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[1] Observations of regional net ecosystem exchange (NEE) of CO2 for 1997–2007 were
analyzed for climatic controls on interannual variability (IAV). Quantifying IAV of
regional (104–106 km2) NEE over long time periods is key to understanding potential
feedbacks between climate and the carbon cycle. Four independent techniques estimated
monthly regional NEE for 104 km2 in a spatially heterogeneous temperate‐boreal transition
region of the north central United States, centered on the Park Falls, Wisconsin,
United States, National Oceanic and Atmospheric Administration tall tower site. These
techniques included two bottom‐up methods, based on flux tower upscaling and forest
inventory based demographic modeling, respectively, and two top‐down methods, based
on tall tower equilibrium boundary layer budgets and tracer‐transport inversion,
respectively. While all four methods revealed a moderate carbon sink, they diverged
significantly in magnitude. Coherence of relative magnitude and variability of NEE
anomalies was strong across the methods. The strongest coherence was a trend of
declining carbon sink since 2002. Most climatic controls were not strongly correlated with
IAV. Significant controls on IAV were those related to hydrology, such as water table
depth, and atmospheric CO2. Weaker relationships were found with phenological controls
such as autumn soil temperature. Hydrologic relationships were strongest with a 1 year lag,
potentially highlighting a previously unrecognized predictor of IAV in this region.
These results highlight a need for continued development of techniques to estimate
regional IAV and incorporation of hydrologic cycling into couple carbon‐climate models.
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1. Introduction

[2] Observations of regional (104–106 km2) surface‐
atmosphere carbon net ecosystem exchange (NEE) can be
related to underlying biome types, coherent climate for-
cings, and land use and disturbance patterns, and thus are
key to facilitating mechanistic understanding of drivers of
carbon fluxes [Running, 2008]. Regions are also the scale of
impact for global climatic change and a relevant scale for
land management and CO2 emission decisions [Wofsy and
Harriss, 2002]. However, observations of regional carbon

exchange have been limited [Desai et al., 2008; Dolman et
al., 2009; Riley et al., 2009].
[3] Regions often contain multiple ecosystem types, het-

erogeneous terrain, and developed areas. As such, it is dif-
ficult to scale up from ecosystem‐based studies to the region
[Desai et al., 2008] and the regional complexity complicates
scaling down from global‐scale flux estimates based on
atmospheric approaches [Ahmadav et al., 2009; Gurney et
al., 2002]. Thus, “top‐down” carbon cycle observations
have traditionally been limited to the continental scale
(∼107–108 km2) while “bottom‐up” methods to the scale of
a local ecosystem (∼100–101 km2).
[4] Quantifying regional NEE and how it varies with cli-

mate drivers can help improve prediction of carbon cycle–
climate feedbacks, of which there are many [Bonan, 2008].
Though progress has been made in capturing many of these
processes [Moorcroft, 2006], uncertainty in carbon cycle
climate sensitivity continues to remain a significant source
of uncertainty in the trajectory of future climate change
[Friedlingstein et al., 2006]. Some of this uncertainty could
be diagnosed by better understanding of the interannual
variability of atmospheric CO2, which is strongly driven by
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climatic processes. The variability of CO2 at annual to
decadal timescales is driven primary by interannual vari-
ability (IAV) of terrestrial carbon cycle [Bousquet et al.,
2000; Peylin et al., 2005]. Yet, diagnosing climate con-
trols on terrestrial IAV is not simple [Law et al., 2002;
Ricciuto et al., 2008].
[5] Despite these difficulties, there is much potential in

ongoing long‐term carbon cycle observations to better con-
strain regional NEE and its climate controls. The proliferation
of eddy covariance flux towers, carbon inventories, and
continuous atmospheric CO2 observations, coupled with
advances in top‐down and bottom‐up scaling methods has
great potential to better improve quantification of regional
NEE and its IAV [Pacala et al., 2001]. Bottom‐up methods
have generally incorporated ecosystem and scaling models
applied to flux chambers [Kicklighter et al., 1994], flux
towers [Desai et al., 2008; Papale and Valentini, 2003; Xiao
et al., 2008], carbon inventories [Cohen et al., 1996; Desai
et al., 2007; Goodale et al., 2002], or satellite remote
sensing [Mahadevan et al., 2008]. Top‐down methods have
primary focused on aircraft atmospheric budgets [Leuning
et al., 2004; Lin et al., 2004; Matross et al., 2006], tower
based boundary layer observations [Bakwin et al., 2004;
Chen et al., 2007; B. Chen et al., 2008; Denmead et al.,
1996; Helliker et al., 2004; Kuck et al., 2000; Levy et al.,
1999; Wang et al., 2007], or tracer‐transport inversion
[Gurney et al., 2002; Peters et al., 2007]. Very few studies
[e.g., Pacala et al., 2001; Riley et al., 2009] combine
multiple methods or attempt to assess carbon fluxes over
multiple years, limiting much of the inference drawn from
any one method about controls on regional IAV.
[6] To fully investigate magnitude and IAV of regional

NEE, multiple top‐down and bottom‐up methods need to be
investigated [Blankinship et al., 2008]. In this study, we apply
four independent methods, two bottom‐up, two top‐down to
estimate regional NEE for a 10 year period (1997–2007) over
a small region (104 km2) located in the upper Midwest

United States in a boreal transition region. The wetland‐
interspersed forested landscape drives complex spatial
heterogeneity.
[7] The region is centered on the WLEF Park Falls,

Wisconsin, United States, tall tower site, where a decade
of atmospheric greenhouse gas [Bakwin et al., 1998], eddy
covariance flux tower [Davis et al., 2003], inventory
[Bolstad et al., 2004], and regional climatic observations
[Ricciuto et al., 2008] have been made. Four independent
methods were analyzed for regional NEE, IAV, and rela-
tionship of IAV to climatic variables. The methods include
a flux tower upscaling study [Desai et al., 2008; A. R. Desai,
Climate and phenology drive coherent regional interannual
variability of carbon dioxide flux in a heterogeneous land-
scape, submitted to Journal of Geophysical Research,
2010], an inventory based ecosystem model [Desai et al.,
2007; Moorcroft et al., 2001], an equilibrium tower‐based
boundary layer budget [Helliker et al., 2004], and a tracer‐
transport inversion [Peters et al., 2007]. This study extended
original studies of these methods to the entire time period
and attempted to estimate uncertainty for them.
[8] Given monthly NEE and annual IAV from the four

methods, we asked: (1) Is there convergence in the magni-
tude of mean NEE and the timing of the seasonal cycle and
if not, how might these differences be reconciled in terms of
model structure? (2) How coherent is IAV across the four
methods and are there any consistent anomalies and trends?
(3) What environmental and climatic controls best explain
any coherent IAV?

2. Methods

2.1. Region Description

[9] Regional carbon fluxes and climatic variables were
examined in a 60 km radius of the WLEF tall tower (45°56′N,
90°16′W) near Park Falls, Wisconsin, United States (Figure 1).
The region is a subboreal forested landscape, with low
human population density and little elevation change [Desai
et al., 2007]. The dominant cover of mature and young
northern hardwoods is interspersed with softwood stands and
forested and open wetlands. Most of the forest is managed,
though harvest only occurs in limited parts of the region
currently [Ahl et al., 2005]. The complexity of the landscape
in ecosystem types, ages, management class, and stocking is
the precisely the reason that regional carbon fluxes are dif-
ficult to quantify by any one method.
[10] The climate is characterized by cold winters, warm,

short summers, andmoderate precipitation amounts. Themean
annual temperature over the time period examined (1997–
2006) was 6.0 +/− 1.1 C with a range from −6.5 +/− 1.9 C in
winter (December–February) to 18.0 +/− 1.1 C insummer
(June–August). Mean precipitation was 723 +/− 128 mm, with
58 +/− 6% falling from May–September, and most winter
precipitation falling as snow. Forests productivity in the region
is generally considered to be primarily temperature limited,
and relatively insensitive to variations in precipitation.

