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ABSTRACT

Eddy covariance flux towers measure net exchange of land-atmosphere flux. For the flux of
carbon dioxide, this net ecosystem exchange (NEE) is governed by two processes, gross
primary production (GPP) and a sum of autotrophic and heterotrophic respiration compo-
nents known as ecosystem respiration (RE). A number of statistical flux-partitioning meth-
ods, often developed to fill missing NEE data, can also be used to estimate GPP and RE from
NEE time series. Here we present results of the first comprehensive, multi-site comparison
of these partitioning methods. An initial test was performed with a subset of methods in
retrieving GPP and RE from NEE generated by an ecosystem model, which was also degraded
with realistic noise. All methods produced GPP and RE estimates that were highly correlated
with the synthetic data at the daily and annual timescales, but most were biased low,
including a parameter inversion of the original model. We then applied 23 different methods
to 10 site years of temperate forest flux data, including 10 different artificial gap scenarios
(10% removal of observations), in order to investigate the effects of partitioning method
choice, data gaps, and intersite variability on estimated GPP and RE. Most methods differed
by less than 10% in estimates of both GPP and RE. Gaps added an additional 6-7% variability,
but did not result in additional bias. ANOVA showed that most methods were consistent in
identifying differences in GPP and RE across sites, leading to increased confidence in
previously published multi-site comparisons and syntheses. Several methods produced
outliers at some sites, and some methods were systematically biased against the ensemble
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mean. Larger model spread was found for Mediterranean sites compared to temperate or boreal

sites. For both real and synthetic data, high variability was found in modeling of the diurnal RE

cycle, suggesting that additional study of diurnal RE mechanisms could help to improve

partitioning algorithms.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The terrestrial component of the global carbon cycle can be
divided in two large and opposing terms, both of which
represent aggregated ecosystem processes: gross primary
production (GPP) and total ecosystem respiration (RE). The
order of magnitude smaller imbalance between these two
fluxes, termed net ecosystem exchange (NEE), is considered to
be the primary source of observed interannual variability in
atmospheric accumulation of carbon dioxide (CO,) (Peylin
et al.,, 2005). Furthermore, understanding how plant and soil
processes impact this interannual variability requires quanti-
fying GPP and RE. However, it is currently not possible to
obtain direct, integrated observations of either GPP or RE,
because these processes represent a multitude of responses by
a combination of autotrophic and heterotrophic organisms.
Scaling from chamber level measurements to canopy level is
labor intensive and fraught with high sampling uncertainty.

The eddy covariance (EC) technique is the well-established
method to directly measure flux and NEE over a fetch larger
than typical plot level measurements (Baldocchi, 2003). Gaps
in NEE time series are inevitable due to operational and
micrometeorological constraints. Numerous methods have
been developed to fill the gaps due to observational and
micrometeorological constraints, and many of these also
decompose NEE into GPP and RE (Falge et al., 2001). In most of
the methods, errors in estimation of RE offset errors in GPP, so
gap filling of NEE by modeling GPP and RE has been largely
successful (Moffat et al., 2007).

Methods to partition NEE to its component fluxes, GPP and
RE, have also been developed independent of gap-filling
techniques as a way to assess carbon pathways in ecosystems.
At present, there is no standard method commonly in use
(Reichstein et al., 2005; Stoy et al, 2006). While many
partitioning methods typically rely on the concept of zero
GPP at night and strong correlation of GPP and RE to
environmental driving variables, such as temperature, water
availability and solar radiation (Law et al, 2002), newer
techniques, such as neural networks, which have few under-
lying assumptions regarding these relationships, have been
developed and are evaluated here. We also investigated
process-based ecosystem model inversion and advanced data
assimilation techniques which have only recently been
developed.

Despite advances in NEE partitioning, direct evaluation of
GPP and RE estimates has been scant. Previous studies have
tested multiple methods at a few sites (Stoy et al., 2006) or a
few methods at many sites (Falge et al., 2001; Law et al., 2002;
Richardson et al., 2006a; Reichstein et al., 2005). Analyzing NEE
time series from a boreal transition forest, Hagen et al. (2006)
reported that GPP estimates for a given year could vary by over
100 g C m 2 depending on the partitioning algorithm (neural

network vs. physiologically based) and fitting method (max-
imum likelihood vs. ordinary least squares) used. Evaluation
of GPP and RE at multiple sites with multiple methods has not
been performed. There is great interest in performing cross-
site comparison of GPP and RE. Without an evaluation of GPP
and RE methods across a range of sites, investigator-reported
values of GPP and RE for individual sites cannot be reasonably
used to compare values across multiple sites because it is not
known how the partitioning method employed may affect the
result.

The goal of this article is not to discuss mechanistic
evaluation of GPP and RE. To do this requires independent flux
observations from chambers, biometry, and models or
inversions, each of which is subject to its own set of errors
and uncertainties. Instead, our focus is on assessing the role of
model selection and data gaps on variability in GPP and RE
estimates derived from NEE time series. To accomplish this
assessment, we evaluated 23 different partitioning methods,
using 10 site years of CO, flux data. These data, originally
compiled for a gap-filling intercomparison (Moffat et al., 2007),
come primarily from temperate forests sites in Europe.
Though not all kinds of ecosystems are tested, the sites
chosen span a reasonable range of variability seen in flux
tower time series.

Questions motivating this research are

1. What is the inherent variability in estimated GPP and RE for
any single site as a function of method, and what does this
imply for giving uncertainty bounds on GPP and RE values
from any one method?

2. Is within site variability of derived GPP and RE as a function
of partitioning method smaller than typical interannual
variability in GPP and RE (~10% of 100 gCm ?year *,
Richardson et al., 2007)?

3. Are some methods more sensitive to data gaps than others
in terms of mean variability? Do gaps induce any systematic
biases?

4. Does choice of partitioning method alter understanding of
differences in seasonal and diurnal variability of GPP and
RE, or cross-site rankings of annual sums of these
component fluxes? Are certain methods systematically
biased across the sites with respect to the ensemble mean
of GPP or RE?

Though independent evaluation of GPP and RE is not
performed here, a preliminary test of method fidelity can be
done by testing against synthetic data (Stauch and Jarvis,
2006). Prior to comparison of methods against observed data,
we investigated whether methods could accurately estimate
GPP and RE from NEE generated by a reasonably complex,
complete and well-tested ecosystem model, BETHY (Knorr and
Kattge, 2005). To further simulate observation conditions,
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artificial noise mimicking the random noise statistics of EC
observed NEE (Richardson et al.,, 2006b) was added to this
synthetic NEE. While this is not a perfect test, it did allow for
evaluation of partitioning methods performance relative to
known ‘“truth”, which, as noted above, is not possible with
current field measurement technology. Further, by adding
artificial gaps to the synthetic data, we evaluated method bias
induced by gaps.

