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Abstract 18 

The climate sensitivity of plant seasonal life cycles, or phenology, may impart significant carbon 19 

cycle feedbacks on climatic change. Analysis of interannual ecosystem carbon exchange 20 

provides one way to assess this climate sensitivity. Multi-year eddy covariance carbon dioxide 21 

flux observations from five ecosystems in the Upper Great Lakes USA, located 400 km of each 22 

other and exhibiting coherent interannual variability, were used to parameterize a simple 23 

ecosystem model. The model, when properly constrained with an interannual sensitive cost 24 

function, was able to explain a significant proportion interannual variation of carbon fluxes in all 25 

ecosystems except the old-growth forest. The results reveal that spring or autumn climate 26 

thresholds impact annual carbon uptake, though the magnitude and strength varied by site. When 27 

the model was forced to maintain the same climate-phenology relationship across the five sites, 28 

most of the interannual variability could still be explained at most sites except the old-growth 29 

forest and the forest furthest in distance from the others. These results suggest that coarse spatial 30 

resolution carbon-climate models could likely specify general climate-phenological relationships 31 

at grid scales on order of 100 km without appreciably sacrificing ability to model interannual 32 

carbon cycling. 33 

Index terms: Biogeochemical cycles, processes, and modeling (0414); Carbon cycling (0428); 34 

Biosphere/atmosphere interactions (0426) 35 

Keywords: Phenology; eddy covariance; ChEAS 36 

37 
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1. Introduction 37 

One key to understanding the impacts of the terrestrial carbon cycle on future climate change is 38 

better diagnosis of climatic controls on interannual variability (IAV) of land-atmosphere carbon 39 

dioxide net ecosystem exchange (NEE). This is especially the case in temperate and boreal 40 

forests where IAV is large (Yuan et al., 2009) and strongly linked to climate variability (e.g., 41 

Barr et al., 2006; Chen et al., 1999; Goulden et al., 1996; Hollinger et al., 2004; Sierra et al., 42 

2009). Large IAV could, for example, lead to reduced long-term carbon accumulation in some 43 

forests, due to the impact of disturbance-driven respiration pulses (Sierra et al., 2009). Despite its 44 

importance, observed IAV of NEE in these biomes is difficult to capture in ecosystem models, 45 

which are better tuned to capture diurnal, seasonal, and successional patterns (Ricciuto et al., 46 

2008; Urbanski et al., 2007; Stoy et al., 2009). 47 

Currently, we lack a strong physical basis for many of the complex interactions that exist in 48 

terrestrial systems at this timescale (Bonan, 2008; Stoy et al., 2009). For example, while annual 49 

NEE typically declines with latitude in temperate regions, relative IAV increases in deciduous 50 

forests and declines in evergreen forests, a result that is difficult to explain (Yuan et al., 2009). In 51 

several grasslands, it was noted that sensitivity of plant productivity to climate drivers varied 52 

year-to-year (Polley et al., 2010). This result is similar to findings of Richardson et al (2007) 53 

who argued that biotic, not climate, variability was the primary cause of decadal flux variability 54 

in a spruce forest.  55 

Further, we lack understanding about what scales do we expect spatial coherence in interannual 56 

variation, which may influence optimal scales of specifying climate-ecosystem relationships in 57 

land-atmosphere models. One promising avenue of research for better modeling of regional 58 
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ecosystem model IAV is improved simulation of climate sensitivity in plant phenological life 59 

cycles (Peñuelas et al., 2009). Phenology links climate anomalies, especially in the shoulders of 60 

the plant growing season, to plant biogeochemistry (Morisette et al., 2009; Piao et al., 2008). 61 

Recent climatic warming leading to advances in spring flowering and leaf timing has been noted 62 

in many parts of the globe (Linderholm, 2006) especially in Europe (Menzel et al., 1999; Stöckli 63 

and Vidale, 2004) and North America (Myneni et al., 1997; White et al., 2009), across diverse 64 

ecosystems including temperate forests (e.g., Richardson et al., 2006; Vitasse et al., 2009) and 65 

Mediterranean shrublands (e.g., Gordo and Sanz, 2010). Climate records indicate shifts in both 66 

phase and amplitude of the annual temperature (Stine et al., 2009), suggesting that links between 67 

phenology and climate will likely have significant impacts on ecosystem productivity with 68 

ensuing anthropogenic climate change. The impact of warm springs and longer growing season 69 

lengths on carbon uptake has been well-noted at several sites (Barr et al., 2006; Chen et al., 70 

1999; Churkina et al., 2005; Goulden et al., 1996; Hollinger et al., 2004), but ecosystem models 71 

that can capture this impact on IAV are elusive (Baldocchi et al., 2005). 72 

One way to advance our understanding is to develop and test ecosystem models constrained by 73 

multi-year observations that connect phenology, carbon cycling, and climate at multiple sites. 74 