2.2. Regional Flux Techniques

2.2.1. Materials
[11] The time period examined was January 1997 to

December 2006. This period overlaps with high‐quality
observations of greenhouse gases, eddy covariance carbon

Figure 1. Map of region (inset at top left) including loca-
tion of eddy covariance flux towers used by IFUSE model
(gray crosses) and delineation of bottom‐up region upscal-
ing region (black circle), a 60 km radius circle around the
Park Falls, Wisconsin, United States, WLEF tall tower
NOAA greenhouse gas observatory site.
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dioxide fluxes, and regional micrometeorology from a net-
work of observations that are within the Chequamegon
EcosystemAtmosphere Study (ChEAS) [J. Chen et al., 2008;
Davis et al., 2003]. The WLEF tall tower is instrumented
by the National Oceanic and Atmospheric Administration
(NOAA) Earth Systems Research Lab (ESRL) for continu-
ous monitoring of atmospheric greenhouse gases since 1995
[Bakwin et al., 1998].
[12] Continuous vertical profiles of atmospheric CO2

([CO2]) and meteorological variables are measured at the
WLEF tall tower and used in this analysis for the boundary
layer budgets, atmospheric inversions, and inference of
mean atmospheric state. [CO2] observations, made at
6 heights from the tower and aggregated to hourly averages,
have an accuracy of +/− 0.2 ppm. Hourly average meteo-
rological profiles include temperature and humidity at three
levels and surface incoming radiation variables. Missing
meteorological data were gap−filled with a nearest neighbor
approach using other meteorological stations in the region.
[13] Since the initiation of greenhouse gas monitoring,

additional micrometeorological and stand‐scale eddy covari-
ance flux towers in forests and wetlands have been installed
across the landscape (Figure 1) [Desai et al., 2008]. These
micrometeorology towers provided soil moisture and tem-
perature observations in addition to atmospheric variables.
The eddy covariance towers directly measured exchange of
trace gas fluxes at the scale of ∼1 km2. NEE, the direct
exchange of CO2, was observed by all towers at half‐hourly
resolution. Data gaps were filled using conventional empir-
ical regression techniques [Desai et al., 2005].
[14] Other data required for the methods include biologi-

cal measurements of species composition, land cover, and
standing carbon stocks, which have been made across the
region in a number of investigations [Bolstad et al., 2004].
Distribution of forest age and biomass was derived from the
U.S. Forest Service Forest Inventory and Analysis (FIA)
program, which sampled tree species, height, age, and other

variables in stratified random plots at decadal intervals. We
selected FIA plots in a 60 km2 radius around the WLEF
tower and used converted these data into statistics of forest
age‐class biomass distributions.
[15] Various combinations of these [CO2], meteorologi-

cal, eddy flux, soil state, and species composition data sets
are required by the four regional carbon flux methods. These
methods are described in the next four sections and also
noted in Table 1. Two of the methods are “bottom‐up” as
they rely on upscaling a network of ecosystem observations
to a region using a mapping of point to area and two of the
methods are “top‐down” as they rely on inferring entire
region flux from atmospheric observations.
2.2.2. Bottom‐Up Technique: IFUSE
[16] Building on an upscaling experiment described by

Desai et al. [2008], the Interannual Flux Tower Upscaling
Experiment (IFUSE) regional carbon ecosystem approach
(Desai, submitted manuscript, 2010) is a simple, data
assimilation based approach to estimating regional carbon
fluxes from a mesonet of eddy covariance flux towers.
Direct observations of surface‐atmosphere exchange of CO2

measured by eddy covariance flux towers were used to
calibrate a simple ecosystem model, which was then applied
to an upscaling model to calculate regional sources and
sinks of carbon in forests and wetland ecosystems (Desai,
submitted manuscript, 2010). Unlike Desai et al. [2008],
IFUSE estimates regional fluxes for the entire year and is
designed to preserve observed interannual variability.
[17] IFUSE’s ecosystem model is a minimal‐parameter

(17), spin‐up free model of ecosystem photosynthesis and
respiration. The diagnostic model has no soil pools, and thus
assumes they are fixed in time relative to variations in
fluxes, which reduces the difficulty of parameter estimation
for turnover times but limits the ability of the model to be
run at successional timescales. Calibration against flux
towers allows the model to successfully simulate ecosystem
carbon exchange and impact of climate variability on them.
[18] Half‐daily (day/night) estimates of gross primary

production, ecosystem respiration, NEE, and leaf area index
are output. Photosynthesis is estimated using an eight‐
parameter light, temperature, and vapor pressure deficit
limited Montieth model. Five parameters control respira-
tion rates in three temperature, production, and moisture
sensitive soil pools. Leaf phenology is modeled with a four‐
parameter sigmoidal growing degree day and soil temper-
ature sensitive function for leaf emergence and leaf fall,
respectively. While the model is purposefully simple and
primarily designed for forests, we assume that wetlands and
nonforest ecosystems generally follow the same relation-
ships in the bulk and rely on the calibration to flux tower
data to constrain the parameters for these ecosystems.
[19] NEE observations from the ChEAS flux tower net-

work were used to calibrate 14 of the 17 parameters in the
model using a hierarchical Bayesian approach [Luo et al.,
2009]. More than one dozen flux towers were used, which
spanned the range of age classes (young, intermediate,
mature, old growth) and land covers (mixed forest, ever-
green needleaf forest, and wetland) seen in the region,
though some (e.g., mature forests) were oversampled com-
pared to others (e.g., wetlands).
[20] We used the Markov Chain Monte Carlo (MCMC)

Metropolis‐Hastings algorithm [Braswell et al., 2005;

Table 1. Definitions of the Bottom‐Up and Top‐Down Regional
Flux Methods and Climatic Variables Used in This Study

Name Citation

Bottom‐up
IFUSE Interannual Flux Tower Upscaling

Experiment
A. R. Desai et al.