2. Methods
2.1.  Flux partitioning methods

GPP and RE estimates from a total of 23 different methods
participated (Table 1). These approaches are described fully by
Moffatetal. (2007) and the citations noted in Table 1, but a brief
overview is given here.

The largest batch of partitioning methods was of the non-
linear regression methods. These methods rely on correlating
nighttime NEE, representing RE, to temperature, time and
moisture variables, and daytime NEE, representing the
combination of GPP and RE, to temperature and radiation
variables. The primary differences among methods are choice
of functional form, meteorological forcing variables, fixed vs.
free parameters, parameter time dependence, time window

size, statistical goodness-of-fit test, and whether regression is
done first on nighttime, daytime, or all NEE. These details are
found in Moffat et al. (2007).

Lookup table and diurnal course type methods formed the
second largest batch of partitioning methods. Lookup tables
rely on binning NEE data by one or more of the forcing
variables across a number of time periods (Falge et al., 2001).
Extrapolation with nighttime data against air temperature and
soil temperature or daytime data with a light intercept (use
daytime flux and extrapolate to zero incoming PAR) is used to
compute RE while GPP is solved as a residual. Diurnal course
methods perform multiple-day ensemble averaging across
suitable time windows.

A number of alternative statistical techniques were also
tested on the datasets. B365 is based on BETHY, a soil-
vegetation-atmosphere-transport (SVAT) type ecosystem
model (Knorr and Kattge, 2005). The model is forced with
the observed meteorology. The Markov Chain Monte Carlo
(MCMC) technique, a Bayesian parameter estimation algo-
rithm, is applied against the NEE data to optimize model
parameters (Knorr and Kattge, 2005).

The SPM technique estimates a three dimensional hyper-
surface from the observations to describe the net CO,
exchange as a continuous function of radiation, temperature
and time (Stauch and Jarvis, 2006). As such, it can be viewed as
both a non-linear regression without a prescribed functional

Table 1 - List of methods used to derive GPP and RE for all sites. Detailed descriptions can be found in Moffat et al. (2007) or

the noted citation. Abbreviations used by Moffat et al. (2007) are noted in italics

Abbreviation Description Citation

Non-linear regression
NA (NLR_AM) Noormets model

Noormets et al. (2007)

NE (NLR_EM)
NFA (NLR_FM_AD)
NFO (NLR_FM_OLS)

Eyring respiration model
Absolute deviation model
Ordinary least squares model

NFW? Weighted absolute deviation model
NLI Light intercept based regression

NLT (NLR_LM) Air temperature based regression

NLS Soil temperature based regression
NC1 (NLR_FCRN) Multi timescale regression

NG2° Multi timescale regression

MR1 Long term air temperature regression
MR1R Robust long term air temperature
MR2 Short term air temperature regression
MR2R Robust short-term air temperature

Lookup tables/mean diurnal course
NLID

Diurnal course with light intercept

NLIL Lookup table with light intercept
NLTD (MDV) Diurnal course with air temperature
NLTL (LUT) Lookup table with air temperature
NLSD Diurnal course with soil temperature
NLSL Lookup table with soil temperature

Other methods
B365 (BETHY_ALL)

Ecosystem model inversion

SPM (SPM) Semi-parametric method
UKF® (UKF_LM) Unscented Kalman filter
ANN (ANN_PS) Artificial neural network
ANNS?

Artificial neural network with soil moisture

Desai et al. (2005)
Richardson et al. (2006a)
Richardson et al. (2006a)
Richardson et al. (2006a)
Falge et al. (2001)

Falge et al. (2001)

Falge et al. (2001)

Barr et al. (2004)

Barr et al. (2004)
Reichstein et al. (2005)
Reichstein et al. (2005)
Reichstein et al. (2005)
Reichstein et al. (2005)

Falge et al. (
Falge et al. (
Falge et al. (2001
Falge et al. (
Falge et al. (
Falge et al. (

Knorr and Kattge (2005)
Stauch and Jarvis (2006)
Gove and Hollinger (2006)
Papale and Valentini (2003)
Papale and Valentini (2003)

@ Method used only for synthetic analysis.
Y Method not used in synthetic analysis.
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form or a lookup table without binning the data. The
underlying semi-parametric (multidimensional) relationships
are described by cubic Hermite splines. The estimation of the
respiration component is based on the light independent
response of the hypersurface, ie., the SPM partitioning
scheme makes use of all NEE data. The gross CO, uptake is
then calculated as the difference between the estimates NEE
and RE (Stauch, 2007).

UKF is a dual unscented Kalman filter recursive predictor-
corrector method used to adjust the parameters of non-linear
equations (Gove and Hollinger, 2006). NEE and other observed
state variables, that are inherently noisy, are used to update
predictions of the state by a non-linear process model.
Continuous time series of optimal model state, model
parameters and uncertainty are provided. In the dual scheme,
two filters are run in parallel for state and parameter
estimation, respectively.

ANN is an artificial neural network based method (Papale
and Valentini, 2003). ANN is essentially a non-linear regres-
sion that mimics neural learning patterns and relies on the
data to discover the inherent functional relationships between
driver data and NEE (Moffat et al., 2007). Additionally, ANN_S
was used in the synthetic data analysis to test the role of soil
moisture as an additional predictor variable.

2.2.  Synthetic model-model comparison

An initial comparison of the GPP and RE flux partitioning
methods was performed by evaluating their ability to retrieve
GPP and RE from synthetic data produced by an ecosystem
carbon cycle model. We used the BETHY model (Knorr and
Kattge, 2005) to simulate GPP and RE (with NEE then equal to
the residual) of a typical mid-latitude European forest forced
with observed meteorology, using model parameter values
appropriate for the site in question (DE3_2000, a mixed forest).
Methods did not know which particular site was being
simulated. To further mimic real-world conditions, noise
typical of real NEE measurements (Hollinger and Richardson,
2005; Richardson et al., 2006b) was added to the synthetic NEE
data, which, along with meteorological drivers (air tempera-
ture, soil temperature, PAR and soil moisture) was provided to
participants. The added noise was randomly drawn from a
double exponential distribution whose magnitude was pro-
portional to the measured flux as described in Hollinger and
Richardson (2005).

A subset of method investigators tested their models on the
synthetic NEE data. Two other methods, NFW and ANN_S were
tested with synthetic data but not with real data. These
methods were used to test an alternate error model for the NF*

series of methods and adding soil moisture to the neural
network, respectively. Output GPP and RE from the methods
were then compared to the original BETHY model GPP and RE
using a variety of statistical tests. This test did not reveal
which is the best method for deriving GPP and RE, but rather
provided a simple test of variability of derived GPP and RE
against a known modeled value with noise.

