since 2011 (Figure 5). All sites in which we 

examined previous years’ data exhibited a decreasing trend in precipitation, with 2013 

data often signaling drier conditions that the first year of the drought in 2012. The 

drought tends to deviate most strongly from previous years’ rainfall records in the spring, 

when the wet season usually delivers a significant portion of the annual precipitation for 

the southern sites. During drought years, the spring increase in rainfall either did not 

occur or the magnitude of rainfall drastically decreased. 

Ecosystem Carbon Fluxes 

The most xeric sites (Desert, Desert Chaparral, and Pinyon-Juniper Woodland) 

have a bimodal growing season (Figure 4) for 2013 caused from two predominant 

precipitation periods occurring that year. These events directly resulted in times of 

increased production. The mesic sites are categorized as having predominately a single 

peak in productivity occurring in late winter or spring. The single peak is caused by 

precipitation events and low water demand in the cooler winter months. 

Due to the continuous nature of flux tower measurements compared to the 

irregular remote sensing campaigns, it is necessary to contextualize the imagery with the 
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eddy covariance measurements. The numerous overflights often were able to categorize 

annual variability by collecting at periods of both maximum and minimum productivity. 

However, the sites characterized by maximum GPP occurring in late and early spring 

(Grassland, Coastal Sagebrush, and Oak-Pine Woodland) reached peak productivity 

before the first AVIRIS flight of the year. Comparing spectra-derived estimates of 

photosynthesis must take into account the differences in growing seasons between 

vegetation types. 

Vcmax Inversion 

Inverse modeling of the Farquhar photosynthesis model using flux tower data provided 

Vcmax and LAI estimates for different vegetation types in the footprint of each flux tower. 

The model required compete data without gaps, and due to intermittent outages and 

filtering at all sites, comprehensive estimations of Vcmax were conducted at mainly two 

sites: Coastal Sagebrush and Oak-Pine Forest.  Estimates were conducted for days 

airborne imagery was collected, which also often coincided with field measurements, in 

order to make comparisons between the various estimation methods. At the Coastal 

Sagebrush site, within a 5 day window, single day input data was potentially highly 

variable due to daily changes in light, temperature, and precipitation, with variability 

reaching 300%. Increasing window sizes from three to four days, and four to five days, 

did not yield noticeably different results, with maximum variation around 10%. In order 

to reach a mean estimation that represented the period sampled, window sizes covered at 

least 4 days provided the original data was relatively complete and required minimal 

gapfilling. 
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The Coastal Sagebrush vegetation most closely matches that under which the 

model was calibrated in the Wolf et al. (2006) study, and therefore this site was chosen 

for an extensive multi-year analysis of Vcmax. Estimates were modeled seasonally from 

2010 to the 2013 field campaign (Figure 6). Maximum Vcmax occurred during the 

growing season (late winter and early spring) and for 2010 and 2011, reached 186 and 

155 µmol CO2/m
2
/s, respectively, which is within the range of field measured Vcmax in 

2013. Non-growing season estimates were much lower and decreased rapidly from peak 

Vcmax, with minima occurring during the summer and reaching values 3-5% of the 

maxima which occurred earlier in the year. In contrast, maximum annual Vcmax estimates 

for 2012 and 2013 are near 10% of the maximum values for 2010 and 2011. Periods of 

low productivity, the summer and fall for this ecosystem, did occasionally produce 

estimates of lower Vcmax for 2012 and 2013 compared to previous years, but the 

difference was not as large as the decrease in maximum Vcmax (Table 2).  

The inverse modeled estimates of Vcmax were evaluated with estimates from the 

leaf level gas exchange and preliminary Vcmax estimated from the imagery. Field 

estimates were conducted in March 2013, with a mean Vcmax estimate of 147 with a 

standard deviation of 71 µmol CO2/m
2
/s, and ranging from 74 to 300 µmol CO2/m

2
/s for 

all dominant species (Figure 6). AVIRIS Imagery Vcmax estimates ranged from 177 to 

179 µmol CO2/m
2
/s between April and March 2013. Thus, there is a discrepancy between 

the inverse model and the other estimation methods, as the minimum field recorded Vcmax 

(72 µmol CO2/m
2
/s) was 380% greater than the maximum modeled Vcmax for 2013. 

In order to confine the model, Leaf Area Index (LAI) was constrained from 

MODIS estimates for the Coastal Sagebrush and Oak-Pine Forest sites in an attempt to 
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improve the performance of the model. The same input values were used, with the 

addition of MODIS LAI and removing the LAI estimation by the model. For the Coastal 

Sagebrush site, MODIS LAI was 41% of the estimated LAI (mean annual LAI for 

MODIS was 1.06, whereas the model estimated 2.56). Field estimates of LAI were 1.9 

for March 2013, while MODIS estimated 0.8, and the model 2.7. The Oak-Pine Forest 

site saw similar differences between MODIS and model results, with spring MODIS 

estimated LAI at 64% of the model estimates (1.6 and 2.5, respectively). The addition of 

the constrained LAI into the model saw an increase in estimated leaf level Vcmax. At the 

Coastal Sagebrush site for the chosen dates, the model Vcmax increased 540% with the 

confined LAI, and a 34% increase in Sum of Squares between predicted and observed 

fluxes. The confined LAI model Vcmax estimates averaged 425.46 µmol CO2/m
2
/s, 

compared to the previous mean of 66.51 µmol CO2/m
2
/s across all dates sampled. 

Similarly at the Oak-Pine Forest, Vcmax increased 170% when using MODIS LAI. 

However, there was not a noticeable difference in resulting Sum of Squares (SS). 

Although the increased Vcmax yielded acceptable carbon flux estimates when compared to 

field data as apparent with the similar SS value, it failed to accurately yield acceptable 

sensible heat flux measurements, which was 50% of the values from the unconstrained 

LAI model run and the field data. 