(manuscript in
preparation, 2010)

ED Ecosystem Demography Model v. 1.5 Desai et al. [2007]
Top‐down
EBL Equilibrium Boundary Layer budgets Helliker et al. [2004]
CT CarbonTracker inverse model,

version 2008
Peters et al. [2007]

Variable
Tair air temperature (30 m)
Tsoil soil temperature (10 cm)
PAR photosynthetically active radiation
Precip Precipitation
VPD vapor pressure deficit
Qsoil soil moisture (10 cm)
Qtable water table depth above surface
[CO2] atmospheric carbon dioxide

concentration
NAO North Atlantic Oscillation index
NINO3.4 El Nino 3.4 index
PNA Pacific North‐America Oscillation

index
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Metropolis and Ulam, 1949] to estimate the posterior dis-
tribution of parameters for each flux tower site, as described
in detail by Desai (submitted manuscript, 2010). The
MCMC approach and the ecosystem model were applied to
each tower to estimate optimal parameter distributions that
best explain daily and interannual variations of carbon
fluxes at the site. A simple approach (based on Desai et al.
[2008]) was then used to scale the modeled NEE at the
individual flux towers to the region, based on how repre-
sentative each site was of each land cover and forest age
class in the region. Land cover maps were derived from
high‐resolution satellite analysis. Stand age distribution was
derived from the U.S. Forest Service Forest Inventory
Analysis (FIA). Finally, the meteorological forcing data
were applied and mean NEE were proportionally summed to
estimate region daily NEE from 1997 to 2006.
[21] Uncertainty due to errors in meteorological forcing,

model parameters, and distributions of land cover was
assessed by running the model with 1,000 random pertur-
bations in these three error types. For meteorology, uniform
random errors of 1°C in temperatures and 10% in PAR and
VPD were assumed. For parameter uncertainty, parameter
sets from the posterior distribution were randomly sampled
and applied to the model. For land cover, 10% uniform
random errors in the amount of land cover for each type
were assumed. These three uncertainty tests were applied
jointly and provide a conservative estimate of the random
error in the estimate flux, but do not sample systematic
errors of how representative the towers and models are for
estimating regional flux. Desai et al. [2008] showed incor-
poration of wetland and young forest flux tower data signif-
icantly impacts estimates of regional flux. Here we assume
that each land cover is adequately sampled by the flux towers.
2.2.3. Bottom‐Up Technique: ED
[22] The Ecosystem Demography (ED) model is a height‐

and‐age structured ecosystem model, originally applied to
predict ecosystem structure and function in the Amazon
[Moorcroft et al., 2001]. ED is a dynamic ecosystem model
that explicitly models plant functional type (PFT) based
height structured competition and stochastic disturbance by
keeping track of changes in statistical distributions of sub-
grid variations in patch age and PFT cohort heights due to
growth, mortality, and disturbance. Subsurface biogeo-
chemistry is modeled using a multiple soil pool and turnover
time approach [Moorcroft et al., 2001]. A North American
parameterized version of ED [Albani et al., 2006] was
modified and calibrated for use in the ChEAS region [Desai
et al., 2007].
[23] The ED model in ChEAS was primarily calibrated by

species composition, height, and age information derived
from FIA and run forward with both climatic forcing
derived from meteorological observations and disturbance
forcing parameterized with known rates of forestry, land
clearing, and natural disturbance. The version for ChEAS
was parameterized independently for northern hardwoods
stands, conifer softwood stands, and forested wetlands. The
model was initialized with near‐equilibrium carbon pools in
1800 and run forward with potential vegetation based on
nineteenth century vegetation survey data until 1850 when
land use change is enacted. Because of the nature of ED age
and cohort structure, long spin‐up is not needed as detailed
by Desai et al. [2007]. Carbon pools in ED were in close

agreement to those observed in the field at flux tower sites
[Desai et al., 2007].
[24] Land cover fractions were used to sum regional flux

from the runs for each ecoregion type (deciduous, conifer,
and wetland). Results from this model compared well to
NEE observed by the flux tower network. All ecosystems
were fed the same climate data derived from theWLEF tower
meteorology. The wetland run simulated wetland hydrology
by increasing precipitation, but was otherwise treated like a
forest with wetland plant species parameterizations.
[25] Two additions were made to ED in this paper com-

pared to Desai et al. [2007]. First, the model was run for-
ward in time to 2006 instead of ending in 2004. Second,
uncertainty in regional NEE from ED due to uncertainty in
age and cover distribution was estimated. Errors of 10% in
age distribution and 10% in land cover were randomly
applied to 1,000 iterations of the ED model output. The
resulting output was used to compute mean and standard
deviation in regional NEE for each month.
2.2.4. Top‐Down Technique: EBL
[26] The mixing ratio of CO2 in the atmospheric boundary

layer (ABL) is a reflection of surface fluxes and meteoro-
logical processes which tend to mix free‐tropospheric air
into the ABL [Raupach et al., 1992]. Continuous mea-
surements of CO2 in the continental ABL from tall towers
are more strongly influenced by surface‐flux effects on
atmospheric CO2 as compared to ‘background’ marine
boundary layer measurements [Bakwin et al., 1998]. Rea-
sonable estimates of regional surface CO2 flux can be
obtained by inverting CO2 budgets of the convective
boundary layer during the period of daytime, nonlinear ABL
growth [Denmead et al.,1996; Levy et al., 1999; Kuck et al.,
2000; Lloyd et al., 2001; Styles et al., 2002]. However,
quantifying fair‐weather cloud flux, entrainment, subsidence
and horizontal divergence over a day is problematic and
often results in poor agreement between ABL budget
methods and surface‐based methods [Cleugh et al., 2004].
[27] Helliker et al. [2004] recognized that over long

enough timescales, the mean difference between the mixing
ratio of CO2 in the ABL and in the free troposphere,
together with an estimate of vertical mixing, could be used
to estimate surface fluxes. This equilibrium boundary layer
(EBL) approach [Betts et al., 2004] was successfully applied
to resolve monthly NEE over 1 year by Helliker et al. [2004]
and Bakwin et al. [2004]. The budget equation for CO2 in
the steady state ABL can be written as [Helliker et al., 2004;
cf. Raupach et al., 1992; Denmead et al., 1996; Levy et al.,
1999; Kuck et al., 2000; Lloyd et al., 2001; Styles et al.,
2002],

�h@Cm=@t ¼ NEE� �W Ct � Cmð Þ; ð1Þ

where C is the mean CO2 mixing ratio, subscripts m and t
refer to ABL (mixed layer) and free troposphere, respec-
tively, and NEE is the net surface flux of CO2. r is density,
h is ABL height. W = ∂h/∂t –W* is the rate at which ABL
air mixes with free tropospheric air. W* represents the mean
subsiding flow. Over longer averaging periods of fair‐
weather days, W → W* and is typically negative
corresponding to mean, large‐scale subsidence. Stormy
periods, defined here by a 24 h period where greater than
1 mm of precipitation is recorded, represent about 23% of
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days annually at the study site [Helliker et al., 2004]. Free
troposphere CO2 was estimated based on same latitude
marine boundary layer values available from the NOAA
ESRL GLOBALVIEW time‐interpolated flask CO2 data set.
[28] To solve for the regional surface flux of CO2,

equation (1) is rearranged as,

NEE ¼ �W Ct � Cmð Þ þ �h@Cm=@t ð2Þ

Helliker et al. [2004] show that the storage term, rh∂Cm/∂t,
can become very small over monthly timescales. Thus,
under a strict steady state or equilibrium assumption, the
storage term becomes zero and equation (2) reduces to:

NEE ¼ �W Ct � Cmð Þ: ð3Þ

The overriding challenge for solving for NEE in equations
(2) and (3) is finding long‐term estimates of the effective
mixing velocity rW. A modeled representation of rW is
available from weather model reanalysis. Estimates of rW at
700 hPa were obtained from the 24 h daily average pressure
vertical velocity (W; Pa s−1) of the NOAA North American
Regional Reanalysis (NARR), by