2.3. Observed data analysis

After the model-model analysis, model-data analysis was
performed using observed flux data. Flux tower NEE data
from six sites (10 site years) were taken from the Carboeur-
opelP database (Table 2). These datasets were the same as
those used in the NEE gap-filling comparison project (Moffat
et al., 2007). The sites spanned a range of European forests
and climates, from Mediterranean to boreal. Meteorological
forcing data of air temperature, soil temperature and
incident photosynthetic active radiation (PAR) for each site
were gap filled using a variety of interpolation techniques as
described by Moffat et al. (2007). All NEE data were screened
and filtered with a standardized method (Papale et al., 2006),
leading to 70-90% data availability in daytime and 30-40% at
night.

Methods derived GPP and RE were compared against one
another for each site at the annual, monthly and diurnal
timescales. Deviation from mean plots in absolute and relative
values was computed to look for model-based variability in
GPP and RE. Median, interquartile range (IQR) and max-min
statistics were the primary assessment techniques to look for
ensemble, typical model, outlier model performance statistics.
Ranked statistics and ANOVA analysis on method by site were
performed to test for ranked coherence of sites as a function of
method and for systematic biases in methods as a function of
site.

2.4.  Artificial gap scenarios

To further test method robustness under real observation
condition, artificial data gaps were added to the NEE data. A
total of 10 scenarios were used based on the mixed gap set
described in Moffat et al. (2007). Using a combination of gaps of
varying lengths (from individual half hours to a single 12-day
period), roughly 10% of the real NEE measurements were
removed from each time series. Both the real data and the
synthetic data were subject to these gap scenarios and the
methods produced new GPP and RE estimates for each site
year/gap scenario combination, which were then compared to
the original (no artificial gap) derived GPP and RE.

Table 2 - Site names, major species, years of analysis and locations used in this analysis

Site Location Species Years Lat (°N) Lon (°E) Reference

bel Viesalm, Belgium Fagus sylvatica, Pseudotsuga menziesii 2000, 2001 50.30 5.98 Aubinet et al. (2001)
de3 Hainich, Germany Fagus sylvatica 2000, 2001 51.07 10.45 Knohl et al. (2003)
fil Hyytiala, Finland Pinus sylvestris 2001, 2002 61.83 24.28 Suni et al. (2003)

frl Hesse, France Fagus sylvatica 2001, 2002 48.67 7.05 Granier et al. (2000)
fr4 Puechabon, France Quercus ilex 2002 43.73 3.58 Rambal et al. (2004)
it3 Roccarespampani, Italy Quercus cerris 2002 42.40 11.92 Tedeschi et al. (2006)
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Fig. 1 - Deviation (star) from modeled (a) annual RE, (b) annual GPP, (c) May-Sep RE, and (d) May-Sep GPP for each method that
produced GPP and RE from the noisy synthetic NEE dataset produced by the BETHY model. Most methods were biased low
against the model RE and GPP. Effect of gaps, shown by interquartile range (box) and total range (line), was to skew GPP and
RE slightly positive for most methods, a small effect that has no simple explanation. Method B365 had zero variation as it

did not perform a gap sensitivity test.

3. Results
3.1.  Synthetic flux analyses

The methods generally were able to retrieve BETHY model
driven GPP and RE given artificially noisy NEE and gap-
filled meteorological forcing to within 100 gCm ?year *
(Fig. 1a and b). In terms of annual RE and GPP, mean deviation
was —47gCm year * (range —126 to +43) for RE and
—35gCm 2year ! (range —100 to +51) for GPP, and all but
two methods were biased low against the “true” GPP and RE.
The Markov Chain Monte Carlo version of BETHY (B365)) had the
largest annual RE bias, while the ANN method had the largest
GPP bias. In both cases, the smallest bias was found with NLI.
Mean absolute errors were 54 g C m~2 year* (range +5 to +126)
for RE and 44 gCm ?year ! (range +5 to +100) for GPP. In
relative terms, methods were within 4.8% for RE and 2.7% for
GPP. Most of the biases occurred during the summer season
(Fig. 1c and d), as might be expected given it is the season when
fluxes were largest in absolute magnitude. Wintertime fluxes
were generally well modeled by all methods with low bias.
The 10 artificial gap scenarios added additional source of
variability to the RE and GPP retrieval, with an IQR average of

19 gCm 2 year ! (range +9 to +36) for REand 21 g C m 2 year *

(range +5 to +41) for GPP. For individual methods, max-min
variability across the 10 different scenarios averaged
49 g C m ?year *(range +33to+66) forREand40 g C m 2 year *
—1 (range +19 to +85) for GPP. The NFA model had the largest
variability with respect to gaps for both GPP and RE. NE and SPM
methods had the smallest gap variability for RE IQR and max-
min, respectively, while SPM and NC1 were the smallest for GPP
IQR and max-min. While most methods were negatively biased
with respect to synthetic GPP and RE, adding gaps to NEE tended
toincrease method GPP and RE, leading to a smaller bias against
synthetic RE and GPP for most models, though this is likely a
coincidence. This effectis in contrast to the real data scenarios,
where gaps just increased variability in a non-systematic
fashion.

We looked at the correlation of GPP and RE predicted by
BETHY with predictions of each of the partitioning methods at
both the hourly and daily timescale. Correlation of method RE
to BETHY RE at hourly scales was significantly improved when
aggregated to the daily scale (Fig. 2). The analysis of the
observed data showed that this is very likely due to choice of
RE diurnal cycle representation in the methods. Poor hourly
correlation was found with NFA, NFW, NFO and NC1 methods.



826 AGRICULTURAL AND FOREST METEOROLOGY 148 (2008) 821-838

04 T T T T T
(a) RE Hourly
S 0.2F .
0
“"E A
° 0.0 Wt
£ - n +rms—
= Eg " MRiMR2
% o +sPm ur1R¥
m i s J
02 NS
e +Ba6s
-0.4 . L . R :
00 02 04 06 08 10
R? Hourly
0.4 T T T T T
(c) RE Daily
= 02t -
w
“"E A
° 0.0 et
£ 2 NS
= Ny e
@ oMy 4G TRk
@ g0l s J
0.2 "iﬁr'um's
NE s
-0.4 A A . L ;
00 02 04 06 08 1.0
RZ? Daily

04 T T T T T
(b) GPP Hourly
= 0.2t 1
7]
o A
£
o] R TR
g oo e
= MRZHGR[A
) M 1R
8 NFO L S35
o ga2f ANN75+ “‘NE365 4
N
-0.4 L L L L s
00 02 04 06 08 10
R? Hourly
04 T T T T T
(d) GPP Daily

0.0 4

Bias (umol m?2 s™)
'géﬁ
Lk

-0.4 L " L )
00 02 04 06 08 10

R? Daily

Fig. 2 - Comparison of correlation coefficient (R?) to mean annual half-hourly bias for (a) RE at hourly scales, (b) GPP at hourly
scales, (c) RE at daily scales and (d) GPP and daily scales for each method against the synthetic GPP and RE dataset. Weak
correlation for RE at hourly scales disappeared at the daily scale. GPP correlation was strong at all timescales. Parameter
inversion of the synthetic model (B365) produced high correlation but a large negative bias.