Long-term eddy covariance flux towers, which directly observe NEE of ecosystems over 75 

multiple years, are particularly well suited for testing how well models of phenology capture 76 

carbon cycle IAV (Richardson et al., 2009), though only a few studies have used multiple flux 77 

towers (Baldocchi et al., 2005; Churkina et al., 2005) and none focused on multiple towers in 78 

one region. Coherent IAV has been observed across a set of flux towers in a similar climate and 79 

biome (Desai et al., 2008), but there has been limited success in modeling this IAV. Here, I ask 80 
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to what extent can the observed IAV be explained by a simple climate sensitive model of plant 81 

phenology and what does it imply for improving ecosystem IAV modeling?  82 

To investigate this question, a simple ecosystem model was developed and parameterized using 83 

Bayesian techniques against multi-year flux tower data observed in five ecosystems. Since 84 

ecosystem model interannual variability can be strongly sensitive to how parameter estimation is 85 

designed, an alternative IAV-sensitive formulation of the cost function was also investigated. 86 

Finally, to investigate controls on synchronous forcing, model parameterization was further 87 

modified to force spatial convergence on phenological parameters. Findings from these 88 

investigations are used to discuss implications for environmental controls and spatial coherence 89 

of regional IAV. 90 

2. Data and methods 91 

!"#$%&'($)*+$+)')$+(,-.&/'&0*$92 

Eddy covariance flux towers in the temperate-boreal transition region of the Upper Great Lakes 93 

were analyzed in this study (Table 1). The sites, which included three forests, one shrub wetland, 94 

and one tall tower regional mixed forest-wetland footprint, were located within 400 km of each 95 

other (Fig. 1), each have at least five years of flux and meteorological data, and have been 96 

previously analyzed and described in an upscaling study (Desai et al., 2008). Four of the sites 97 

(US-WCr, US-Syv, US-Los, and US-PFa) are within 150 km of each other in north central 98 

Wisconsin/upper Michigan, while the fifth site, US-UMB, is in northern Lower Michigan. Of the 99 

forest sites, two are mature age class (US-WCr and US-UMB), and one is old-growth (US-Syv). 100 

The wetland site is a short-stature shrub alder-willow fen. The tall tower is a 447-m radio tower 101 
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with flux measurements at three heights. For the purposes of this comparison, the fluxes from the 102 

three levels of the tall tower are combined in an optimal selection strategy, as described by Davis 103 

et al. (2003), to produce a single “regional” NEE. 104 

Meteorological data are each site were acquired and gap-filled using a combination of nearest 105 

neighbor and moving-window ensemble diurnal average techniques (Desai et al., 2008). Eddy 106 

covariance and storage fluxes of CO2 were used to compute NEE at each site. Standard flux 107 

computation methods at each site were relatively similar (Desai et al., 2008) and fluxes 108 

computed by these codes have compared favorably to the Ameriflux “gold” standard, a network-109 

wide blind data processing protocol. Common techniques were used in screening for low 110 

turbulence conditions and gap filling of data gaps that occur due to low turbulence or instrument 111 

failure (Desai et al., 2005). The gap-filling technique compared well with other standard 112 

techniques used by the flux tower community (Moffat et al., 2007). All fluxes were computed at 113 

the half-hourly scale, except for US-PFa, which used an hourly scale due to the taller height. For 114 

assimilation into the model, all flux and meteorological data were averaged across day and night 115 

periods, similar to the method of Sacks et al. (2006). Using half-daily summed fluxes reduces 116 

impact of random turbulent flux error on data assimilation, but retains the nocturnal respiration 117 

signal. Summed half-daily flux integrals whose hours were more than 25% gap-filled were 118 

discarded for data assimilation to minimize artifacts arising from model-model comparison. 119 

!"!$10+(2$+(,-.&/'&0*$120 

A simple ecosystem model, the Interannual Flux Tower Upscaling Experiment (IFUSE), was 121 

parameterized against all site data. The model consisted of 17 total parameters (Table 2), of 122 

which 3 were fixed for each site, 10 were optimized at each site, and four phenology parameters 123 
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were either optimized at each site separately (asynchronous mode) or jointly for all sites 124 

(synchronous mode). The model was run at a half daily (day/night) adaptive length time step, 125 

which has been shown to be well suited for parameter optimization against flux tower NEE 126 

(Sacks et al., 2006).  127 

At each time step, the model applied environmental forcing of canopy air temperature (Ta), 5 cm 128 

soil temperature (Ts), photosynthetic active radiation (PAR), and vapor pressure deficit (VPD) to 129 

estimate gross primary production (GPP), ecosystem respiration (ER), and NEE in gC m
-2