�W ¼ ��=g ð4Þ

where W is vertical pressure velocity (Pa s−1) and g is
gravitational acceleration.
[29] It was further determined that a period of integration

for equation (3) of 14 days was short enough to resolve CO2

flux responses to synoptic‐scale weather events, yet long
enough for the ABL to be at or near equilibrium [Hurwitz et
al., 2004]. Using this period of integration (averages of rW,
Ct, and Cm for fair‐weather conditions), reasonable esti-
mates of net regional CO2 flux were obtained for the entire
time period at the WLEF tall tower.
[30] Although prior studies have suggested that the sys-

tematic error (e.g., fair‐weather bias) may limit the ability
of EBL‐like techniques to accurately estimate annual
fluxes [e.g., Leuning et al., 2004], Helliker et al. [2004]
showed that with careful selection of precipitation screen-
ing criteria and proper long‐term averaging of mixing ratio
data, the EBL technique could reasonably estimate monthly
flux. Additionally, multiyear analysis of vertical velocity
averaging times showed that 14 day averages adequately
captured enough synoptic mixing events. With these criteria
applied, EBL had good agreement with NEE measured by
the WLEF tall tower eddy covariance flux and also com-
pared well to a full solution of equation (1) during a period
when boundary layer height estimates are available. This
study extends the 1 year analysis of Helliker et al. [2004] to
the entire time period. Additionally, uncertainty in NEE
from this method was assessed by randomly perturbing 20%
errors in rW, and 0.5 ppm error in both ABL and free tro-
posphere CO2 and recomputing NEE 1000 times.
2.2.5. Top‐Down Technique: CT
[31] CarbonTracker (CT) is a global inverse model for

CO2 flux developed by NOAA ESRL [Peters et al., 2007].
The method relies on atmospheric CO2 observations from
the NOAA ESRL Cooperative Air Sampling network,
including those monitored at the NOAA WLEF greenhouse
gas observatory. These observations, along with modeled
transport fields and an ecosystem model are used in data

assimilation mode to estimate ecosystem parameters that
optimize model to data difference of atmospheric CO2.
[32] The transport model is a nested grid model with a

higher resolution (1° × 1°) over the United States. Fossil fuel
and fire CO2 fluxes were prescribed from existing databases,
and land and oceanic fluxes were adjusted to match the
atmospheric CO2 observations. The land is divided into
25 ecoregions based on continent and land cover, while the
oceans are divided into 11 basins. The optimization
approach adjusted weekly linear scaling factors for each
basin or ecoregion using an Ensemble Kalman Filter
approach [Peters et al., 2005]. Prior land fluxes were pre-
scribed at 3‐hourly time resolution from the Carnegie Ames
Stanford Approach (CASA) ecosystem model. Weather
model and satellite vegetation greenness information drove
the biosphere fluxes of CASA, while the linear scaling
factor adjusted the flux scaling for each ecoregion based on
the atmospheric constraint.
[33] While CT was designed to estimate fluxes at the

continental scale, variability in small region fluxes will still
be reflected the information content of near‐field atmo-
spheric CO2. Here, we extracted CT, release 2008, surface
biosphere fluxes from 2000 to 2006 for the WLEF region,
which are likely to be strongly sensitive to CO2 observed at
the WLEF tower. While the short‐term variations in CT
primarily represent the processes in the CASA model, the
magnitude and interannual variability of these fluxes are
reflective of the atmospheric CO2 constraint. The output
provided from CT provided NEE estimate at a 3‐hourly time
step. No approach to estimate uncertainty was taken here.

2.3. Analysis of Environmental Controls

2.3.1. Climate Data
[34] We compared estimated regional NEE from the four

methods to a number of different climate variables (Table 1).
These variables include atmospheric, subsurface, and cli-
mate index variables. Atmospheric values such as air tem-
perature (Tair), vapor pressure deficit (VPD), photosynthetic
active radiation (PAR), precipitation (Precip), atmospheric
[CO2] were derived from the WLEF tall tower meteoro-
logical sensors, with gaps filled by regression against
nearest neighbor meteorological stations. Forest microme-
teorology station data were averaged and used to develop
time series of subsurface 10 cm soil temperature (Tsoil) and
moisture (Qsoil). Water table depth (Qtable) was observed at
the Lost Creek shrub wetland [Sulman et al., 2009] using a
pressure transducer system from 2001 to 2006. To infer
prior year values, we found a strong fit of Qtable to nearby bog
water level sampling (r2 = 0.90) from the North Temperate
Lakes Long‐term Ecological Research (LTER) Crystal bog
site. These data allowed us to extrapolate Qtable for the entire
period of interest. Finally, climate index values for North
Atlantic Oscillation (NAO), El Nino (NINO3.4), and Pacific
North‐America Oscillation (PNA) that may explain inter-
annual variability were retrieved from NOAA Climate
Prediction Center. Monthly and seasonal (December–
February is DJF, March–May is MAM, July–August is JJA,
and September–November is SON) averages and anomalies
were computed for each variable.
2.3.2. Statistical Analysis
[35] The goal of this analysis was to understand what

climate factors explained observed interannual variability
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(IAV) in NEE observed in each of the four methods.
Univariate correlation analysis of climate variables against
IAV was used to identify strong candidate climate variables
(Table 1). In addition to annual climate variables, we also
compared IAV to seasonal climate variables. Finally, both
annual and seasonal climate variables were lagged by
12 months to test for potential for any predictive climate
variables and lagged environment effects on IAV. The
strongest predictors of IAV were combined using multi-
variate linear regression analysis. Interactive effects of pre-
dictors were also considered in the multivariate model.

3. Results

3.1. Seasonal Variability

[36] All four methods show strong consistency in patterns
of monthly NEE across the entire decade studied (Figure 2,
top). Year‐to‐year variability in peak uptake is strongly
consistent, especially among the top‐down methods
(Figure 2b). A particularly strong pattern of declining peak

uptake from 2003 to 2006 is seen in all four methods. In
contrast, less consistency is seen in peak winter fluxes,
which are typically a source to the atmosphere.
[37] Generally, the mean monthly pattern of NEE among

the methods is consistent, though magnitudes in peak
autumn emission and summer uptake vary. The IFUSE
method shows the largest uptake in the summer months,
while the other three methods are nearly half the magnitude
(Figure 2, bottom). The CT method has the highest winter
NEE, which is sustained from the prior autumn, whereas the
other methods show a decline in NEE from autumn into
winter. EBL has the lowest winter emissions, especially in
late winter.
[38] The bottom‐up methods have a longer carbon uptake

period, defined as the length of time of negative daily NEE,
than the top‐down methods, especially CT. The increased
uptake period corresponds mostly to large uptake in the start
of the growing season (May) than in the autumn. Into the
summer, all four methods show a consistent pattern of peak
NEE in July, followed by a steady decline in NEE into
October.

Figure 2. Monthly NEE from the four methods across the entire time record (1997–2006) for the
(a) top‐down and (b) bottom‐up methods and ensemble averaged across all years for (c) “top‐down”
and (d) “bottom‐up. ” IFUSE model shows large uptake in the growing season. Both bottom‐up methods
show more uptake in the spring and autumn.