All methods perform better at the daily scale, some more than
others. NLS has the lowest correlation to synthetic RE at the
daily scale. For GPP, strong correlation was found for all
methods on both the hourly and daily scale.

The MCMC parameter inversion of the BETHY model had
the highest correlation to the synthetic data GPP and RE, which
could be expected given the 1:1 correspondence in model
equations, but not the lowest bias (Fig. 8). NLI had the lowest
bias for RE and GPP, but was in the middle for the pack on
correlation. The MR1, MR1R, MR2 and MR2R suite of methods
had generally strong performance in both bias and correlation.

3.2.  Partitioning method variability

When the methods were applied to real observed NEE,
variability by partitioning method in GPP and RE was found
to be relatively small with respect to annual totals (Fig. 3). IQR
of GPP and RE from all the methods was typically less than 10%
of the annual sum of GPP or RE for any particular site. For RE
(Fig. 3a), the IQR averaged 108 g C m~2 year '. This translates
to a mean variability of 9.8% (5.9-12.3%) of the annual RE.
However, outliers across some methods pushed the total
mean range (max-min) to 366 g C m~2 year . For GPP (Fig. 3b),

very similar ranges are seen in IQR but fewer outliers led to a
smaller max-min range. Mean IQR was 104 g C m 2 year ' and
7.0% in relative terms, while max-min range averaged
314 gCm 2 year * of annual GPP.

Large outliers for some methods existed for several sites,
especially the Mediterranean forests (IT3 and FR4). Sites with
the largest spread in IQR or max-min range for both RE and
GPP were the Mediterranean sites, FR1_2001 and IT3_2002,
with max-min range exceeding 450 g C m~2 year . Deciduous
forest FI1 2001 and broadleaf evergreen FR4_2002 had the
smallest range across methods, less than 210 gCm 2 year *
for max-min in RE and 180 g C m 2 year ! max-min for GPP.
These numbers could be considered an estimate of the upper
bound of uncertainty expected due to model selection.

GPP/RE ratios (Fig. 3c) typically showed smaller variation
across methods, with a mean IQR relative variation of 2.5%
(range 1.0-4.2%). Max-min ranges were also smaller, with
mean max-min of 5.8% (3.7-10.2%). These results are similar to
the variability found in gap filling of NEE (Moffat et al., 2007).
Though large IQR was found for IT3_2002, the site had the
smallest range of GPP/RE, reflecting the role of compensating
errors in GPP and RE for models that are inverted against a
given NEE.
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Fig. 3 - Median (star), interquartile range (box) and total
range (line) of annual (a) RE, (b) GPP and (c) GPP/RE ratio for
each site as a function of GPP/RE method. Uncertainty was
greater in RE and also for Mediterranean site GPP and RE.
Most methods were within ~100 gC m~2 year™* of each
other for GPP and RE, around 10% of annual GPP and RE,
though large outliers existed at many sites.

3.3.  Biases and cross-site rankings

Though good agreement was found across model GPP and RE,
several methods were found to be biased high or low with
respect to the ensemble mean. Though the ensemble mean is
not necessarily the “correct” or “‘true” GPP or RE, the model
deviations provide a way to classify methods into groups and
identify any systematic outliers. We conducted an analysis of
variance (ANOVA), with ‘partitioning method’ as a main
effect and ‘site’ as a blocking factor, and then used a
Bonferroni multiple comparison test to identify groups of
partitioning methods that produced similar results (Tables 3
and 4; black bars indicate groups of methods that were not
significantly different from one another in the multiple
comparison test). This analysis indicated six different (but

largely overlapping) groups of methods for GPP, and seven
groups for RE. In both cases, the UKF (which produced the
highest estimates of both GPP and RE) was in its own group,
and thus significantly different from all other methods. The
NE method produced the lowest estimates of both GPP and RE,
but was always grouped with a number of other methods,
including NFA, NLSLS, and ANN, indicating that these
methods did not produce results that were significantly
different from each other according to the ANOVA analysis.
For RE, groups c and f (for GPP, groups c and e) included 20 of
the 23 methods used (all except NE, NA, and UKF).) Biases
evident in RE (Table 3) were generally identical to biases in
GPP (Table 4), which could be expected given the covariance
between GPP and RE the methods produce for a given NEE (i.e.,
foragiven NEE, and RE estimated by a particular method, then
by definition GPP = NEE + RE). In general, differences at the
annual scale were also reflected at the seasonal scale (data
not shown).

In spite of the effects of method biases and variability,
cross-site rankings of sites due to partitioning method were
surprisingly robust (Tables 5 and 6). Methods were unanimous
in selecting sites FI1_2001 and FI1_2002 as the sites with the
smallest GPP and RE, and site FR1_2002 with the largest GPP
and RE. However, the ANOVA showed that the ‘“site” and
“method” effects are largely additive (i.e., the model residual,
which by default includes any “method” x “site” interaction
effect, was small, less than 2% of the total variance), implying
that while each method is internally consistent in its ranking
of sites of highest and lowest GPP or RE, comparisons of one
site with one method to another site with another method is
likely to be inaccurate unless the ANOVA results show that the
two methods produce statistically similar comparisons (i.e.,
same letter grouping in Tables 3 and 4). Thus, an important
result is that partitioning method must be taken into account
when comparing GPP and RE across sites. On the other hand, if
all sites had GPP and RE derived from the same method (at
least among the ones tested here), the rankings of which sites
had highest and lowest GPP or RE should be generally
insensitive to which method one chooses.

3.4.  Gap sensitivity

Sensitivity of methods to data gaps was significantly smaller
than sensitivity of method choice for GPP and RE. For each
method at each site, GPP and RE were computed with 10
artificial gap scenarios and compared to the GPP and RE
computed by the method for data with no artificial gaps. The
relative variation on annual GPP and RE due to the 10 gap
scenarios ranged from 5 to15% for RE and 4 to 10% for GPP
across the various partitioning methods (Fig. 4).