Footprint Extraction 

Footprint estimates were estimated for each tower site at the time of overflight. The 

maximum fetch contribution, the distance from the tower for which that vegetation had 

the highest contribution to the overall flux, varied for each overflight but followed the 

trend for being closer to shorter towers, and the mean was 88 m. The distance for which 
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90% of the measured flux is accounted for also followed the trend of with the taller 

towers having higher values, in addition to sites with a heterogeneous landscape, such as 

an oak savanna, having larger footprints (non-forested sites mean: 169m, forested and 

savanna sites mean: 274 m). The half hour wind trends were similar to the overall annual 

pattern that influenced field plots, and in conjunction with the calculated fetch lengths 

generally support the comparison of tower and field data due to the overlapping of 

measured vegetation and calculated footprints. 

Imagery-Flux Data Comparison 

Each pixel located within a flux tower footprint was averaged in order to compare to the 

corresponding tower data. This resulted in 41 total data points, spread across all nine sites 

and covering high and low productivity times of the year (Figure 4). To ensure 

correlation was not spurious or dependent upon temporal factors including day of year 

and time of day, each AVIRIS band was correlated with the tower parameters including 

meteorological data, fluxes, and temporal categorization parameters. Meteorological and 

temporal parameters correlated poorly with all bands (maximum |r| < 0.5), while 

ecological factors had a strong relationship with bands in the visible and both short wave 

infrared (SWIR) wavelengths (|r| > 0.5). While NEE and GPP measurements taken 

before, during, and after the airborne collection correlated well with the imagery, 

maximum GPP from a two week window around the overflight (GPPmax) showed the 

strongest relationship across visible (r = -0.77) and both SWIR regions (r = -0.76 and r= -

0.80, respectively). 

Band ratios were used to determine the success of traditional imagery analysis at 

capturing the ecological change within and between sites. Normalized difference 
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vegetation index (NDVI; wavelengths [850-650]/[850+650]) had a strong relationship 

with tower ecological parameters when looking across all vegetation types (r = 0.82 for 

GPPmax, r > 0.72 for instantaneous GPP and NEE) (Figure 8), but fails to capture intra-

site variation (Figure 9). Additionally, Photochemical Reflectance Index (PRI; 

wavelengths [531-570]/[531+570]) does not correlate with GPP across sites (r = 0.34). 

Chlorophyll estimation (wavelengths [(1/700)-(1/850)-0.1515]/0.01517) has moderate 

correlation with tower ecological parameters (0.62 < |r| < 0.72).  

In contrast to traditional, broad spectrum indices, normalized difference spectral 

indices were explored to examine potential narrow band features. Broad areas of the 

spectrum correlated well with tower ecological parameters (|r| > 0.6), including GPPmax 

and NEE (Figure 10). In order to determine relationships between imagery and specific 

vegetation types, and have an acceptable sample size, forested vegetation sites (Oak-Pine 

Forest, Ponderosa Pine, and Mixed Conifer) were binned into a category named mountain 

sites, resulting in a sample size of 20. Applying the same method of correlating NDSI 

with various ecological parameters, the broad areas of correlation fall out, while specific 

NDSI bands maintain high correlation (r > 0.7) (Figure 11). These indices of high 

correlation generally occurred where the two bands creating the NDSI were close in 

number, with absolute value of correlation greater than 0.85 for wavelength combinations 

520 and 510, 790 and 770, and 2130 and 2110. Similarly, xeric sites (Desert, Desert 

Chaparral, and Pinyon-Juniper) were subsampled (n=12) and correlations determined for 

ecological parameters and NDSI. Similar to the mountain sites, indices of nearby 

wavelengths were often highly correlated (|r| > 0.85); however, broad spectrum indices 

including the SWIR 1 and NIR maintained high correlation (Figure 12). 
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To test the predictive capabilities of the imagery for ecological parameters, partial 

least squares regression was used to build a model to estimate such properties. Models 

focused on estimating GPPmax due to this parameter having the highest correlation with 

individual bands, but similar parameters were also tested, including GPP during 

overflight and GPP anomaly (GPPmax – site annual mean GPP). Model results are 

comprised of 100 simulations, with final R
2
, root mean square error (RMSE), and bias 

values as model averages. The model shows ability to estimate GPPmax across all sites 

and vegetation types, and when confined to forested sites only where there is often a full 

canopy year round due to the presence of evergreen species (Figure 15). PLS coefficients 

indicate the significance of specific wave bands in predicting the given variable; these 

plots indicate that often specific features across the entire spectrum have a strong 

influence on predictive capability (Figure 13 and 14). Furthermore, similar wavelengths 

from the visible, NIR, and SWIR 1 and 2 are influential in both the all site and mountain 

subset model runs. Examining predictive capabilities beyond GPPmax, models were built 

for estimating half hourly GPP coinciding with the overflight, and the model again 

produced robust results with a similar R
2
 value (Table 3). In order to remove the site 

specific GPPmax values, GPP anomaly (GPPmax – site GPP average for 2013) for 

mountain sites was used as the predicting variable, leading to reduced R
2
 and root mean 

square error (RMSE), but increased the model bias.  
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Discussion 

Vcmax Inversion 

There is a clear discrepancy between the flux data and the other two methods for 

estimating Vcmax. Although there are no field measurements in 2011, the Wolf estimated 

Vcmax is around the expected value for the Coastal Sagebrush site during springtime. 

