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The respiratory release of CO2 from the land surface is a 
major flux in the global carbon cycle, antipodal to 
photosynthetic CO2 uptake. Understanding the sensitivity 
of respiratory processes to temperature is central for 
quantifying the climate–carbon cycle feedback. Here, we 
approximate the sensitivity of terrestrial ecosystem 
respiration to air temperature (Q10) across 60 FLUXNET 
sites using a methodology that circumvents confounding 
effects. Contrary to previous findings, our results suggest 
that Q10 is independent of mean annual temperature, does 
not differ among biomes, and is confined to values around 
1.4 (±0.1). The strong relation between photosynthesis and 
respiration, instead, is highly variable among sites. 
Overall, the results partly explain a less pronounced 
climate–carbon cycle feedback than suggested by current 
carbon cycle climate models. 

Quantifying the intensity of feedback mechanisms between 
terrestrial ecosystems and climate is a central challenge for 
understanding the global carbon cycle and a prerequisite for 
reliable future climate scenarios (1, 2). One crucial 
determinant of the climate–carbon cycle feedback is the 
temperature sensitivity of respiratory processes in terrestrial 
ecosystems (3, 4), which has been subject to much debate (5–
10). On the one hand, empirical studies have found high 
temperature sensitivities of soil respiration with Q10 values 
well above 2 (11, 12). Dependencies of Q10 values on mean 
temperatures (12, 13) have been attributed to the 
acclimatization of soil respiration (5), amongst other factors 
(13). On the other hand, global scale models often employ 
globally constant Q10 values of 2 or below to generate carbon 
dynamics that is consistent with global atmospheric CO2 

growth rates (3, 14, 15). Nevertheless, several models have 
directly included empirical dependencies of the 
parameterization of respiratory processes to environmental 
dynamics (16–18). This inclusion is questionable, since 
single-site studies have indicated that factors seasonally 
covarying with temperature can confound the experimental 
retrieval of the intrinsic temperature dependence of 
respiration (8, 9, 19). Davidson and Janssens (20) therefore 
proposed to distinguish intrinsic temperature sensitivities 
quantifying the inherent kinetic properties of substrate 
decomposition from apparent temperature responses. 
Moreover, it has been recognized that the direct inference of 
process sensitivities from emergent ecosystem behavior is not 
possible (19, 21). 

Here we aim to retrieve the unconfounded (intrinsic) 
temperature sensitivities of ecosystem respiration across 
different climates and ecosystems, to resolve the question of 
whether we have to account for a globally varying and 
environmentally controlled Q10 in global carbon cycle 
modeling. The study is based on a global collection of eddy 
covariance CO2 flux observations—the FLUXNET (22, 23) 
LaThuile Database—which allows us to investigate 
greenhouse gas fluxes in response to meteorological variables 
across ecosystems. To minimize the influence of confounding 
effects, we apply a model-data fusion approach, the “Scale 
Dependent Parameter Estimation” (SCAPE) (24) where 
processes are investigated on different time scales. The 
SCAPE concept exploits that measured time series Y(i), i = 1, 
..., N result from superimposed modes of characteristic 
variability Xf where the index f indicates the attributable 
frequency class per subsignal (fig. S1). In SCAPE we can 
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distinguish rapid and slow system responses (here, direct 
responses to temperature versus long term organic matter 
dynamics described by the base respiration Rb). SCAPE 
differentiates the parameter estimation process according to 
identified time scales. We can therefore report temperature 
sensitivities (Q10,sc) derived from specific (high frequency) 
subsignals Xf such that confounding factors that operate on 
other (generally low frequency) scales are excluded. 
Moreover, a nonparametric estimate of the low frequency Rb 
time series is directly provided (24). In an experiment with 
artificial data (24) (fig. S2) we show that with this 
methodology the unconfounded Q10,sc of respiration is 
retrieved within ±0.1 units, even under unfavorable 
conditions of noise (fig. S3) (25). 