Several methods, in particular UKF, SPM and NLID, were
especially sensitive to gaps in that GPP and RE estimates varied
widely among the different artificial gap scenarios (Fig. 4). For
these methods, gaps tended to reduce GPP and RE by less than
10% compared to the no artificial gap scenario. NLS and NE had
the smallest gap sensitivities for RE, while NLS and NC2 were
smallest for GPP. The median deviation across all gap
scenarios for most methods was at or near zero, implying
that the addition of 10% artificial gaps did not generally add a
systematic bias to GPP and RE.
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Table 3 - Ranking of method RE for each site and ANOVA correspondence statistics for significant differences across
methods for all sites

|MethodlSite be1_2000 be1_2001 de3_2000 de3_2001 fi1_2001 fi1_2002 fr1_2001 fr1_2002 fr4 2002 it3_2002

ANOVA
cld]|e

NE 2 2 2 1 1 1 1 1 9 1
NFA 3 3 3 8 6 5] 2 2 2 5
NLSL 7 10 4 3 & 2 6 11 16 2
NLSD 9 9 8 2 10 8 3 5 13 3
NLS 8 11 5 6 5 3 8 9 21 4
ANN 11 4 11 11 4 14 9 3 10 7
NC1 4 6 15 12 12 7 4 8 8 6
NFO 5 7 12 13 13 13 5 4 5 13
SPM 10 5 13 9 20 12 7 12 7 8
NC2 6 8 17 14 11 9 11 7 11 12
B365 1 1 20 18 18 4 13 15 4 20
MR2R 12 12 16 16 9 17 10 6 14 9
NLIL 14 14 1 10 2 10 20 21 3 18
NLTL 16 18 6 5 15 1 17 18 17 10
NLTD 21 20 9 4 19 18 16 16 12 11
MR1R 17 13 18 17 16 20 12 10 15 15
NLT 18 19 7 7 17 16 18 17 20 14
MR2 13 16 19 19 14 19 14 13 18 16
NLID 15 15 14 21 7 6 22 19 1 17
MR1 19 17 21 20 21 21 1) 14 19 19
NLI 22 21 10 15 8 15 21 22 6 22
NA 20 23 22 22 22 22 19 20 22 21
UKF 23 22 23 23 23 23 23 23 23 23

Methods that share a black box were not significantly different from each other in this test. Lower rankings equal lower calculated RE. A
handful of sites had a consistent low (NE, NFA) or high (NA, UKF) bias, but most did not.

Table 4 - Ranking of method GPP for each site and ANOVA correspondence statistics for significant differences across
methods for all sites

ANOVA |MethodISite be1_2000 be1_2001 de3 2000 de3 2001 fi1_2001 fi1_2002 fr1_2001 fr1_2002 fr4 2002 it3_2002
cl|d

NE 2 2 6 4 1 1 1 1 8 1
NFA 3 3 7 & 9 9 2 2 2 7
NLSL 6 11 4 5 3 2 6 10 17 2
NLSD 8 5 8 1 7 5] 8 7 13 3
NLS 4 10 2 6 5 3 7 ) 20 4
NC1 5 7 13 11 12 7 4 3 10 5
ANN 11 4 11 10 4 13 9 4 9 6
SPM 10 6 12 12 11 8 3 1" 7 8
NFO 7 9 15 9 14 14 5 5] 4 14
NC2 9 8 16 14 13 11 11 8 11 12
B365 1 1 18 18 17 6 15 16 6 20
MR2R 12 12 17 15 10 18 10 6 14 10
NLIL 13 15 1 13 2 10 20 19 8 18
NLTL 16 19 5 7 16 12 16 18 18 9
NLTD 19 16 10 2 20 17 17 15 12 1
NLT 17 18 3 8 19 16 18 17 21 13
NLID 14 13 14 20 6 4 22 21 1 17
MR1R 20 14 19 17 18 20 12 12 15 15
MR2 15 17 20 19 15 19 13 13 16 16
NLI 22 21 9 16 8 15 21 22 5 22
MR1 21 20 21 21 21 22 14 14 19 19
NA 18 23 22 22 22 21 19 20 22 21
UKF 23 22 23 23 23 23 23 23 23 23

Methods that share a black box were not significantly different from each other in this test. Lower rankings equal lower calculated GPP. A
handful of sites had a consistent low (NE, NFA) or high (NA, UKF) bias, but most did not.
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Table 5 - Ranking of site RE by each method and ANOVA statistics showing significant differences across sites as

classified by all methods

Method/Site | fi1_2001 fi1_2002 de3 2001 bel_2001 de3 2000 fr4_ 2002 be1_2000 fr1 2001 it3_2002 fr1_2002

a

b

C

d

e
B365 2 1 5 3 7 6 4 8 10 9
NA 1 2 3 4 6 7 5 8 9 10
NE 1 2 4 3 5 7 6 8 9 10
NFA 1 2 4 3 5 6 7 8 10 9
NFO 1 2 4 3 5 6 7 8 10 9
NLID 1 2 5 6 4 3 7 10 8 9
NLIL 1 2 4 6 3 5 7 8 9 10
NLI 1 2 3 6 4 5 7 8 9 10
NLTD 1 2 3 5 4 6 7 9 8 10
NLTL 1 2 3 5 4 6 7 9 8 10
NLT 1 2 3 5 4 6 7 © 8 10
NLSD 1 2 3 4 5 7 6 8 9 10
NLSL 1 2 3 5 4 7 6 9 8 10
NLS 1 2 3 5 4 7 6 8 9 10
SPM 2 1 4 3 5 6 7 8 9 10
UKF 1 2 4 3 6 7 5 8 10 9
NC1 1 2 4 3 5 7 6 8 9 10
NC2 1 2 4 3 5 7 6 8 10 9
MR1 1 2 3 4 5 6 7 8 10 9
MR1R 1 2 3 4 5 6 7 8 10 9
MR2 1 2 3 4 5 6 7 8 10 9
MR2R 1 2 3 4 5 7 6 8 10 9
ANN 1 2 4 3 5 6 7 8 9 10
Max 2 2 5 6 7 7 7 10 10 10
Min 1 1 3 3 3 3 4 8 8 9

Sites that do not share a black box had significantly different RE according to the partitioning methods. This analysis indicates that robust
comparison across sites is possible given the strong correspondence in site rankings. Largest disagreements were found for sites de3_2000 and

fr4_2002.

3.5.  Seasonal and diurnal trends

Seasonal and diurnal analyses of GPP and RE are typically used
for analysis of environmental controls on photosynthesis and
respiration. Ideally, this kind of analysis would not be affected
by the choice of NEE partitioning method. However, given the
differences among the partitioning methods at the annual
timescale, we expected the methods to differ in their seasonal
and diurnal patterns of NEE partitioning.

For seasonal analysis, the differences among methods
were found to be generally small among 10 site years analyzed;
i.e., all methods yielded relatively consistent estimates of the
seasonal pattern (Figs. 5 and 6). Here, to increase visual clarity,
only one year for each of the six unique sites is shown. For RE
(Fig. 5), methods generally had strong agreement on the course
of monthly RE, though this was more true for the non-
Mediterranean sites. Methods were consistent in showing
decreased RE in July for BE1_2000 and peak respiration in May
for DE3_2002 (though with greater variability given the large
outlier for August). Though the large decrease in RE in July-
August for FR4_2002 was replicated by most partitioning
methods, there was large uncertainty in its magnitude across
all the methods. Results for monthly GPP have similar results

with fewer outliers (Fig. 6). Methods portrayed what appear to
be typical evergreen and deciduous trends in GPP (Falge et al.,
2002; Law et al., 2002). Greater variation among methods was
seen again in the Mediterranean sites, FR4_2002 and IT3_2002,
perhaps indicating less of a consensus on the environmental
controls over seasonal patterns of variation in these ecosys-
tems compared to temperate or boreal systems. Additionally,
large gaps are found in IT3_2002. Finally, much of the
variability in outliers is due to one or two methods, most
notably UKF. Methods NA, NLID, and B365 also tended to be
positively biased from the ensemble mean.