 130 

timestep
-1

 and leaf area index (LAI) in m
2
 m

-2
. GPP was estimated using a five-parameter light, 131 

temperature, and VPD limited modified light use efficiency equation: 132 

GPP = LUE ! 1" e"k !LAI( )PAR
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   (1)  133 

where LUE, k, Tmin, Topt, VPDmax, and VPDmin are model parameters as described in Table 2. 134 

To calculate LAI, leaf phenology of emergence and senescence was modeled with a two-135 

parameter sigmoidal relationship. The phenology model used here consisted of the well-136 

established accumulated growing degree days base 10 C (GDD) approach for mid-point of leaf 137 

emergence and a 5 cm soil temperature threshold for mid-point of leaf senescence, models which 138 

have been shown to explain much of the variation in canopy development for northern forests 139 

(Baldocchi et al., 2005; Richardson et al., 2006). Canopy fraction with evergreen vegetation was 140 

simulated by preventing LAI to decline beyond a minimum threshold (LAImin), leading to: 141 
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 142 

where LAImin, LAImax, !, ", GDDthresh, and Tthresh are model parameters (Table 2). Lspring and Lfall 143 

describe the variation of LAI around the leaf on (Lon) or leaf off (Loff) day of year (DOY). Both 144 

of these functions were further normalized to vary between 0 and 1 and then multiplied together, 145 

thus allowing LAI to vary between LAImin and LAImax. Consequently, interannual variability in 146 

LAI is quite muted in this model, which allowed this model to focus on the role of growing 147 

season length (GSL) on IAV of NEE. 148 

ER was estimated with five parameters that control respiration rates in three soil pools sensitive 149 

to Ts, Ta, and GPP: 150 

ER = r
s
! eb1 Ts "15( )#

$
%
& + r

v
! eb2 Ta "15( )

GPP>0

#
$

%
&
+ b3 !GPPDOY "1[ ]    (3)  151 

where rs, rv, b1, b2, and b3 are model parameters (Table 2). The first term represents the combined 152 

effects soil heterotrophic and plant maintenance respiration. The second term, which is only 153 

present when GPP is positive, represents plant growth respiration (or alternatively, the change in 154 

respiration sensitivity in growing vs. dormant seasons), while the final term, is a fraction of the 155 

previous day GPP, representing autotrophic respiration of newly assimilated carbohydrate and 156 

allows for GPP lag effects. These formulations were chosen to represent the dynamics that could 157 
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likely be resolved from NEE measurements, as opposed to a more mechanistic, but also more 158 

parameter intensive and pool sensitive model of respiration. 159 

NEE was computed as the residual between ER and GPP. The model was designed to be 160 

purposefully simple so as to capture the key diurnal and season dynamics typically seen in NEE 161 

observations while limiting the number of parameters. By avoiding specification of soil and 162 

biomass pools outside of leaves, the model removed one of the largest sources of uncertainty and 163 

equifinality in estimating model parameters from flux data (Luo et al., 2009). This structure 164 

implied that soil pools were assumed to be steady state relative to the fluxes, which is likely a 165 

reasonable assumption for mature, established secondary succession ecosystems. Since the goal 166 

was simulation of daily to interannual NEE at timescales less than a decade (i.e., <10% of a 167 

temperate hardwood forest successional cycle), this assumption implied that short-term 168 

variations in NEE were driven entirely by the response of ER and GPP to climate. Given the 169 

mesic climate of the region, influences of precipitation and moisture variability were assumed to 170 

be minimal. The impact of these assumptions on interpretation of results is provided in the 171 

discussion. 172 

!"3$10+(2$/).)4('(.&5)'&0*$173 

Free parameters of the model (phenology, photosynthesis and respiration parameters in Table 2) 174 

were estimated using a Markov Chain Monte Carlo (MCMC) estimator (Braswell et al., 2005) 175 

with the Metropolis-Hasting algorithm (Metropolis and Ulam, 1949). In this approach, free 176 

parameters were randomly perturbed across a range of reasonable prior values, assuming a 177 

uniform distribution (Table 2). New parameter sets were “accepted” when a cost function 178 

indicated better fit of model to data, and occasionally when not, so as to avoid local minima. 179 
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Multiple chains (six, in this study) were built from random locations in parameter space and 180 

iterated until a convergence criterion is reached, usually within 50,000 iterations. Iteration sizes 181 

were chosen to be arbitrarily large, likely oversampling the parameter space. The best chain was 182 

then propagated forward another 70,000 iterations, and a subset of the final 80,000 iterations 183 

were saved as “accepted” parameter sets based on the acceptance criterion. Best model output 184 

and variance were computed from the model output of these accepted parameter sets. More 185 

details of the general approach are provided in Braswell et al. (2005). 186 

The first five years of half-daily NEE observations for each site were used in the MCMC cost 187 

function to minimize model-data mismatch. The cost function can be written as: 188 

