Relationship Between Snow Extent and Mid-Latitude Cyclone Centers From NARR Objectively Derived Storm Position and Snow Cover

Matthew Rydzik Advisor: Ankur Desai

Department of Atmospheric and Oceanic Sciences University of Wisconsin - Madison

AOS Department Seminar April 11th, 2012

Outline

- I. Introduction
- 2. Data / Methods
 - Snow Cover Extent Algorithm
 - MLC Identification and Tracking
- 3. Results / Discussion
 - Relationship between snow cover and MLCs
 - Low-level Baroclinicity
- 4. Conclusions
 - Role in poleward shift of storm tracks?

Snow Cover Impacts

- High albedo reflects more solar radiation
 Cooler temperature
- Infrared Blackbody
 - Cooler temperature at night
- Insulation
 - Low thermal conductivity

Why do we care?

- "General features include a poleward shift in storm track location, increased storm intensity, but a decrease in total storm numbers" - IPCC (2007)
- "The baroclinic zone is a lot of times the place where storms will track. Repeated storm tracks will continue to move the snow cover slightly southward." - Eric Sorensen - WREX

Snow Cover Influence on MLCs

- Namias (1962) postulated feedback cycle
- I. General circulation favored southern snow extent
- 2. Air masses cooled by anomalous snow cover
- 3. Increased low-level

temperature contrast

- 4. MLCs feed off of enhanced low-level baroclinicity
- MLCs aided in injecting future air masses further southward

J. NAMIAS

Fig. 10. Isopleths of error in °F of temperature estimates (solid), and isobars of mean sea level pressure (broken), for the period mid-February to mid-March 1960. Shading indicates prevailing snow cover.

Snow Cover Influence on MLCs

- Elguindi et al. (2005) ran model simulations of MLC with modified snow cover
- Control versus Expansive Snow Cover
 - No significant change in MLC trajectories
 - MLCs weakened with increased snow cover

- How well is the NARR able to represent snow cover extent and mid-latitude cyclone trajectories?
- Is there a relationship between preexisting snow cover extent and mid-latitude cyclone trajectories?
- Is there a region of enhanced baroclinicity near the snow extent edge?

Outline

- I. Introduction
- 2. Data / Methods
 - Snow Cover Extent Algorithm
 - MLC Identification and Tracking
- 3. Results / Discussion
 - Relationship between snow cover and MLCs
 - Low-level Baroclinicity
- 4. Conclusions
 - Role in northward shift of storm tracks?

NARR

- Regional reanalysis at 32 km grid spacing
- Snow water equivalent updated at 0000 UTC using SNODEP (Air Force Weather Agency)
 - Station Observations
 - Satellite Retrievals
 - Manual Interpretation

Snow depth (cm)

Analysis valid 0000 UTC Wed 04 Apr 2012

Air Force Analysis (47.6 km)

Snow Extent

- I. Gaps filled in 0000 UTC NARR categorical snow presence
- 2. Linearly interpolated to 0.25° grid
- For each longitude, find 2.5° of consecutive snow cover from south to north
- Smooth snow extent with 2.5° filter

SNODAS

- Modeling and data assimilation framework
- I hr temporal and I km grid spacing
- Incorporates:
 - Quality controlled and downscaled numerical weather prediction output
 - Snow pack model
 - Data assimilation scheme
- 2004-2009

NARR - SNODAS

Snow Cover Trends

MLC Identification

- Pressure minima located at fine (0.25°) and coarse (2.5°) resolution
- Coarse minimum moved to nearest fine minimum

MLC Tracking

- Nearest centers within 400 km are linked at three hour time steps
- Center must move in six hours
- Center may not backtrack
- Center allowed to disappear for one time step

Blizzard of 1993

Snow Cover & MLCs

Mountains

Northern Boundary

Outline

- I. Introduction
- 2. Data / Methods
 - Snow Cover Extent Algorithm
 - MLC Identification and Tracking
- 3. Results / Discussion
 - Relationship between snow cover and MLCs
 - Low-level Baroclinicity
- 4. Conclusions
 - Role in northward shift of storm tracks?