Even throughout 2012 and 2013, there is variation in the Vcmax estimate, but it does not 

reach levels often associated with viable ecosystems. Comparing this to the AVIRIS map 

of Vcmax, the spatial heterogeneity of Vcmax does not include such low estimates (Figure 

7). Our analysis shows that drought reduces the ability of the models used in the 

inversion to correctly predict ecosystem photosynthetic properties, which is concurrent 

with previous studies (Breshears et al., 2005; Vargas et al., 2013). Given the decrease in 

Vcmax estimates during the transition between pre-drought to drought conditions, we 

suggest that the Wolf approach does not accurately estimate Vcmax during periods of high 

water stress for our sites. However, Vcmax estimates are correlated with GPP modeled 

from flux data (r=0.70), and although the estimates do not reach levels measured in the 

field, the model still captures annual changes in productivity. Therefore, this method for 

estimating Vcmax from tower data is not suitable under the current climate conditions. 

After constraining the model with MODIS LAI estimates, the Vcmax for the 

Coastal Sagebrush site results increased dramatically, but exceeded field and imagery 

estimates. The increase in Oak-Pine Forest estimates resulted in values closer to field 

estimates. These increases in Vcmax estimates are directly tied to a reduction in LAI, as 

the scaling from the leaf level to the canopy or flux tower level directly depends on site 

LAI (see Methods for equation), with leaf level Vcmax inversely related to the LAI 
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estimate. The increase in Vcmax at times resulted in comparable estimates, but with 

increased sum of square values, or an inability to forward model accurate energy fluxes.  

Flux Tower based Vcmax results from this study are not consistent with field 

estimates, but are within the range of the results in Wolf et al. (2006), where estimates 

ranged from 4.51 to 19.92 µmol CO2/m
2
/s. Groenendijk et al. (2011) used similar inverse 

modeling methods to estimate the parameter and for a wide range of vegetation types 

observed modeled estimates ranging from 13.1 to 141.6 µmol CO2/m
2
/s. While these 

studies observed seasonal shifts in Vcmax, the estimated values were not evaluated with 

field measurements. Our results where modeled Vcmax is below field estimates is similar 

to results in Bonan et al. (2012), which concluded that leaf-level Vcmax values that yield 

realistic GPP at the canopy scale are lower than observed in the global synthesis of 

Kattge et al. (2009) for most ecosystems. Therefore, inverse modeling has a tendency to 

underestimate Vcmax when comparing to field data. However, the dramatic seasonal 

variation of Vcmax is observed in both field (Wilson et al., 2000) and model based (Wolf 

et al., 2006; Groenendijk et al., 2011), suggesting that annual variability of Vcmax found 

in models is accurate although specific values may not be, which agrees with the findings 

from this study. 

Eddy Covariance Flux Tower  

The flux tower data provides a long-term view that places the airborne field experiment 

imagery into context. This data shows the diversity of ecosystem types, suggesting these 

methodologies can be applied to a broader spatial area under various climatic conditions. 

This study has demonstrated the ability to examine changes across ecosystems and within 

vegetation types.  
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The multi-year tower dataset provides background for the significance of the 

current drought and the impact it has had on Californian vegetation. All sites have seen a 

decrease in annual GPP, with most sites peak GPP reduced as well. Furthermore, peak 

productivity for the southern sites and some Sierra sites moved to earlier in the year when 

it was cooler and wetter. A common theme among sites is the drastic reduction in late 

season GPP. Peak productivity is often affected, but the largest decrease occurs in the 

summer and fall due to the reduced spring rainfall that historically provided some of the 

necessary moisture during the times of high water demand in the summer months. Thus, 

both maximum and minimum GPP are reduced on average due to the ongoing drought, 

while there are exceptions. Although productivity has declined, there is evidence of 

resilience to the drought for certain sites. All three xeric sites (Desert, Chaparral, and 

Pinyon-Juniper) experience a rapid increase in productivity after a rain event occurring in 

early September 2013 which is the maximum value for the year, and above or near the 

2012 maxima. Furthermore, the mountain sites do not see a noticeable decrease in 

maximum productivity occurring in the spring even after a large reduction in GPP during 

the previous summer.  

Imagery-Flux Data Comparison 

The results of the NDSI and PLSR indicate a strong ability to estimate ecosystem 

parameters from the AVIRIS imagery. These results specifically rely on specific features 

present in the collected spectroscopy, which have been used to estimate ecological 

properties when using narrowband spectroscopy (Zarco-Tejada et al., 2001; Singh et al., 

In review). These features are expressed as high correlation between narrowband NDSI 

and GPPmax (Figure 10-12), as the traits represented by these features affect 
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productivity. Moreover, there are similar features which are significant in the PLS model, 

including the red edge (690-750 nm) which is known to shift under various stress 

conditions (Vogelmann et al., 1993). These features and their changes are associated with 

specific elements in leaf structure that influence plant productivity, and therefore GPP on 

a canopy scale, and therefore these changes can be used to develop predictive models as 

shown in this study. 

 Several ecological parameters derived from tower data correlated strongly with 

the imagery, including GPP, NEE, and GPPmax. Examining the correlation with 

individual bands and with NDSI reveals GPPmax had the strongest relationship with the 

imagery. This suggests that the imagery can capture not only instantaneous properties, 

but features related to ecosystem capacity. Conditions for an individual day impacts 

instantaneous fluxes, but is unlikely to change leaf photosynthetic ability. Therefore 

examining a two week maximum may be a more reliable indicator of the capacity of the 

vegetation and what is reflected and captured by the sensor. 

Subsampling forested sites demonstrated the predictive ability of imaging 

spectroscopy beyond conventional broad band remote sensing. While NDSI demonstrated 

high correlation between broad ranges of indices, traditional broad indices such as NDVI 

also had high correlation with GPP. Focusing on forested sites, there is a reduction in 

correlation between NDVI and GPP. This loss of correlation is also present in the broad 

ranges of NDSI. However, narrowband indices for wavelengths in which specific features 

appear maintained the high correlation, in addition to the predictive capability of the PLS 

model when confined to forest sites. The relationship between broad band indices such as 

NDVI and ecological properties tend to diminish with LAI above 3 and 4 (Ollinger and 
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Smith 2005), values typical in closed canopy ecosystems. Imaging spectroscopy with 

high spectral resolution is able to maintain high correlation in these vegetation types, and 

provides the opportunity to accurately map ecosystem properties where broadband 

sensors are limited. 