DESAI ET AL.: TOP‐DOWN AND BOTTOM‐UP CARBON FLUX G02011G02011

6 of 15



3.2. Interannual Variability

[39] Not surprisingly, given Figure 2, IFUSE has the
largest annual and growing season uptake among the three
methods (Table 2). Mean NEE differs significantly from the
other three, when compared against the 1‐s estimate of
uncertainty. ED and EBL have similar annual NEE, but ED
shows significantly larger growing season (May–September)
uptake, while EBL shows smaller winter NEE. CT has the
smallest uptake, but has larger uptake in the growing season
than EBL, reflective of the high winter NEE observed in CT
(Figure 2d).
[40] The 1‐s interannual variability of NEE ranges from

35 to 62 gC m−2 yr−1 across the four methods (Table 2),
with ED showing the smallest, and the other three methods
more similar. While the magnitude of IAV is similar, the
correlation matrix in Table 2 reveals significant disagree-
ment among the methods in year‐to‐year variability of NEE.
While IFUSE, EBL and CT are positively correlated to each
other, they are all negatively correlated to ED. IFUSE is
positively correlated to EBL and CT, but the relationship is
weak compared to the correlation among the top‐down
methods, potentially reflecting the similarly in data source in
the two methods.
[41] The differences in NEE magnitude and coherence are

further revealed graphically (Figure 3a). The bottom‐up
methods show greater annual uptake than the top‐down
methods in a majority of the years, while patterns of
coherence vary across the time period. From 1997 to 1999,
the bottom‐up methods both show a trend of increasing
uptake, while EBL trends are more variable and opposite in
direction. CT NEE is not available prior to 2000. From 2000
to 2001, the bottom‐up methods reverse trend, and show a
decline in uptake in 2001, followed by more uptake in ED
but no change in IFUSE in 2002. These changes are
potentially reflective of the effects of a large pest outbreak in
2001. However, the top‐down methods both show an
increase in uptake in 2000 to 2001, followed by a decline in
2002.
[42] Coherence in IAV among the methods increases after

2002. From 2002 to 2003, all methods except CT show a
slight increase in uptake, while CT shows virtually no
change. After 2003, all four methods agree on a relatively
larger decline in uptake in 2004 and very little change in
2005. Finally, all except ED continue to show a decline in
uptake into 2006, while ED shows an increase.
[43] From an anomaly (deviation from long‐term mean

NEE) based perspective (Figure 3b), a stronger pattern of
consistency is seen. There is coherence in the sign of the
NEE anomaly in at least three of four methods in 1998–
2001 and 2003–2006. The strongest of these are 1998, 2003,

and 2005, perhaps reflective of strong climate forcing
anomalies in those three years compared to other years.

3.3. Climatic Controls

[44] Climatic variables tested all show typical climatology
patterns (Figure 4). No strong anomalies are found at the
annual scale, though large year‐to‐year variability is seen in
VPD, NINO3.4, and winter Tair. Monthly variability in
Precip is also large. Finally, two variables show significant

Table 2. Mean Annual and Growing Season NEE and 1‐s Uncertainty as Described in the Methods, Standard Deviation of IAV, and
Correlation Coefficients of Annual NEE Among the Methodsa

Method Annual NEE (gC m−2) May–September NEE (gC m−2) IAV (gC m−2) IFUSE ED EBL CT

IFUSE −321 +/− 13 −377 +/− 12 62 −0.24 0.45 0.53
ED −135 +/− 5 −215 +/− 5 35 −0.24 −0.23 −0.55
EBL −110 +/− 14 −157 +/− 12 52 0.45 −0.23 0.84
CT −58 −183 55 0.53 −0.55 0.84

aIAV is larger than uncertainty for all methods. IFUSE, EBL, and CT are positively correlated to varying degrees, while ED has an opposite pattern.
Top‐down methods have stronger agreement.

Figure 3. (a) Annual NEE and (b) annual NEE anomaly
for each method. The 1‐s uncertainty for annual NEE is also
shown. While there is large variation on magnitude of NEE,
trends in NEE are coherent across several years and espe-
cially in the last 5 years of the record.
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linear trends, namely Qtable and [CO2]. Qtable shows a
declining (drying) trend that becomes stronger from 2003 to
2006. In contrast, the increasing trend of [CO2] is relatively
steady, reflective of the dominance of global fossil fuel
emissions on the secular trend in [CO2]. While trends in
Qtable are strong, they are only weakly correlated to Precip
and a similar trend is not seen in Qsoil.
[45] The annual anomalies in climate have a wide range of

correlation to annual anomalies in NEE (Table 3), at both no
lag and 1 a lag timescales. However, only three variables
show significant correlation based on a two‐sided t test,

Qtable, [CO2], and PNA. Two of these variables, Qtable and
[CO2], are ones with trends in the time series. Interestingly,
only [CO2] shows a significant correlation at lag 0, and with
only one method (EBL), but at the 99% confidence level.
All three variables have greater number of significant cor-
relations at the lag 1 timescale. Lag 1 annual [CO2] is pre-
dictive for IFUSE and EBL at the 95% confidence level,
while lag 1 annual Qtable is predictive for all methods except
ED, at the 90% confidence level for EBL, 95% for IFUSE,
and 99% for CT. In both of these cases, the sign of signif-
icant correlations are the same. In contrast, the significant

Figure 4. Monthly (black line) and annual average (gray line) climate variables: (a) Tair, (b) Tsoil,
(c) PAR, (d) VPD, (e) Precip, (f) Qtable, (g) Qsoil, (h) [CO2], (i) NINO3.4, (j) NAO, and (k) PNA. The
strongest annual trends are seen in Qtable and [CO2].
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correlations to lag 1 PNA for ED and CT at the 90% con-
fidence level are of opposite sign, not surprising given the
negative correlation of ED to the other three methods. Other
variables with weaker, similar sign, but nonsignificant cor-
relation for most methods include lag 0 Tsoil and lag 0 Qtable.
[46] At the seasonal climate scale, a similar pattern

emerges, though several other variables also become well
correlated (Table 4). Seasonal lag 1 Qtable continues to show
significant correlation for at least three methods in DJF,
MAM, and SON, while seasonal lag 1 [CO2] has significant
correlation only for IFUSE and EBL, but in all seasons, and
also at lag 0 in DJF and JJA. JJA Lag 0 Qtable is also sig-
nificantly correlated to IFUSE, EF, and EBL. Other climate
factors with significant correlations for two methods include
Lag 1 DJF Tair, Lag 1 DJF Tsoil and Lag 1 MAM Tsoil.
While significant at the 90% level for only one method,
TSON Lag 0 Tsoil is unique for positive correlation across
all four methods. Similarly, though with no significant
correlations, Lag 0 and Lag 1 MAM PAR have negative
relationships for all four methods. The relationship of spring
and autumn forcing may be indicative of the role that
growing season length has on interannual variability of
NEE.
[47] Comparison of the climate variables to NEE

anomalies for several of these variables reveals stronger
consistency in the slope and intercepts of fits for top‐down
methods than bottom‐up (Figure 5). The strength of the Lag
1 annual Qtable fit for IFUSE, EBL, and CT is particularly
evident (Figure 5a), and it is also obvious that there is no
significant relationship between Lag 1 Qtable and ED. Lag 1
annual CO2 shows a similar finding, though with a stronger
fit for ED and weaker fit for CT (Figure 5b). A nonlinear
relationship to Lag 0 SON Tsoil is evident for ED, and
potentially a similarly fit for EBL (Figure 5c). The fit to Lag 0
MAM PAR is driven primarily by an outlier of low spring
PAR in 2004. Removal of this outlier significantly reduces
the correlation for the top‐down methods, with no change
for IFUSE, and a slight increase for ED.
[48] The two strongest annual controls, Lag 1 annual

[CO2], and lag 1 annual Qtable, along with the interactive
effect of lag 1 annual [CO2] × lag 1 annual Qtable were fit
using multivariate linear regression for all four models, and
also a pooled model, where observations of NEE anomalies

from each method were considered independent observa-
tions (Table 5). The model, while lacking in a large number
of degrees of freedom (DOF), had strong correlations to
observed NEE anomalies for IFUSE, EBL, and CT, with a
weaker fit (but much larger DOF) to the pooled model, and
the weakest fit to ED. Significant slopes of the model vary
by method, with Qtable slope significant for IFUSE, CT, and
the pooled model, while the [CO2] slope is only significant
for IFUSE and CT. The interactive effect slope was highly
significant (p < 0.01) for IFUSE, and strongly significant
(p < 0.05) for the pooled model, but not significant for any
other method. Oddly, none of the slopes are significant for
EBL, though the overall model fit to NEE anomalies is good
(r2 = 0.69). Graphically (Figure 6), the strong relationship to
CT and IFUSE is evident. Outliers on both ends drive the fit
to EBL. The global fit for the four methods has a signif-
icant correlation (r2 = 0.84, p < 0.01), suggesting that these
two variables can explain much of the IAV of regional
NEE over the time period studied.