MLC Distance from Snow Extent

MLC Distance from Snow Extent

MLC Distance from Snow Extent

Why a Bimodal January?

- Likely caused by Alberta clippers
 - Occur roughly 600-800 km north of typical January snow cover extent
 - Most common in January

Average Alberta clipper track from Thomas and Martin (2007)

- Create distributions from shuffled snow cover
 - Use the other 31 years of snow cover from the same day
- Subtract new distribution from original
- Sum the differences
- Assume that shuffling creates random noise that will cancel when summed
 - Regions of coherent peaks are assumed to be significant

Lagged Relationships

- A relationship between MLCs and snow cover is expected
 - During the winter, MLCs tend to deposit snow on their northern side
- If pre-existing snow cover is driving the relationship, then we expect little change in the distributions

Lagged Relationship Snow Leading

Lagged Relationship Snow Leading

Lagged Relationship Snow Leading

Lagged Relationships

- Little change between no lag and snow leading by two days
 - Inherent lag for some MLC centers because of NARR snow water equivalent update time

• If the MLC is leading the snow cover, then we expect a shift in the distributions to the left

Lagged Relationship MLC Leading

Lagged Relationship MLC Leading

Lagged Relationship MLC Leading

$$\sigma_{BI} = 0.31 \frac{f}{\sqrt{\frac{g}{\Theta_m} \frac{\Theta_u - \Theta_l}{\Phi_u - \Phi_l}}} \left| \frac{V_u - V_l}{\Phi_u - \Phi_l} \right|$$

(based off of Lindzen and Farrell, 1980)

Snow Extent Albedo

Snow Extent Temperature

Snow Extent Sensible Heat Flux

Snow Extent Latent Heat Flux

Outline

- I. Introduction
- 2. Data / Methods
 - Snow Cover Extent Algorithm
 - MLC Identification and Tracking
- 3. Results / Discussion
 - Relationship between snow cover and MLCs
 - Low-level Baroclinicity
- 4. Conclusions
 - Role in poleward shift of storm tracks?

 How well is the NARR able to represent snow cover extent and mid-latitude cyclone trajectories?

Reasonably well

 Is there a relationship between preexisting snow cover extent and mid-latitude cyclone trajectories?

Yes

Yes

 Is there a region of enhanced baroclinicity near the snow extent edge?

Poleward Shift

 Snow cover extent is expected to decrease with ACC (Brown and Mote, 2009)

 Thus, our relationship suggests snow cover extent will lead MLCs poleward over continents

Poleward Shift

 Observed and forecast poleward shift in storm tracks from ACC, mainly in the North Atlantic and North Pacific (IPCC, 2007; Jiang and Perrie, 2007)

 Increased baroclinicity off the east coast of continents important to oceanic storm track locations (Hoskins and Valdes, 1990)

Poleward Shift

 Ross and Walsh (1986) found that enhanced baroclinicity near coastal boundaries due to increased snow cover is important to MLC trajectories

 The relationship suggests that continental snow cover may play a role in oceanic storm tracks shifting poleward

Future Work

- Why is it the region 50-350 km south of the snow extent?
- Why is MLC frequency confined to a narrow region while low-level baroclinicity has a broad structure?

- Methods
 - Idealized model
 - Case studies with small snow extent perturbations

Take Home Messages

 Enhanced frequency of MLCs in a region 50-350km south of snow extent

- Stronger relationship during the spring

• Driven by low-level baroclinicity

 May play a role in the poleward shift of storm tracks with ACC

Acknowledgements

- Advisor Ankur Desai
- Readers Dan Vimont and Jon Martin
- Labmates
- Fellow Graduate Students
- Mallie Toth for support and proofreading