The features producing strong correlation between NDSI and GPP for both the 

mountain site model and the model generated using all site data, along with the PLS 

coefficients (Figure 13 and 14), are located in close proximity to wavelength regions 

known to be associated with key leaf physiological properties. For the SWIR regions, 

RuBisCo has known spectral absorption features around wavelengths 1500, 1680, 1740, 

1940, 2050, 2170, 2290, and 2470 nm (Elvidge, 1990), while significant wavelengths in 

the Vcmax model presented in Serbin et al. (2012) occur at 1510, 1680, 1760, 1940, 2210, 

and 2490 nm. These coincide with high correlation values for narrow-band NDSI for 

mountain sites wavelengths 1712 to 1772, 2058 and 2290 nm, and significant mountain 

sites PLS coefficients between 1562 and 1752, and between 2278 and 2307. Furthermore, 

wavelengths in the green reflectance region (around 510 nm) are of high correlation in 

NDSI and produce significant PLS coefficients. This region is associated with the 

xanthophyll cycle pigments (Gamon et al., 1997). The features driving the high 

correlation in NDSI and significant PLS coefficients have physiological meaning, 

suggesting a theoretical background to the empirical model. 

Conclusion 

Flux tower measurements were employed to evaluate the ability to scale Vcmax estimates 

from the leaf to the canopy level. The inverse modeling technique to derive Vcmax from 

the flux tower data was inadequate at predicting reasonable estimates due to the ongoing 
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drought in the western U.S. When constraining the model with external estimates of LAI 

from MODIS, values of Vcmax were comparable to field estimates for the Oak-Pine 

Forest, although forward modeled fluxes did not match the measured fluxes. Future work 

may involve introducing field estimates of LAI to the model. 

Flux tower measurements and modeled GPP offer important observations which 

can inform remote sensing data collection due to the continuous collection. The results 

from the NDSI and PLSR indicate known specific features within the vegetation spectra 

are driving the correlation between the tower data and the imagery. Calibrating the 

imagery with the tower data allow for estimates traditionally made from eddy covariance 

flux tower data to be expanded to broader areas via remote sensing. Long-term and high 

spatial resolution of ecosystem metabolism data is capable with satellites equipped with 

sensors similar to the HyspIRI spectrometers. 

 

 

 

 

 

 

 

 

 



37 

Chapter 3: Research implications in the context of air quality 

policy 

The methods and results presented in this paper outline the ability to monitor productivity 

on a regional to global scale. With the focus of the research on California over the past 

years, this research quantifies the impact of drought on several vegetation types. The 

increased understanding of ecosystems through the use imaging spectroscopy and flux 

tower data will allow for increased knowledge on the impacts of severe weather events 

and anthropogenic emissions. A key component of interdisciplinary research is 

incorporating scientific results into policy recommendations (Charlson et al., 1992; 

Hughes et al., 2003). Therefore, the next step of this research is to describe the challenges 

facing the ecosystems analyzed in this study and examine how policy focused on these 

issues can be augmented through the use of these methods and result. The challenges 

include drought and poor air quality, specifically ozone, which currently affect the 

productivity of California vegetation; these stressors will be exacerbated regionally and 

globally with increased severe weather events associated with climate change. 

History of Air Quality Policy 

Degraded air quality has long been known to have detrimental impacts on human health 

(Mitman, 2005) and on vegetation (Treshow, 1968; Boyle et al., 1997). State and federal 

governments moved to address these issues with the implementation  of air quality 

standards in the 1950s (California) and 1970s (nationally). These standards, or maximum 

allowed atmospheric concentrations for each pollutant, are implemented on the national 

level by the US Environmental Protection Agency (EPA), while additional measures may 
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be enacted by the states if perceived necessary and allowed by the EPA. Understanding 

the manner in which these standards are set is critical when developing scientific methods 

designed at influencing policy.  

The EPA began regulating air pollutants after the 1970 amendment to the Clean 

Air Act (CAA) mandated that the EPA develop national air-quality standards, which in 

turn set up the National Ambient Air Quality Standards (NAAQS) (Rosenbaum 2014). 

Standards were implemented in 1971 for carbon monoxide, nitrogen dioxide, ozone, 

particle pollution, and sulfur dioxide, with lead standards implemented in 1978. All of 

these standards have been reexamined every decade to ensure they reflect the most 

current scientific findings. 

The method for developing new standards includes a lengthy period for gathering 

the most recent data on the issue, and a public comment period among other steps (see 

Figure 18). This review process relies heavily on the current state of scientific literature 

on the specific pollutant, such as in the Integrated Science Assessment and the 

Risk/Exposure Assessment. In order to adequately incorporate and understand the science 

of the studies, EPA relies on the Clean Air Scientific Advisory Committee (CASAC) that 

is dedicated to independently analyzing the current literature. CASAC is composed of a 

diverse set of scientists and physicians from disciplines related to air pollution and 

chosen by the EPA Administrator (Scientific Advisory Board, 2014), allowing the 

committee to integrate a wide variety of research into the recommendation they provide 

to the Administrator. 

CASAC is commissioned to provide an independent evaluation of the critical 

scientific literature (Jasanoff 1990), and compiles a report for every standards review, 
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which the 1977 CAA amendment requires every five years though historically occurs 

around once a decade. The report includes an analysis of the current literature from the 

disciplines of atmospheric physics and chemistry, controlled human exposure studies, 

epidemiology, toxicology, and ecology. The studies focused on human health comprise 

the information used to create a primary standard, while the studies examining the effect 

of ozone on the environment, including vegetation and visibility, fall under the secondary 

standard. However, all previous reviews of the ozone standard have resulted in the 

implementation of a grouping of these two standards, so that there is one ozone level to 

prevent harmful effects on both humans and the environment. Furthermore, CASAC 

reviews the staff paper prepared by the Office of Air Quality Planning and Standards. 