4. Discussion

4.1. Coherence of Regional Fluxes

[49] While all four methods revealed a regional carbon
sink with a similar magnitude of IAV, there was wide dis-
agreement on the magnitude of NEE and generally weak
coherence of IAV over the entire decade. Some of the dis-
agreement in mean NEE, especially for CT, can be resolved
by differences in nongrowing season fluxes, which are small
in magnitude but persist for many months. Particularly with
the case of IFUSE, the disagreement can be pinpointed to
the large summer uptake. The rest of the disagreement
appears to be related to the timing of the seasonal cycle,
especially for spring green‐up and fall leaf‐out.
[50] Interannual variability of NEE continues to be diffi-

cult to estimate. The best that can be said from this study is
that 1‐s IAV averaged to 48 g C m−2 yr−1 for the methods,
but this reflected a wide range in terms of relative percent-
age of annual or seasonal NEE. This IAV is relatively small
compared to other regions, reflective partially of the
expected IAV for temperate midlatitude mesic mixed forests
[Stoy et al., 2009]. Surprisingly, regional IAV is smaller
than many of the individual flux tower IAV suggesting that
climate impacts on IAV at the ecosystem scale are not

Table 3. Annual Correlation Coefficient Between Each Method NEE and Climate Variable at the Annual Timescale for Both No Lag
and 1 Year Laga

Control

Lag 0 Lag 1

IFUSE ED EBL CT IFUSE ED EBL CT

Tair −0.43 −0.08 0.43 −0.38 −0.34 −0.43 0.05 −0.16
Tsoil 0.52 0.03 0.30 0.29 −0.38 0.16 −0.57 −0.37
PAR −0.30 −0.10 −0.17 −0.35 0.16 0.10 0.18 −0.08
Precip 0.00 0.16 0.11 −0.24 0.03 −0.36 0.27 −0.07
VPD 0.14 −0.54 −0.03 0.55 −0.06 −0.10 −0.34 0.65
Qsoil 0.4 0.24 −0.48 0.02 −0.09 −0.24 −0.04 0.02
Qtable −0.53 0.57 −0.53 −0.35 −0.66** 0.44 −0.61* −0.96***
[CO2] 0.50 −0.34 0.80*** 0.42 0.75** −0.27 0.71** 0.46
NAO −0.38 −0.17 −0.18 0.21 −0.16 0.45 0.35 0.08
NINO3.4 0.42 −0.07 −0.06 −0.27 0.24 −0.56 0.07 0.09
PNA 0.01 0.12 −0.17 −0.17 0.48 −0.65* 0.28 0.72*

aSignificance levels denoted by * (p < 0.1), ** (p < 0.05), and *** (p < 0.01). Only Qtable, [CO2], and PNA significantly explained IAV for at least one
method.
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strongly coherent (e.g., opposite climate‐NEE relationships
of wetlands and forests). Additionally, the regional IAV is
small enough to be within the detection limits for the
methods. The errors estimated for each model here are rel-
atively conservative and do not include many of the known
systematic errors in flux towers, boundary layer budgets,
and inverse models. However, the number of significant
relationships observed between IAV and climate variables
suggests our estimates of IAV are significantly different
from zero and reflect a modest sensitivity of regional NEE
to climate.
[51] The magnitude of relative IAV (IAV/NEE) is smaller

and more consistent among the bottom‐up methods when
compared to both annual and seasonal NEE, but the corre-
lation of IAV is greater among the top‐down methods. A
similar finding has been seen in a continental‐scale com-
parison of multiple top‐down and bottom‐up techniques
[Jacobson et al., 2008], suggesting that this finding is a
general feature of the methods. True IAV for the region is
likely somewhere in between, as top‐down methods may be
more likely to extrapolate errors in atmospheric observation
and external forcing (e.g., fossil fuel emissions) into IAV,
while bottom‐up methods may be more likely to focus on
capturing mean responses to short‐timescale environmental

forcing. Thus, model structural characterization is as
important as climate forcing characterization for determin-
ing carbon cycle IAV and response to climatic forcing.
[52] Still, there are particular time periods where coherent

anomalies in NEE are apparent among several methods. The
first of these is 1998, which shows smaller NEE than 1999
for all methods. A large regional warm spring anomaly was
present in 1998 [Black et al., 2000], which likely affected
both the timing of spring green‐out and the rates of organic
matter decomposition. Another coherent set is 2002–2004,
where all four methods show neutral to greater uptake from
2002 to 2003, followed by a positive NEE anomaly in 2004.
In a comparison of two flux tower sites in that period, Desai
et al. [2005] noted coherence in NEE anomalies over that
time period were driven strongly by summer moisture and
precipitation anomalies, with 2003 the wettest of the triad
and 2004 witnessing strong later summer drying.
[53] In the spring of 2001, the region suffered from a

particularly large outbreak of forest tent caterpillar, leading
to large‐scale defoliation across the region in early summer,
followed by late summer reflush [Cook et al., 2008]. ED had
this outbreak explicitly included as a disturbance, while the
other models responded depended on the extent to which the
observed calibration data (flux tower and/or atmospheric

Table 4. Correlation of Annual NEE for Each Method Against Seasonal Average Climate Variablesa

Control

Lag 0 Lag 1

IFUSE ED EBL CT IFUSE ED EBL CT

DJF
Tair −0.45 0.16 0.16 −0.04 −0.57 0.23 −0.76** −0.72*
Tsoil 0.37 0.21 0.00 0.14 −0.69** 0.14 −0.75** −0.58
PAR −0.14 0.15 −0.71** −0.39 −0.04 0.14 0.25 0.01
Precip −0.01 0.23 0.30 0.24 −0.03 0.12 0.29 −0.09
VPD −0.37 −0.49 −0.27 0.49 −0.28 0.24 −0.35 0.34
Qsoil 0.32 0.26 −0.39 −0.21 −0.34 −0.27 −0.54 −0.33
Qtable −0.38 0.62* −0.45 −0.28 −0.69** 0.42 −0.63* −0.93***
[CO2] 0.57* −0.29 0.82*** 0.49 0.76** −0.25 0.73** 0.44

MAM
Tair −0.26 0.02 0.13 0.40 −0.17 0.42 −0.20 0.03
Tsoil 0.29 0.00 0.14 0.27 −0.6* 0.42 −0.65* −0.42
PAR −0.41 −0.13 −0.36 −0.40 −0.28 −0.11 −0.52 −0.18
Precip −0.44 0.07 −0.18 −0.56 −0.48 −0.21 −0.22 −0.25
VPD −0.21 −0.41 −0.16 0.44 −0.18 0.10 −0.35 0.46
Qsoil 0.27 −0.05 −0.47 0.56 −0.01 0.29 0.00 0.14
Qtable −0.48 0.52 −0.48 −0.23 −0.67** 0.51 −0.62* −0.95***
[CO2] 0.54 −0.27 0.78*** 0.46 0.73** −0.21 0.75** 0.44