Summer diurnal patterns for RE had far less coherence
across methods (Fig. 7). This lack of agreement stemmed from
both (1) choice of air temperature vs. soil temperature as
primary control of respiration (the latter dampening high
frequency variability) and (2) high frequency filters for RE
present in some of the methods. Methods B365, NA, NLTD,
NLTL, NLTR, UKF, MR1 and MR1R had more pronounced
diurnal courses for RE than the other methods. Largest diurnal
courses were found in UKF, NA, and NLTD. Methods with no
diurnal course are the light intercept based methods, NLID,
NLIL, and NLI. This was also evident in the synthetic flux
analyses (see below). In contrast, methods were very coherent
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Table 6 - Ranking of site GPP by each method and ANOVA statistics showing significant differences across sites as

classified by all methods

Method/Site | fi1_2001 fi1_2002 it3_2002 Fr4_2002 be1_2000 de3 2001 be1_2001 de3_2000 fr1 2001 fr1_ 2002

b

@

d

e

f
B365 1 2 6 4 3 7 5 8 9 10
NA 1 2 S 5 4 6 7 8 9 10
NE 1 2 & 5 4 7 6 8 9 10
NFA 1 2 g 4 5 6 7 8 9 10
NFO 1 2 4 3 5 6 7 8 9 10
NLID 1 2 4 3 5 7 6 8 10 9
NLIL 1 2 4 3 5 7 8 6 9 10
NLI 1 2 4 3 7 5 8 6 9 10
NLTD 1 2 3 5 6 4 8 7 9 10
NLTL 1 2 3 4 6 5 8 7 9 10
NLT 1 2 S 4 6 5 8 7 9 10
NLSD 1 2 S 6 4 5 7 8 9 10
NLSL 1 2 & 5 4 6 8 7 9 10
NLS 1 2 3 5 4 6 8 7 9 10
SPM 1 2 3 4 5 6 7 8 9 10
UKF 1 2 6 7 3 5 4 8 9 10
NC1 1 2 3 5 4 6 7 8 9 10
NC2 1 2 S 4 5 7 6 8 9 10
MR1 1 2 3 4 5 6 7 8 9 10
MR1R 1 2 3 4 5 6 7 8 9 10
MR2 1 2 3 4 5 6 7 8 9 10
MR2R 1 2 & 4 5 6 7 8 9 10
ANN 1 2 3 4 5 7 6 8 9 10
Max 1 2 6 7 7 7 8 8 10 10
Min 1 2 3 3 3 4 4 6 9 9

Sites that do not share a black box had significantly different GPP from other sites according to the partitioning methods. This analysis
indicates that robust comparison across sites is possible given the strong correspondence in site rankings.

with minimal variability on the diurnal pattern of GPP (Fig. 8),
which could be expected given the strong direct correlation of
photosynthetic active radiation to GPP. Methods were con-
sistent in showing afternoon GPP dip in IT3_2002 and an
asymmetric GPP pattern in FR4_2002.

4, Discussion

4.1. Biases and correlations in model-model comparison

Retrieval of model generated GPP and RE from noisy modeled
NEE data was shown to be feasible for all methods at least on
greater than daily timescales. For this analysis, the BETHY
model is assumed to be true and thus our results do not
necessarily show which methods are more reliable than
others, only which methods are better able to decompose a
given NEE signal into its components for a given functional
form. This is why the B365 method had the highest correlation
to the synthetic GPP and RE, due to the similarity in model
equations. However, B365 also exhibited a large bias in its
retrieval (which can happen because it is a blind parameter

retrieval against the noisy model data), showing the need for
careful consideration of how using Gaussian cost functions for
parameter retrieval may perform poorly in face of non-
Gaussian noise.

Most methods were low biased against the synthetic GPP
and RE, including the original model itself, on both seasonal
and annual scales. The partitioning methods were not biased
when comparing method NEE to BETHY NEE, however. Some
of this may have been due to the non-Gaussian noise found in
eddy covariance flux data and added to the synthetic NEE
(Hollinger and Richardson, 2005; Richardson et al., 2006b). The
low bias even persisted in statistically sophisticated methods,
such as ANN and ANN_S. Alternatively, the BETHY model
functions may have forms that do not easily collapse to simple
empirical functions used by most methods. Even though the
B365 method is based on the BETHY model itself, the MCMC
inversions find other parameters with a higher correlation to
noisy data at the half-hourly timescale. These parameters,
however, lead to the wrong annual GPP and RE. Trudinger et al.
(2007) have demonstrated that this failure to retrieve the
original BETHY fluxes may well be caused by inconsistencies
between the added errors and the cost function used within
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Fig. 4 - Median (star), interquartile range (box) and total range (line) relative sensitivity of methods to 10 mixed gap scenarios

averaged across all 10 site years for annual (a) RE and (b) GPP. Most methods did not incur a bias due to gaps, but 10%

additional artificial data gaps added on average an increased uncertainty of 8% for RE and 6% for GPP. B365 was excluded
since it did not run gap scenarios.
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Fig. 5 - Monthly median (star), interquartile range (box) and total range (line) RE as a function of method for a sample year
from each of the six unique sites in this study. Generally good agreement was found across most methods on seasonal
patterns, though large outliers existed, especially for the Mediterranean sites (lower row).
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Fig. 6 - Monthly median (star), interquartile range (box) and total range (line) GPP as a function of method for a sample year
from each of the six unique sites in this study. The agreement among methods for monthly GPP was stronger than for RE

and outliers were smaller.

the optimization. While non-Gaussian errors were added to
produce noisy NEE data, B365 applied a Gaussian error model
for parameter estimation. The mismatch is in the same range
as the overall error of other methods. This highlights the
importance of an adequate cost function within the inversion
against eddy covariance data. Further research in this
direction is needed.

The synthetic analysis did reveal that many methods had
low correlation to synthetic RE at hourly timescales. This
effectis likely similar to the large variability seen in the diurnal
RE in the site diurnal trend analysis. However, the synthetic
analysis cannot say that those methods with low correlation
are poor at reproducing diurnal RE (though some produce no
diurnal signal at all), only poor at recovering the modeled
diurnal RE. A significant factor in patterns of diurnal RE is how
the partitioning methods incorporate information about air
and soil temperature, the latter typically having a damped,
lagged signal of air temperature that varies with depth. Given
the strong correlations with both temperature variables to RE,
diurnal RE patterns from the partitioning methods will

generally mimic patterns found in these temperature vari-
ables or some combination thereof. All this synthetic analysis
can say is whether a method has a diurnal RE pattern similar to
BETHY. At daily scales, the previously low correlated methods
had large improvement in performance. Multi timescale
correlation analysis reveals that most methods except for
NLS reach >0.6 correlation to synthetic RE at 8 h averaging
time (Fig. 9). The NLS method does not reach that status point
until the weekly timescale.