The staff paper is designed to combine science and policy by identifying key studies 

relevant to the pollutant’s impact on public health, and CASAC must confirm the 

scientific validity before the report can assist the administrator in deciding on the new 

standard. 

 In addition, states can request from the EPA permission to set their own standards 

that are above the air quality standard enforced nationally. California is one of the few 

states that has implemented their own policies, as the state has been at the forefront of 

implementing air standards aimed at improving public health and indirectly mitigated 

effects on vegetation. The progressive nature of California environmental policy is in part 

a response to the state’s persistent poor air quality driven by population, energy use, 

climate, and topographic features. Therefore, California implemented standards statewide 

in 1959 set by the CA Department of Public Health aimed at curbing total suspended 

particulates, photochemical oxidants, sulfur dioxide, nitrogen dioxide, and carbon 
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monoxide (Air Resources Board, 2009). Furthermore, the California Air Resources was 

established in 1967 to determine and enforce new air quality standards based of a review 

of the current literature on air pollution. 

The California Air Resources Board (ARB), the organization within the 

California Environmental Protection Agency responsible for regulating air pollution, has 

consistently set their own ozone standards at lower concentrations than the EPA level. 

The ARB employs a similar system to determining air quality standards as the EPA. The 

scientific literature review is completed and presented in a staff report. Members of the 

committee generating this report include ARB staff scientists and contractors, comprising 

a knowledgeable team to conduct an independent review similar to that of CASAC 

(Drechsler, 2014). This staff report includes recommendations on where the standard 

should be set. These recommendations and their bases are peer-reviewed by the Air 

Quality Advisory Committee, whose members are appointed by the Office of the 

President of the University of California. This group contains experts in health sciences, 

exposure assessment, monitoring methods, and atmospheric sciences, to confirm the 

validity of the staff report and recommendations (Air Resources Board, 2013). Similar to 

the EPA, the recommendations from the report are used by the Board and chairman to 

determine the level at which the new standard is set. 

Although both the national and state standard setting process include similar 

scientific reviews, there are often discrepancies in the resulting standards between the 

two agencies. Differences may arise due to unique political pressure and acceptable 

uncertainty levels for each agency, but potentially also arising from data and literature 

with vague or conflicting results. Therefore clear results from an extensive dataset would 
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help to reduce inconsistencies in the interpretation of scientific research. The use of 

imaging spectroscopy to estimate changes in ecosystem productivity can provide such a 

dataset and influence policy regarding drought, climate change, and air pollutants such as 

ozone. 

Drought and Climate Change 

Over the past 3 years California has experienced its most severe drought conditions in a 

century, and perhaps a millennia (Griffin and Anchukaitis, 2014). The impact such 

conditions have on the ecosystem are apparent in the results from this research and 

previous work in the same area and around the globe (Ciais et al., 2005; Vargas et al., 

2013).  

Drought is not an uncommon occurrence in the Western US. Over the past 15 

years, a significant portion (20% or greater) of California has experienced extreme 

drought as categorized by the US Drought Monitor for at least 6 months on 4 separate 

occasions (Figure 16), and on five occasions over 60% of the state experienced at least 

moderate drought, totaling nearly 6 years of drought (National Drought Mitigation 

Center, 2014).  

Although drought is a common occurrence in the western US, increases in 

severity due to climate change may have profound impacts on the vegetation (Bonan, 

2008). Generating a database of current conditions is vital to understand ecosystem 

change under severe stress in the future. Flux towers provide high temporal resolution 

data from which estimates of productivity can be derived. However, this data is restricted 

to the area near the tower, and assumptions need to be made when attempting to scale to 

the regional level that is significant to the global carbon cycle. Novel methods of 
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estimating regional to global productivity is required to better understand changes in 

productivity and resulting impacts on the carbon cycle. 

Climate change has implications on vegetation similar to that of drought with the 

potential to significantly change ecosystems. California has experienced climatic changes 

which have altered vegetation in the past (Kelly and Goulden, 2008), where plant 

distribution shifted along elevation gradients in response to warming and increased 

precipitation variability over a 30 year time period ending in 2007. Changes in climate 

are expected to continue and cause increased stress on local flora, specifically in 

California (Gershunov et al., 2009) where increased temperature leads to increased water 

stress particularly in montane ecosystems less adapted for such conditions compared to 

xeric areas. These changes are largely a result of anthropogenic carbon emissions (IPCC, 

2014). While increased atmospheric concentrations lead to higher rates of carbon uptake, 

there is a leveling off due to diminishing returns (Cramer et al., 2001), and climatic 

results due to increased atmospheric CO2 such as increased temperature and precipitation 

variability may negate any positive effects of carbon “fertilizing.”  

In my opinion, policies must be enacted that prepare for and mitigate impacts of 

future climate change. This can be accomplished by directly reducing anthropogenic CO2 

emissions and by reducing human disturbance of at-risk ecosystems. California compiled 

recent scientific literature on climate change focusing on the state into the Climate 

Change Research Plan, currently a draft intended to influence climate change policies. It 

is comprised of policy framework, historical climate change, climate change science, and 

social science associated with climate change (Climate Action Team, 2014). The climate 

science included in the Plan spans the disciplines of agriculture, industry, natural lands, 
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oceans, human health, and water. The Plan calls for research in the next five years to 

“develop a better understanding of forest and woodland ecosystem dynamics” (Climate 

Action Team, 2014). Furthermore, importance is put on research to increase forest carbon 

storage while managing for resilient forests. Finally, policies taking this research into 

account will use a cost-benefit analysis on ecosystem services, particularly forest carbon. 