The examination of the ecosystem respiration data shows 
that the unconfounded Q10,sc values are generally lower than 
temperature sensitivities reported by conventional estimates 
(Fig. 1) with very few exceptions (table S1). Conventional 
estimates would suggest an average sensitivity to air 
temperature of Q10  ≈ 2.3 across sites. The corresponding 
95% confidence range is 2.0 ≤ Q10 ≤ 2.6, estimated via a 
block bootstrapping across sites (24). This large range of 
possible Q10 values is very likely caused by confounding 
factors. However, once we derive the sensitivities using 
SCAPE, the weighted arithmetic mean is Q10,sc  ≈ 1.4; the 
95% confidence range collapses to the narrow interval of 1.3 
≤ Q10,sc ≤ 1.5. The observed systematic difference between 
apparent and short-term “intrinsic” temperature sensitivities 
corresponds exactly to what was expected by theoretical 
considerations reported previously (9). 

The reported range of Q10,sc values is low considering that 
soil organic matter incubation experiments, which should not 
be hampered by seasonally confounding effects, typically find 
sensitivities of Q10 > 2 (7, 26, 27). We argue that this 
discrepancy is due to the controlled laboratory conditions, 
which partially exclude a number of factors relevant to 
ecosystem respiration. Measurements at ecosystem level 
always include multiple processes, i.e. the mobilization, 
transport, and transfer (e.g. via depolymerisation) of carbon 
compounds such that they are metabolizable in the 
mitochondria. At the end, the rate limiting step will determine 
the overall temperature response of a chemical reaction chain, 
and the overall Q10 is lower than for the individual processes 
(28). For instance, it has been shown that the mycorrhizal 
respiration is largely limited by the carbon supply from the 
roots, but virtually insensitive to temperature variations (29, 
30). Moreover growth respiration of plants is largely 
independent of temperature (31). Because ecosystem 
respiration is a mixed response of temperature sensitive and 
insensitive subprocesses, we assume that the comparable low 
Q10,sc values reported here are plausible estimates. 

Despite a narrow range of identified Q10,sc values, the site-
to-site variability in the Q10,sc estimates does not fully 
disappear. These differences may be partially caused by a 
propagation of noise in the night time eddy covariance data 
into parameter estimates. Also slightly delayed system 
responses (32) can affect our estimates at ecosystem level. 
Minor confounding factors operating at comparable time 
scales as the effective system responses may also play a role. 
The latter are not easily distinguishable given that we are 
confronted with a signal comprising both soil and plant 
respiration at ecosystem level. Hence, it is very likely that the 
intrinsic temperature sensitivities of the involved 
subprocesses are confined to an even narrower range 
compared to our approximation at ecosystem level. This is 
remarkable since it implies a convergence of relative 
proportions of temperature sensitive and insensitive 
respiration fluxes among ecosystems. 

To clarify whether a general environmental control might 
explain the site-to-site variability in the temperature 
sensitivities of ecosystem respiration, we investigated the 
relationship of mean annual temperature to the approximated 
intrinsic Q10,sc and apparent Q10 (Fig. 2). The Q10,sc estimates 
do not confirm the previously found or hypothesized patterns 
(Fig. 2B). Our results show a global convergence in the 
temperature sensitivity of terrestrial ecosystem respiration: an 
almost universal Q10,sc value across climate zones and 
ecosystem types (see also Fig. 1) is identified. Using the 
conventional estimates of Q10 instead, we reproduce the 
effects of an apparent temperature control on the sensitivity 
(Fig. 2A). This underscores the problem that some 
unconsidered process, for example substrate supply, can be 
erratically interpreted as an oversensitivity of ecosystem 
metabolic processes to temperature. 

Our analysis further emphasizes that in spite of having 
comparable short term temperature sensitivities, ecosystems 
strongly differ in their carbon metabolization on longer time 
scales (Fig. 3): Low frequency ecosystem responses are 
reflected in the temporal dynamics of the base respiration Rb 
(fig. S5). These time series show a tight relationship with 
corresponding low frequency modes in independently 
estimated time series of gross primary productivity GPPfl (33) 
(fig. S6). If we allow Rb to respond to GPPfl with a time delay 
of a few days, which is a plausible assumption (32), all 
relationships are close to linear (fig. S7), confirming recent 
findings (34). The ratio 1 − (Rb/GPPfl) hints at how the low 
frequency dynamics of carbon uptake is propagated to the 
metabolization potential of labile soil organic carbon by 
autotrophic and heterotrophic respiration (19). Contrary to the 
global convergence in the temperature sensitivity, Fig. 3 
shows that the low frequency dynamics within the ecosystem 
spreads over a wide range. Consequently, future analyses of 
the climate–carbon cycle feedback have to emphasize the role 
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of long term dynamics in the terrestrial carbon cycle rather 
than focus on the short term sensitivities. In particular the role 
of intricate nonbiological stabilization processes versus 
carbon supply rates need to be further investigated when 
trying to predict climate change effects on soil carbon 
dynamics. 