JJA
Tair −0.31 0.21 −0.09 −0.58 −0.02 −0.50 −0.06 0.07
Tsoil 0.56* −0.16 0.47 0.10 0.11 −0.56 −0.08 0.16
PAR 0.50 −0.2 0.14 −0.06 0.47 −0.51 0.60* 0.52
Precip 0.29 −0.17 −0.06 0.28 −0.05 −0.15 0.11 0.03
VPD 0.58* −0.48 0.29 0.28 0.22 −0.55 −0.15 0.68*
Qsoil 0.19 −0.02 −0.28 0.71 −0.09 0.19 0.23 0.06
Qtable −0.64** 0.55* −0.61* −0.49 −0.62* 0.40 −0.57 −0.92***
[CO2] 0.56* −0.38 0.78*** 0.36 0.74** −0.34 0.69** 0.54

SON
Tair −0.38 0.49 −0.24 −0.17 0.03 0.13 −0.01 0.23
Tsoil 0.55* 0.19 0.51 0.47 0.36 0.04 0.03 0.04
PAR −0.31 0.16 0.43 0.22 0.21 0.63* 0.25 −0.36
Precip 0.23 0.32 0.32 −0.06 0.74** −0.52 0.53 0.22
VPD 0.01 −0.4 −0.19 0.78 0.03 0.19 −0.22 0.49
Qsoil 0.33 0.15 −0.11 −0.33 0.09 −0.67** 0.12 0.08
Qtable −0.52 0.52 −0.50 −0.30 −0.64* 0.41 −0.63* −0.95***
[CO2] 0.49 −0.31 0.83*** 0.39 0.77** −0.3 0.64* 0.41

aSignificance levels denoted by * (p < 0.1), ** (p < 0.05), and *** (p < 0.01). In addition to correlations seen in Qtable and [CO2] at annual scales,
significant correlations are also seen with DJF Tsoil and Tair, MAM Tsoil, JJA PAR, SON PAR, Precip, and Qsoil.
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CO2) contained a signal of the outbreak. Anomalies for that
year are not consistent. The bottom‐up methods show a
decline in NEE from the prior year and ED is strongly
sensitive to this, while the top‐down methods show greater
uptake in 2001. This result suggests the need to better
parameterize the effects of large‐scale pest outbreaks on
NEE.
[54] Finally, there is a trend of increasing (less uptake)

NEE from 2003 to 2006 in all four methods, most strongly
seen in IFUSE, and most weakly in ED (where the trend
ends in 2005). This trend is particularly interesting as it
drives much of the strong correlations found between cli-
mate variables and IAV. No strong climate forcing, beyond
the finding for Qtable, appears to explain this trend and more

work is needed to better characterize any apparent climate
transition that is affecting regional NEE.

4.2. Uncertainties in Regional Flux

[55] Given the spread in NEE among the methods, espe-
cially those not captured by the apparently conservative
estimate of uncertainty applied, it is worthwhile to charac-
terize major sources of uncertainty for each method not
included in the random error estimate. These are summa-
rized below.
[56] The biggest shortcoming of IFUSE is the lack of flux

tower replicates for all land cover and age classes [Desai et
al., 2008]. The strong growing season uptake in IFUSE is
driven mainly by a couple of flux towers located in mature

Figure 5. Scatterplot of annual NEE anomaly to (a) lag 1 year Qtable, (b) lag 1 year [CO2], (c) SON
Tsoil, and (d) MAM PAR for (left) bottom‐up and (right) top‐down methods. Top‐down methods and
IFUSE agree on slope of correlation, while ED generally differs.
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northern hardwood forests, the dominant class. There is
some evidence that these towers are not representative of the
mean NEE of mature forests in the region [Desai et al.,
2007]. Furthermore, wetlands and young forests are poorly
represented among the flux towers in addition to having
large classification error [Maxa and Bolstad, 2009]. Finally,
the parameter estimation used in IFUSE, while tuned to
capture IAV, does not allow parameters to vary annually,
nor does ecosystem state in one year affect the next (quasi
steady state ecosystem pools assumption). Thus the IAV
represented is reflective only of input climate forcing.
[57] Similar to IFUSE, the ED model is also hampered by

the lack of replicate observations. Unlike IFUSE, the lack of
replicates in ED is over time not space. The version of ED
used here is tuned to two cycles of Forest Inventory and
Analysis (FIA) observations across the region, which are
measured roughly once per decade. Thus, no information is
available to constrain the climate‐driven IAV in ED. The
stochastic processes of competition and disturbance, which
may be properly parameterized in the mean, but incorrectly
simulated for any particular year, also drives the IAV in ED,
though these random disturbances tends to average out
over cohorts, so IAV is primarily dominated by climate.
Finally, FIA does not provide information on belowground
processes.
[58] Techniques to identify the fingerprint of regional

biospheric flux in atmospheric tracer observations are not
trivial and sensitive to assumptions made about error
covariance, footprints, and models [Dolman et al., 2009].
The EBL model relies on a synoptically averaged boundary
layer budget based on observations in and above the
boundary layer. Helliker et al. [2004] show that EBL NEE is
sensitive to choice in number of synoptic cycles to average,
screening criteria for precipitation, and estimation technique
for mean vertical subsidence velocity, which can impart
approximately 20% uncertainty in the EBL NEE. Addi-
tionally, the surface influence footprint of the EBL method
is not clear. Estimates for some LaGrangian particle dis-
persion model footprint climatologies suggest a 90% influ-
ence footprint of roughly 105 km2, smaller than that
estimated by Gloor et al. [2001], but still larger than the
region assumed by IFUSE and ED.
[59] Finally, CT is a global nested grid tracer‐transport

inverse model and as such suffers from uncertainty that any
global model applied to a regional scale would [Peters et al.,
2007]. CT is designed so that an ecosystem model drives the
temporal pattern of “fast” processes, while “slow” processes
are tuned by weekly parameters against atmospheric CO2

data, including those from the WLEF tower. The parameters
are separated by ecoregion, and the study region’s decidu-

ous broadleaf forest region spans a large fraction of North
America. Thus, while the near‐field of CT around WLEF is
likely to be well constrained by the WLEF observations, the
large‐scale parameters likely reflect larger‐scale climate
variability instead of exclusively local region forcing. Finally,
tuning of these slow processes is also sensitive to proper
specification of fossil fuel emissions and ocean fluxes. For
example, the region around WLEF may be sensitive to
influence from the Great Lakes (M. Uliasz, personal com-
munication, 2009), which is weakly constrained in CT.
[60] While the uncertainties in regional flux methods all

deserve further examination, the uncertainties in estimating
the state of regional climate should also not be ignored.
Climate forcing data analyzed in this study were derived
from a number of point‐based sources, which may not be
regionally representative, especially for ones with high
spatial variability (e.g., Precip, Qtable, Qsoil, Tsoil). These
observations also contain gaps due to instrumental failure
and require filling by alternate data sources. Annual avera-
ges of climate forcing will be sensitive to systematic errors
in observations and gap filling, which could weaken or
generate false relationships between IAV and forcing. Well‐