The methods used in this research make use of the high temporal data gathered 

from eddy covariance flux towers to generate predictive models using hyperspectral data. 

These models, applied to a larger scale, have the potential to monitor productivity 

throughout a region. Furthermore, when applied to a satellite, these models would be able 

to make predictions on a global scale. In addition to estimating photosynthetic parameters 

across space as inputs for vegetation models, these methods would monitor changes in 

photosynthesis on a global scale capturing impacts drought, other climatic stressors, and 

anthropogenic emissions have on productivity. This increased understanding of 

vegetation will better inform management techniques. Results from this study have 

demonstrated the effects of drought on vegetation and the ability to capture these changes 

using flux towers and remote sensing. Furthermore, an expanded application of these 

methods will be able to answer the request in the California Climate Change Research 

Plan Draft to better understand California forests. The dataset created by frequent 

hyperspectral images will be able to capture changes in forest productivity, determine the 

ability to sequester carbon, and explore conditions that impact this process. This 

application has the potential to generate more successful policy based on empirical 

results. 
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Ozone 

Ozone is formed from sunlight initiating a reaction between hydrocarbons and nitrogen 

oxides, the latter which is emitted from industrial processes. Ground level ozone is the 

principal component of smog, which is prevalent in densely populated areas including 

Los Angeles (Vitousek et al., 1997), and is detrimental to human health. For example, the 

gas can cause breathing problems and/or asthma, damages vegetation, reduces visibility, 

and can damage rubber, fabric, and other materials (Rosenbaum 2014). Ozone is relevant 

to this study as exposure of the pollutant to plants results in reduced productivity (Fuhrer 

et al., 1997; Ashmore, 2005). This pollutant is particularly of importance to California 

due to the unique combination of population, climate, and geography of the state. The 

methods for estimating productivity described in this study can be used to directly 

determine impacts of ozone on vegetation on a broad scale and assist with 

implementation of necessary standards to curb this effect. 

Ozone standards require compliance by all counties in the US as not to exceed 

specified atmospheric concentrations. Ozone, initially regulated as oxidants, is one of the 

six criteria pollutants managed and monitored under the NAAQS. Individual states with 

EPA approval, such as California, may implement their own standards but they must at 

least abide by the national standards as well. For ozone, the national standard is an 8-hour 

average atmospheric concentration, and is currently set at 0.075 ppm. 

Ozone is the most prevalent pollutant in California in terms of people affected and 

the frequency and severity of standard violations (Palmer 1993). Recent studies estimate 

that a third of California residents live in areas where the ozone concentration rises above 
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the national standard; the numbers are much worse in the San Joaquin valley, where only 

a quarter of the residents live in areas in compliance with the standard (Barboza 2014). 

The high number of non-attainment areas—counties that have ozone levels which 

exceeded the standard—stem from climate, topography, and population. Los Angeles is 

surrounded by mountains, preventing emissions generated by the city from escaping. 

Furthermore, Southern California is dry in the summer months which coincides with the 

high ozone concentration season. Therefore ozone created in the basin is confined by the 

topography and without rain to remove the pollution from the air, the ozone concentration 

increases and may exceed the air quality standard. The same situation is true for the 

Central Valley, which is confined by the Sierras, has little summer rain, and has major 

metropolitan centers such as San Francisco that emit ozone causing pollutants that lay 

stagnant in the valley. These areas often experience some of the highest ozone 

concentrations in the nation (Figure 17) (Air Now, 2014). 

Since 1975, the ozone standards set by the ARB has been set at the “highest level 

of ozone that can be present without adverse health effects” (Air Resources Board, 2013).  

However, ozone standards have not included a level designed specifically for vegetation. 

This is an important oversight because plant exposure to ozone has indirect impacts on 

humans by impacting agriculture and reducing productivity and therefore ecosystem 

services (Fares et al., 2013). The EPA 2014 ozone review examined a potential secondary 

“welfare” standard that would focus on long term exposure, which is a better indicator of 

potential harm to vegetation (Massman, 2004). Conclusions from the review suggest a 

welfare standard would not noticeably reduce plant ozone exposure for most areas of the 

US, with California one of the exceptions (EPA, 2014). This review examined research 
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mostly confined to individual plot studies rather than empirical results on the regional 

scale for which the policy suggestions were applied. This is an example where 

hyperspectral imagery could be used in a similar manner described in this study to 

examine actual changes in productivity across wide areas exposed to high ozone 

concentrations. Specific ecosystems could then be targeted for different standards 

depending on the sensitivity of the vegetation so that specific policy could be 

implemented at a finer resolution (state or county level) than the broad regions used in 

the EPA review.  

Conclusion 

Imaging spectroscopy calibrated with eddy covariance flux tower data has been 

demonstrated to accurately estimate productivity where traditional broadband techniques 

could not. Applying these methods to a larger scale via a future satellite will allow for 

reliable global productivity estimation. This dataset in conjunction with frequent 

monitoring of change will provide the necessary information to improve a variety of 

ecosystem related policy. This includes understanding impacts of drought on a regional 

scale, and tuning climate change policy to maximize carbon sequestration by limiting 

ozone exposure. Unique challenges will arise under global change, and in order to create 

effective policy, it will be critical to understand the current and future state of global 

ecosystems. 
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Appendix A: Tables 

Table 1: List of sites including their location, climate, and dominant vegetation. 

 

 

 

Site Latitude Longitude Elev. 