The estimated average value for Q10,sc at ecosystem level 
likely underlies also recent observations of moderate global 
temperature responses of respiration on the long term (35). 
Also modeling studies reporting that the global carbon cycle 
can only be well modeled based on ecosystem level Q10 
values below 2 (36) are empirically confirmed by our 
findings. Consequently, carbon process model results will 
need to be investigated for their capacity to predict similar 
short-term Q10,sc and the variation of Rb at ecosystem level. 
However, given the nontrivial ecophysiological interpretation 
of a multitude of processes summing up to the observed 
ecosystem respiration our results do not justify the 
prescription of Q10 = 1.4 for all rate constants in soil carbon 
models. Rather, a deeper understanding of the different 
factors and processes limiting soil carbon metabolization is 
needed for overcoming the “dead-soil box modeling 
paradigm” (37). Moreover, continuous time series of soil 
respiration, measured with automatic chambers should be 
analyzed with the presented methodology using soil 
temperature as a driving variable. Such studies could allow 
exclusive insights to the soil system, while our analysis at the 
ecosystem level included aboveground respiration. 
Furthermore, we suggest exploring the SCAPE methodology 
also in other fields of research, where confounding factors at 
different scales obscure the intrinsic relation between two 
variables of interest. 

In summary, we provide substantial evidence for the 
existence of universal intrinsic temperature sensitivities of 
terrestrial ecosystem respiration. The empirically inferred 
results suggest a Q10,sc ≈ 1.4 at ecosystem level. These results 
reconcile the empirical evidence with findings that the global 
carbon cycle can be well modeled only with an ecosystem 
level sensitivity of Q10 < 2. Moreover, our results may explain 
recent findings indicating a less pronounced climate–carbon 
cycle sensitivity (38) than assumed by current climate–carbon 
cycle model parameterizations. Opposed to the global 
convergence in temperature sensitivities we find complex 
patterns in the low frequency influence of photosynthetic 
carbon uptake and available assimilates on ecosystem 
respiration dynamics. Future research should strive for an in-
depth understanding of carbon pathways through slow pools 
in terrestrial ecosystems. 
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Fig. 1. Estimation of apparent Q10 values versus the 
approximated intrinsic Q10,sc values (SCAPE methodology) 
across 60 FLUXNET sites using night time observations of 
ecosystem-atmosphere CO2 fluxes. Error bars show the 95% 
range of the parameter distributions. These uncertainties are 
identified via a bootstrapping approach (Q10), or propagated 
from the SCAPE uncertainties of the time series 
decomposition (for Q10,sc, (24)). The color code indicates the 
plant functional type at each site (CRO: cropland, SH: shrubs, 
SAV: savanna, DBF: deciduous broadleaf forest, EBF: 
evergreen broadleaf forest, ENF: evergreen needleleaf forest, 
GRA: grassland, MF: mixed forest, and WSA: woody 
savanna.) 

Fig. 2. Apparent Q10 and approximated intrinsic Q10,sc values 
binned over mean annual temperature (bin with 3.5°). Bin 
medians, their 50%, and 95% uncertainty ranges are 
estimated via block bootstrapping (24). Original site level 
parameter medians (and 95% confidence ranges) are shown in 
red. A: The conventionally determined ecosystem level Q10 
values suggest an apparent temperature dependence. B: The 
SCAPE Q10,sc estimates do not show any relationship with the 
mean annual temperature at the investigated FLUXNET sites. 

Fig. 3. Distribution of the ratio of base respiration to GPPfl [1 
– (Rb/GPPfl)]. Base respiration is a low frequency signal 
(periods >3 months), and is compared here to GPP 
fluctuations in the same frequency range (fl) for all sites. The 
ratio is recomputed 1024 times per site from a randomly 
chosen combination of subsignal estimates (of GPPfl and Rb), 
such that the methodological uncertainty is considered (24). 

 