Table 5. Least Squares Coefficients, Parameter Standard Error, Correlation, and Degrees of Freedom for Multivariate Regression of
Annual NEE Against Lag 1 Annual [CO2], Qtable, and Qtable x [CO2]

a

Method [CO2] Qtable Qtable x [CO2] Intercept r2 DOF

IFUSE 4.7 +/− 1.4** −1.2 +/− 0.40** −0.44 +/− 0.061*** −30 +/− 6.1*** 0.96 5
ED 0.63 +/− 3.9 0.99 +/− 1.1 0.048 +/− 0.17 1.3 +/− 16 0.21 5
EBL 3.4 +/− 2.9 −0.70 +/− 0.83 −0.19 +/− 0.18 −1.2 +/− 12 0.69 5
CT −3.4 +/− 1.4* −3.6 +/− 0.2*** 0.091 +/− 0.064 1.2 +/− 3.1 0.99 3
Pooled 1.2 +/− 2.1 −0.97 +/− 0.56* −0.18 +/− 0.091** −10 +/− 8.6 0.35 30

aSignificance levels of parameters denoted by * (p < 0.1), ** (p < 0.05), and *** (p < 0.01). Pooled model treats each method’s NEE as an independent
observation. Qtable parameter is significant for three models, while [CO2] and Qtable x [CO2] are significant for two models.

Figure 6. Fits of the individual nonpooled multivariate
Qtable and [CO2] based model NEE anomaly against
observed NEE anomaly for each method. Regression 90%
confidence intervals and model 1‐s uncertainty are also
shown. Fit has r2 of 0.84 (p < 0.01) with 25 degrees of
freedom. All but ED model are well explained by the mul-
tivariate model.
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defined, gap‐filled climate records for large regions con-
tinue to be a need for carbon cycle models.

4.3. Controls on Interannual Variability

[61] It is surprising that virtually none of the environ-
mental forcing factors adequately explain the observed IAV
across the four methods, outside of Qtable and [CO2].
Moreover, the multiple linear regression pinpointed Qtable as
the more important of the two factors. This is further
evidenced when an estimate of global fossil fuel emissions
is removed from the [CO2] anomaly, revealing only a weak
correlation to the remaining [CO2] anomaly for all four
methods. Additionally, three of four methods use [CO2] as a
forcing factor in one form or another. Thus, the strong
correlation to [CO2] appears to be spurious and driven pri-
marily by the positive NEE trend in the last 4 years.
[62] So what to make of Qtable? There is some evidence to

suggest that hydrology may be an important controlling
factor of regional NEE, even in a mesic forest ecosystem
[Ricciuto et al., 2008; Sulman et al., 2009], but it is sur-
prising that a single‐point observation of water table in a
wetland is a strong predictor of regional IAV. Sulman et al.
[2009] showed that while Qtable affects photosynthesis and
decomposition in a wetland ecosystem, on net, they balance
out, leading to no effect of Qtable on wetland NEE. More
likely, Qtable is a better proxy for regional moisture avail-
ability than the point observation of precipitation or the poor
spatial representation offered by Qsoil. Qtable was highly
correlated to nearby bog level observations and precipitation
at a site near the Qtable observation location. Similar to the
drying trend in Qtable, a regional trend of long‐term drying in
northern Wisconsin, United States, is evident when weather
station data are studied in aggregate [Serbin and Kucharik,
2009] or when Great Lakes water levels are analyzed
[Kratz et al., 2008]. Prior year autumn precipitation did
show some correlation to NEE suggesting that late summer
water stress carrying over into the following year may be
one mechanism connecting carbon cycling and water
availability, but the evidence here is weak and warrants
more study. The regional drying trend, and the strength of
the Qtable, especially as a lagged environmental predictor,
provides a strong motivation for improving representation of
hydrologic controls on carbon cycling in models.
[63] The level of carbon‐water coupling in each method is

quite different. EBL makes no assumption about hydrology
and relies on variability in atmospheric CO2. The same
holds for CT, except that the bottom‐up ecosystem model
does contain moisture related functions for photosynthesis
and respiration. IFUSE has functions to limit photosynthesis
under moisture stress, while respiration is constrained indi-
rectly via photosynthesis. ED has relatively weak moisture
constraints, which might explain the different moisture
response from the other three with respect to IAV. The
results suggest that strong coupling of water and carbon is
needed even in mesic regions to accurately simulate carbon
cycle interannual variability. It should also be noted that
models used here do not have energy cycles and at most had
simplistic nutrient cycles. Feedbacks between moisture,
energy balance, and nutrient cycles could not be investi-
gated in this study.
[64] Though weaker in correlation, the roles of Spring

PAR and Fall Tsoil are likely representative of the impor-

tance of phenology as another strong region‐wide control on
growing season NEE, especially in forests [Peñuelas et al.,
2009; Desai, submitted manuscript, 2010]. Finally, no large‐
scale climate oscillation seemed to phase with regional IAV,
except for Lag 1 PNA, whose significant correlations are of
opposite sign for ED and CT. Still, PNA, associated with
fluctuations of the East Asian jet stream, may serve as an
indicator of larger‐scale precipitation variability in the upper
Midwest, which tends to be below average when PNA is
positive.
[65] These findings for climatic controls on regional flux

do have some agreement with an analysis of the eddy
covariance fluxes measured at the WLEF tower, which
sample a 5–10 km fetch around the tower [Ricciuto et al.,
2008]. Ricciuto et al. [2008] found no strong correlation
between temperature and annual NEE, unless NEE was
subset for night, suggesting temperature has opposing but
equal effects on respiration and photosynthesis. In contrast,
a negative correlation was found between NEE and Qsoil,
once again highlighting a previously underappreciated role
of hydrology in the carbon balance of boreal transition
forests. Other factors such as plant water balance [Law et al.,
2002], nitrogen cycling [Magnani et al., 2007], and distur-
bance dynamics [Gough et al., 2008] have been shown to be
controllers of IAV and also deserve more examination in
relation to the regional IAV quantified in this study. Addi-
tionally, ecosystem rebound after stress may leave a multi-
year fingerprint on NEE, something that is difficult to test
even with a decade‐long data set, highlighting the need for
more long‐term observations of regional NEE.

5. Conclusions

[66] There have been only limited comparisons of
regional‐scale carbon fluxes based on top‐down atmo-
spheric and bottom‐up ecosystem upscaling approaches, and
they have rarely been studied for interannual variability and
climatic controls. The results from this study revealed that
four independent methods, all showing carbon sinks,
diverge on magnitude of NEE while showing some coher-
ence in interannual variability, especially over subsets of the
time period. The lack of convergence in regional NEE and
the lack of full understanding of climatic controls on IAV
severely limits our ability to accurately assess future con-
tributions of terrestrial ecosystems to atmospheric CO2 and
climatic change.
[67] While there did not appear to be an exceptionally

strong predictor of regional IAV, the surprising role of
lagged hydrologic controls over regional IAV highlights the
need to better incorporate and test hydrologic processes
and coupled water‐carbon cycles in current generation
carbon‐climate models. As it is becoming more apparent
that terrestrial carbon cycling is characterized by a range of
low‐frequency modes of variability [Stoy et al., 2009],
continued analysis of lagged environmental oscillations and
trends will be key to better prediction of carbon cycle var-
iability and its impact on future climate change. Our results
suggest that improved representation of carbon‐water
relationships, incorporation of wetland processes in eco-
system models, and continued quantification of model
uncertainty and top‐down/bottom‐up model intercompari-
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son all are likely to help improve predictions of the impacts
of climate change to ecosystem biogeochemistry.
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