(m) 

Mean Annual 

Precipitation 

(mm/yr) 

Mean 

Temperature 

(°C) 

Vegetation 

Desert 33.652 -116.372 275 115 24 Desert Perennials and Annuals 

Desert Chaparral 33.596 -116.445 1300 100 16 Desert Shrubland 

Pinyon-Juniper 

Woodland 

33.592 -116.448 1280 100 16 Pinyon, Juniper 

  Grassland 33.737 -117.695 470 150 16 Annual Grassland 

Coastal Sagebrush 33.734 -117.696 475 150 16 California Sage,  White Sage, 

Malosma 

Oak-Pine Forest 33.803 -116.753 1710 550 14 Oak, Pine, Cedar 

Oak-Pine 

Woodland 

37.079 -119.720 405 400 17 Foothills Pine, Oak, Annual 

Grasses 

Ponderosa Pine 37.029 -119.256 1160 1350 15 Ponderosa Pine, Oak 

Mixed Conifer 37.067 -119.195 2015 400 9 White Fir, Pine, Cedar 
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Table 2: Timeseries of Vcmax estimates from inverse modeling with tower data. The Day 

of Year (DOY) column is composed of the range of dates used to model a single Vcmax 

over that time period. Values denoted with (*) are results using MODIS LAI. Vcmax 

values are in µmol CO2/m
2
/s. 

Site Year DOY LAI Vcmax SS MODIS 

LAI 

Vcmax* SS* 

Oak-Pine 

Forest 

2011 111-113 2.7 15.9 16.0 1.4 67.3 15.8 

2012 110-112 2.5 10.4 2.9 1.5 31.4 2.9 

2013 86-88 2.4 18.0 0.4 1.7 41.8 0.4 

2013 108-110 2.4 22.0 3.1 1.8 38.1 3.2 

Coastal 

Sage 

2010 30-34 2.5 41.1 5.1 0.9 510.0 10.0 

2010 60-63 2.4 186.3 11.4 1.6 294.2 16.0 

2010 99-105 2.3 146.8 15.9 1.6 232.1 25.9 

2010 150-153 2.8 20.3 1.5 0.9 632.5 2.3 

2010 183-186 2.9 8.2 0.6 0.7 693.5 0.7 

2010 241-243 2.4 30.8 1.3 0.5 711.8 1.3 

2011 107-110 2.3 154.9 12.7 1.8   

2011 124-127 2.4 37.7 5.6 1.4   

2011 151-154 2.9 19.7 2.4 1.1 555.9 4.9 

2011 257-260 3.0 3.6 1.9 0.5   

2011 349-352 2.4 16.2 2.6 0.7   

2012 67-70 2.6 8.4 21.3 0.7 38.6 22.4 

2012 108-111 2.8 17.5 6.2 1.2   

2012 150-153 2.9 7.3 3.0 0.7   

2012 249-253 3.0 1.5 18.0 0.5   

2012 356-359 2.4 2.3 4.9 0.3   

2013 46-50 2.6 12.6 40.8 1.1   

2013 83-86 2.7 13.2 2.0 0.8 617.1 3.0 

2013 104-106 2.5 15.2 0.4 0.7   

2013 141-145 3.0 2.0 3.8 0.5   
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Table 3: All are values are model-averaged over the 100 runs. Multiple forms of the 

parameter Gross Primary Productivity (GPP) were used to test the predictive capabilities 

of the model, and all resulted in strong fits. GPP anomaly is the difference between 

GPPmax and the annual GPP mean for the site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable R
2
 RMSE BIAS 

Gpp During (All) 0.861 1.512 -0.025 

Gppmax (All) 0.852 1.406 -0.368 

Gppmax (Mtn) 0.865 1.648 -0.136 

Gpp Anomaly (Mtn) 0.889 1.186 -0.251 
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Appendix B: Figures 

 

 

Figure 1: Location of the core study sites found within the five HyspIRI campaign flight 

boxes. The southern sites comprise the southern California climate gradient, while the 

northern lie along the Sierra gradient. All tower sites are included in the HyspIRI 

overflights 
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Figure 2: The two transects cover numerous ecosystems along two separate elevation climate 

gradients. Flux tower sites are positioned along each transect to measure each distinct vegetation 

type. 

 

 

 

! ! ! !
!

10!

southernmost! transect! for! the!proposed!AVIRIS+MASTER!campaign.!Each!of! these!sites!
contains!eddy!flux!and!other!measurements!dating!to!2006!(Southern!California)!or!2008!
(Sierras),!which!this!project!can!leverage!to!provide!further!insight!into!the!relationship!
between!vegetation!status!and!mass!and!energy!exchanges.!All!of!the!Southern!sites!and!
most!of!the!Sierran!sites!have!been!imaged!previously!by!AVIRIS.!Five!additional!AmeriFlux!
tower!sites!are!either!in!or!near!the!footprints!of!the!proposed!AVIRIS+MASTER!flightlines.!
To!reduce!the!complexity!of!the!proposed!field!campaign,!we!do!not!propose!to!use!these!
sites!for!field!data!collection,!but!will!re<evaluate!this!depending!on!the!final!arrangement!
of!flightlines.!!

!

!
!

!

1.&Linking&leaf&Vcmax&and&Jmax&with&reflectance&spectra!!
The!first!component!of!our!field!campaign!will!entail!measurements!of!leaf!gas!exchange!in!
conjunction!with!leaf!optical!properties.!In!this!project,!we!propose!to!continue!to!build!on!
our!leaf<level!dataset!(Serbin!et!al.!2012;!Serbin!2012)!by!adding!measurements!from!the!
dominant!species!found!in!each!flux!tower!footprint!(Figs.!5!and!6,!Table!1).!Importantly,!
this!expansion!will!include!a!greater!array!of!conifers!and!grasses!than!we!have!sampled!