For GPP, high correlation was found at the hourly scale,
which increased with averaging time. A small dip was found
for all methods except B365 at 12 h. This dip is not easily
explained, but should be noted that it is very small and
possibly an artifact of BETHY itself, given the model-model
nature of the comparison. In both cases, clusters of methods
with similar performance metrics do appear, primarily as a
function of how closely the methods’ functional forms
approximate BETHY model’s functional forms. Interestingly,
methods that make few assumptions on seasonal and diurnal
patterns, such as ANN, ANN_S and SPM were not leaders in
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Fig. 7 - Summer (day of year 152-243) ensemble hourly RE for all methods at the six unique sites. Large variation in diurnal
course was found across methods partly as a function of relying mainly of air temperature or soil temperature for

controlling decomposition.

either short timescale correlation or annual bias; rather, many
of the non-linear regression methods outperformed them in
both metrics. This result suggests the need for more
investigation of the newer partitioning methods. Additionally,
it should be noted that BETHY is one of many ecosystem
models and thus the analysis here should not be construed as
a ranking of partitioning methods. BETHY is not necessarily
the most complex and complete ecosystem model, but one
that represents a broad swatch of these models. Many
assumptions need to be made in ecosystem models on the
environmental controls of carbon metabolism that do not
have strong empirical grounding. The synthetic analysis was
performed primarily as an initial way to test variability in GPP
and RE retrieved by the NEE partitioning methods for a given
known GPP and RE. A more thorough test would be to use an
ensemble of models against an ensemble of synthetic noisy
scenarios and is recommended here.

The analysis was unable to assess which method was the
best for deriving GPP and RE from NEE. Even the synthetic
analysis here with one model did not reveal an obvious
candidate with both zero bias and high correlation. The
analysis did reveal outliers and those with higher variability or

bias in the face of gaps, but otherwise we cannot strictly
recommend one method over the other. Stoy et al. (2006)
compared four methods at three sites with independent data.
Though all models performed poorly at estimating short-term
RE, they reasoned that their most complex models (non-
rectangular hyperbola) that relied on daytime flux data to
estimate RE with short time windows, worked best at
capturing long timescale variability. Here, we instead find
the nighttime extrapolation using short-term temperature
sensitivity seemed have highest coincidence with the syn-
thetic data.

4.2.  Total variability in partitioned observed NEE

Results of the present study demonstrate that multi-site
comparisons of component fluxes of NEE, i.e., partitioned GPP
and RE, are not valid unless the method used for the
partitioning is taken into account. While some methods led
to a more or less similar partitioning of NEE, the range across
all methods was relatively large (~100 g C m~2 year *IQR), and
this variability may confound true differences among sites.
Though this result does not provide an independent con-
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Fig. 8 - Summer (day of year 152-243) ensemble hourly GPP for all methods at the six unique sites. Unlike RE, strong
correspondence in diurnal course of GPP was found, due to its strong link to incoming shortwave radiation. Patterns in
timing of peak GPP and afternoon GPP decline were evident at some sites, suggesting that studies of environmental

controls on photosynthesis are possible with these methods.

firmation on the fidelity of using eddy flux tower observations
for GPP and RE, it does lead to confidence and provide a rough
uncertainty bound on previously reported GPP and RE
estimates independent of choice of partitioning method.
Previous studies focused on a few methods at a many sites
(e.g., Falge et al., 2001; Law et al., 2002; Reichstein et al., 2005;
Stoy et al., 2006) and so were limited in their ability to draw the
conclusions regarding method-related variability in estimated
GPP and RE. A few site-specific studies have attempted to use
Monte Carlo techniques to evaluate the effects of gaps on both
integrated NEE as well as GPP and RE estimates (e.g., Desai
et al., 2005; Griffis et al., 2003; Richardson and Hollinger, 2005),
but this study is the first to systematically investigate the
effects of synthetic gaps on the consistency of the estimated
GPP and RE for a range of different partitioning methods.

In this study, across 10 site years of data and 23 methods,
75% of methods fell within 10%, or roughly 100 g C m 2 year %,
of each other (for a given site year) in terms of annual GPP and
RE. Although some outliers were evident at many sites, these
were not consistently associated with a particular method,

except that for virtually all site years, UKF consistently
produced the highest estimates of GPP and RE. The other
methods could be separated into groups of models with
similar predictions, but no systematic methodological reason
can be identified for why some methods fall into one group or
the other. Greater variability found for the Mediterranean sites
suggests a lack of consensus for partitioning NEE to GPP and RE
in seasonally water-limited ecosystems. Hollinger and
Richardson (2005) demonstrate that good partitioning meth-
ods are approaching the uncertainty limits of the flux data, so
larger variability does not necessarily signify poor model
selection, but rather that all methods are not necessarily
suitable for use at all kinds of sites depending on core
assumptions about seasonal cycles or expected patterns of
GPP and RE. In this sense, methods like ANN and SPM, which
do not impose a priori assumptions about functional relation-
ships between GPP or RE and environmental drivers, may have
superior performance across a wider range of ecosystem types
than empirical regression based routines. Ultimately, though,
all partitioning methods will be driven primarily by the
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Fig. 9 - Expansion of correlation analysis in Fig. 2 showing correlation as a function of average time for each method
compared to the synthetic BETHY model (a) RE and (b) GPP. For RE, all methods except NLS reached R? > 0.6 by 12 h despite
starting for a wide range of correlation at the half-hourly scale. For GPP, a small dip in correlation was found for all methods

except B365 at 12 h, an effect which has not been explained.

variability seen in the driver data provided and if the driver
data does not reflect the cause of variation in GPP and RE (e.g.,
invasive pest outbreak, disturbance, nutrient limitation), then
the no method will capture the variation in GPP and RE.

An encouraging aspect of the NEE partitioning methods
was their general robustness against artificial data gaps in
NEE. Data gaps in flux tower time series are common for a
number of reasons and filtering of improper observation
conditions will always lead to gaps with eddy covariance. For
most methods and sites, 10% additional gaps increased
variability of GPP and RE at 75% of sites by 1-2%, but across
all sites and methods, variability averaged 6-7%. While these
numbers were smaller than the variability caused by choice of
partitioning method, it is not an insignificant source of
uncertainty. Also, timing and length of gaps matter (e.g.,
missing a strong respiration peak in early spring), which
deserves closer examination (Richardson and Hollinger, 2007).

Additional variability GPP and RE estimated from flux tower
measurements of NEE arrives from systematic corrections to
the NEE data such as the u* correction and data filtering, that
were not considered in this article (all datasets were already
screened for “bad” data). Papale et al. (2006) estimate these
corrections have an uncertainty less than 100 gC m~2 year * to
NEE, leading to potential for ~10% additional uncertainty on
GPP and RE estimates. Hagen et al. (2006) used a bootstrapping
approach at a single site to estimate uncertainty in GPP due to
random errors in eddy covariance data, gaps and GPP model
choice. This error turned out to be large at hourly timescales
but approached 10% at annual timescales, the largest effect
being choice of partitioning method. If all sources of GPP and
RE uncertainty assessed here (data filtering (10%), partitioning
method choice (10%) and gaps (5%)) were independent and
uncorrelated, total uncertainty would on average reach ~25%,
limiting the usefulness of comparing GPP and RE, unless they
are computed using the same method.

4.3. Confidence in seasonal and cross-site patterns
Partitioning methods generally agreed on the cross-site
rankings of GPP and RE. These differences were significant

according to ANOVA. Intersite ranking of GPP and RE was
insensitive to choice of method as long as the same method (or
one that is statistically similar) was used for all sites, or the
effect of method was considered (e.g., biases are taken into
account). The upshot of these results is increased confidence
in previously reported comparisons of flux tower derived GPP
and RE across sites (e.g., Law et al., 2002; Reichstein et al.,
2005), as they should not be strongly affected by choice of
method in decomposing the GPP and RE, at least according to
this analysis. However, given the variability and biases
discussed, comparisons of GPP and RE across sites using
different methods are unlikely to have the same coherence,
which calls for standardized processing.

Methods were also generally coherent on seasonal trends
in GPP and RE at most sites. The ensemble of methods showed
close agreement on periods of high and low GPP or RE.
However, outliers at a few sites at some months were evident
and larger spread was found in the Mediterranean sites, since
these sites have seasonal patterns that may not be repre-
sented by all methods. Moreover, in the case of IT3_2002, large
(multiple week) gaps due to instrumentation issues led to
higher uncertainty. Many outliers in other sites were due to
one method, typically UKF. Overall, given strong coherence
across methods lends support to prior results on studies of GPP
and RE seasonality (Falge et al.,, 2002) and environmental
controls on GPP and RE (Law et al., 2002).

Diurnal trends in GPP were coherent across all methods for
all sites, which could be expected given the strong and direct
correlation between incoming solar radiation and GPP.
However, trends for diurnal RE were highly variable across
sites, partly driven by method choice of soil temperature or air
temperature as the primary control on respiration. Also,
mechanisms of diurnal variation for RE are less well known
and the timescales on which temperature exhibits control on
RE are not well constrained. The filtering of large amounts of
nighttime NEE data, existence of inherent noise in flux tower
time series, and a lack of strong diurnal temperature trend at
night places additional limits on the ability of methods to
extrapolate diurnal RE from flux tower NEE. In a study using 19
respiration models and data from three flux tower sites,
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Richardson et al. (2006a) found that neural networks, with
their ability to integrate information from multiple forcing and
covariance among forcing, performed better than simple
parameterized regression models (e.g.,, Q10, Lloyd-Taylor).
However, the focus of that comparison was mainly on annual
sums, not diurnal trends. Emerging datasets from automated
soil chambers should help quantify actual diurnal trends in
soil respiration, which accounts for 40-60% of RE in forested
ecosystems (Davidson et al., 2006). It should also be noted that
most partitioning methods were designed to characterize the
mean but not the variance (or higher order moments) at short
timescales, with the intention of producing credible annual
means and seasonal cycles rather than preserving all statistics
of the time series. Therefore, method performance at the
annual timescale should not be taken as a sufficient proxy for
performance at short timescales (e.g., diurnal to synpotic) (e.g.,
Figs. 2 and 9).

5. Summary and conclusions

GPP and RE values estimated by 23 gap-filling methods from 10
site years of NEE flux tower data showed good agreement
among methods at the annual and seasonal scales, with
variability among methods ~10% of the annual component
flux, roughly comparable to typical interannual variability.
Artificial gap scenarios (10% data removal) resulted in an
additional 6-7% variability for individual methods, but did not
tend to bias the method GPP and RE. Most methods were
coherent in their ranking of sites from smallest to largest GPP
or RE, leading to greater confidence in the ability of these
methods to identify cross-site differences and spatial patterns
of GPP and RE, as long as the same method is used to partition NEE
across all sites. In an analysis of synthetic data, we found daily
and annual GPP and RE estimates extracted from NEE
produced by the BETHY model were generally well correlated
with the original synthetic fluxes.

However, there were some notable discrepancies among
the partitioning methods. Large outliers existed for some
sites and uncertainty was larger for Mediterranean sites.
Several of the methods were shown to be systematically
biased against the ensemble mean GPP and RE. At the diurnal
scale, methods were in close agreement for growing season
diurnal GPP course, but varied widely for RE due to choice of
functional forms and difficulties in extrapolating high gap
frequency nighttime NEE to half-hourly RE. However, no
particular class of methods could be identified for having
consistent biases. ANOVA analysis did show several indivi-
dual methods that tended to be biased against the ensemble
mean.

As previously stated, this analysis does not identify which
methods are more correct in their interpretation of hourly,
seasonal or annual GPP and RE. Rather, the results showed the
robustness of most methods against the consensus GPP and RE
for particular sites, gaps in the NEE data, and coherence of
cross-site comparisons. Additionally, the synthetic NEE tests
revealed the fidelity of method GPP and RE retrieval, at least for
correlation of synthetic to partitioned flux and similarity of the
method empirical functions to a complex, well-tested eco-
system model.

Given the relatively fast run times for most methods, the
concept of an ensemble modeling system for GPP and RE
encompassing different types of methods (data vs. process
based; day vs. nighttime based), that were known not to be
systematically biased or have large uncertainty/biases with
gaps should be explored. Future intercomparison work should
focus on comparing methods to independent GPP and RE
estimates for the sites, especially long-term automated
continuous respiration measurements, which will help with
at least the soil respiration component, the source of most
ecosystem respiration in many ecosystems. This study
showed that additional investigation of the differences of
partitioning method results in seasonally water-limited
ecosystems, such as the Mediterranean sites, may be needed
to better capture GPP and RE. This study only focused on
annual data and did not delve specifically into interannual
variability. Additional analysis with sets of sites with multiple
years of data is warranted, especially in light of the need to
move from diagnosis to prediction, which is only possible if we
understand the environmental controls on GPP and RE at
interannual and longer timescales. Finally, continued devel-
opment of tests of method fidelity against eddy covariance
noise, data filtering, gaps and systematic biases will help
further constrain the total expected uncertainty for GPP and
RE estimates.
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