Figure&5! (left).! Environmental! and! veg<
etation! gradients! at! the! ten! eddy! flux!
tower!sites.!The!Sierra!Transect!covers!an!
elevation!gradient!on!the!west!slope!of!the!
Sierras! above! Fresno! located! within! the!
central! broad! transect! for! the! proposed!
mission.! These! transects! cover! a! repre<
sentative! gradient! in! climate! and! vege<
tation,! and! therefore! are! well! suited! to!
demonstrate! the! applicability! of! HyspIRI!
to!measurement!of!ecosystem!metabolism!
across!ecological!gradients!from!chaparral!
to! savanna! woodlands! to! closed<canopy!
forests.!The!sites!span!a!range!of!climatic!
variation! and! species! composition! repre<
sentative!of!a!large!portion!of!California.!
!
Figure&6!(below).!The!four!flux!tower!sites!
located!on!the!Sierra!Transect.!



 

 

 

Figure 3: The range of annual mean temperatures and annual mean precipitation values recorded over the last several years at 

each site, including Desert (D), Pinyon-Juniper Woodland (J), Desert Chaparral (C), Coastal Sagebrush (same as Grassland) 

(S), Oak-Pine Forest (F), Ponderosa Pine (P), Oak-Pine Woodland (O), and Mixed Conifer Forest (M). The sites cover a wide 

range of climate types. The variability of annual precipitation is orders of magnitude larger than that of temperature. 
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Figure 4: GPP for all sites from 2013 with AVIRIS imagery dates indicated by the vertical dashed line. GPP follows the 

precipitation regime, with maximums often following times of peak precipitation. The AVIRIS imagery captures a range of 

productivity levels for each site. 

6
0 



 

 

 

Figure 5: GPP and precipitation for sites our group visited in the field. All sites have seen a reduction in GPP since 2011 due to 

the persistent drought in California. The most extreme sites received 25% of 2011 precipitation in 2013. The oak/pine forest 

received more rain in 2013 than 2012, while the oak/pine woodland received more precipitation in 2012 than 2013. All other 

sites saw significant decreases in precipitation every year since 2011. 
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Figure 6: Vcmax values for the Coastal Sagebrush site, comparing estimates from the Wolf approach for modeling Vcmax from 

flux data and AVIRIS image, and measured field values for all dominant species. During drought conditions (2012 and 2013), 

the Wolf approach yields much lower estimates compared to pre-drought (2010 and 2011). However, the estimates from 

AVIRIS imagery are within the range measured in the field.  
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Figure 7: Map of Vcmax from 2013 spring for the Coastal Sagebrush (north red marker) and Grassland (south red marker) and 

the area around the sites. There is high variability in the photosynthetic parameter across the landscape, ranging from 70 to 140 

µmol CO2/m
2
/s for most of the region. 
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Figure 8: Plots of GPPmax vs. NDVI with linear regression lines. The trend inserted for all sites combined, resulting in a 

strong correlation between all sites. GPPmax is the maximum GPP value modeled for the site for a two week window around 

the overflight. GPP values are in µmol C/m
2
/s.  
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Figure 9: Plots of GPPmax vs. NDVI with linear regression lines. The trend is inserted per site, resulting in very weak to no 

correlation between GPP and NDVI within sites, especially for the forested sites with a full canopy. GPPmax is the maximum 

GPP value modeled for the site for a two week window around the overflight. GPP values are in µmol C/m
2
/s. 
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Figure 10: Heat map depicting indices of high correlation with GPPmax, with correlation histogram in bottom left of each 

figure. With all site data included, there are broad areas of high correlation, including NDVI area (outlined in gray box).  
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Figure 11: Heat map depicting indices of high correlation with GPPmax, with correlation histogram in bottom left of each 

figure. Confining the indices to mountain sites causes the broad areas of correlation drop out, while narrow band indices 

associated with specific features maintain high correlation.  
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Figure 12: Heat maps depicting indices of high correlation with GPPmax for xeric sites, with correlation histogram in top left of each 

figure. Broad areas of correlation are removed for visible and NIR regions, but remain for indices composed of SWIR1 and NIR 

wavelengths, and portions of the SWIR 2 and NIR wavelengths.  
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Figure 13: Plots of the mean standardized coefficients for each band and +/- 1 standard deviation based on the 100 model runs, for all 

sites. Wavelengths which have high importance in the model are often associated with known physiological features of the leaf. 
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Figure 14: Plots of the mean standardized coefficients for each band and +/- 1 standard deviation based on the 100 model runs, for 

mountain sites only. Similar wavelengths have high importance in the model generated with all site data and the mountain sites subset, 

suggesting the wavelengths of high importance are associated with specific features present when examining across and within vegetation 

types. 
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Figure 15: These figures present the predictive capabilities of the PLSR model generated with all site data (left) and with the mountain 

sites subset (right). While the mountain sites subset model has a larger bias as represented by the deviation of the black data-fitted line red 

dashed line indicating a 1:1 relationship, both models have strong predictive capabilities. Therefore, the PLSR model is able to estimate 

GPP within vegetation types over time, an area previous models using broad band remote sensing were poor. GPP values are in µmol 

C/m
2
/s. 
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Figure 16: Cycles of wet and dry conditions characterize California climate over the past 15 years, with little to no drought in 2010 and 

2011, and significant from 2012 onwards. US Drought Monitor- Dark red: Exceptional drought; Red: Extreme drought; Orange: Severe 

drought; Tan: Moderate drought. (National Drought Mitigation Center, 2014) 
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Figure 17: This map depicts ozone concentrations by county for 2009, showing where high ambient ozone concentrations were found in 

the United States. All orange and red areas exceeded the 8-hour air quality standard for ozone.  Note the significant portion of California 

counties that exceeded the national standard in 2009. Although the map is from 2009, the same counties in California in non-attainment 

on this map often the ozone standard in 2013 as well. (Air Now, 2014) 
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Figure 18: The major elements of the process for reviewing National Ambient Air Quality Standards. This process includes 

scientific and public review of the literature, with CASAC involved in generating a Policy Assessment after public comment, 

with a public review again occurring after the Administrator proposes to create new standards or maintain the current levels. 

(Jackson, 2009)  
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