L
D
=

1

2!"
e

# x
i
#µ

i( )
2

2"
2

i=1

n

$    (4)  189 

where LD is the likelihood to be minimized, xi is observed half-daily NEE, ui is model NEE, and 190 

!2
 is data error with respect to model structure, which was computed  as the mean sum of square 191 

deviations between xi and ui (Sacks et al., 2006). To improve numerical stability, this equation 192 

was computed as the log likelihood, allowing the product function to be written as a sum. 193 

Additionally, to test whether the cost function biases how well the model identifies parameters 194 

responsible for determining carbon flux IAV, Eq. (4) was further modified to account for both 195 

fast (half-daily) and slow (annual) variations in NEE: 196 
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 197 

where Ly is a likehood for annual NEE, and xi
m

 is observed cumulative NEE from the start of the 198 

year to point i, and ui
m

 is the equivalent for the model. The new cost function is then product of 199 

the two likelihoods. Thus the model trades fit at the daily scale for fits at the annual scale, with 200 

the assumption that accepted parameters sets would be Pareto optimal for both. Cumulative NEE 201 

was used instead of annual NEE to allow for both the daily and annual to have roughly the same 202 

weight and also to prevent the model from fitting annual NEE with a poor seasonal pattern. The 203 

expectation is that this cost function may improve model reproduction of seasonal NEE and IAV 204 

without significant loss in explaining short-term variation.  While Ld was weighted to account for 205 

the influence of gap-filled data by removing half-daily NEE sums with more than 25% gap-206 

filled, Ly included all NEE to create well-formed NEE integrals. In most cases, this did not add 207 

significantly more points or appear to bias results. 208 

In addition to the two cost functions above, an alternate optimization was performed where 209 

phenology parameters (Table 2) were forced to be the same for all five sites. In this “synchrony” 210 

setup, the parameter optimization was run in tandem at all five sites, such that the four phenology 211 

parameters were optimized to be the same at all five sites, while the other ten parameters were 212 

allowed to vary by site. Computationally, this was simply performed by concatenating arrays of 213 
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flux and forcing data for all sites, with 5 sets of 10 independent parameters (50), and 4 co-214 

dependent parameters. Thus a single MCMC run estimated 54 parameters, instead of 14 at a time 215 

for each site. To compensate for the larger number of parameters, the number of chains was 216 

increased to 20 and total iterations to 432,000 (with 144,000 spin-up iterations). Since phenology 217 

parameters were jointly modified at all five sites, the optimized phenology parameters were the 218 

same at all sites in the synchrony optimization. 219 

!"6$78/(.&4(*')2$+(,&9*$220 

Given the two cost functions, and two forms of parameter optimization (asynchronous and 221 

synchronous), a total of three out of four experiments or model modes were analyzed here. These 222 

include asynchronous optimization with the Eq. (4) half-daily cost function (“AH”), the 223 

asynchronous optimization with the Eq. (5) interannual cost function (“AI”), and finally a 224 

synchronous optimization with the Eq. (5) cost function (“S”).  Results from the fourth, 225 

synchronous optimization with the daily cost function, were performed but not discussed here 226 

since the results are nearly identical to the AH experiment. The three experiments provide 227 

information about how well IAV can be parameterized and simulated at five sites by a simple 228 

ecosystem model (experiments AH and AI) as well as test how important synchronous 229 

phenological forcing drives coherent IAV (experiment S). 230 

3. Results 231 

3"#$%(),0*)2$/)''(.*,$232 

Mean annual NEE at the five sites ranged from a large carbon sink (negative) to a moderate 233 

source (positive) of CO2 to the atmosphere (Table 1). Mature forests such as US-WCr and US-234 
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UMB were the largest sinks followed by the shrub wetland (US-Los). In contrast, the old-growth 235 

forest (US-Syv) was near neutral (with large fluctuations between source and sink in any one 236 

year), and the mixed regional very tall tower (US-PFa) was the largest source. While the regional 237 

CO2 source observed by the tower has been a continuing puzzle (see Davis et al., 2003 and 238 

Ricciuto et al., 2008 for further discussion and Desai et al., 2010 for a regional perspective), the 239 

other towers have NEE in line with expectations for vegetation type and latitude (Yuan et al., 240 

2009). Uncertainty arising from random error, gap-filling and low-turbulence filtering was 241 

generally small and similar at all sites. 242 

Despite large variations in annual NEE, mean seasonal patterns at all five sites were quite similar 243 

(Fig. 2, black line). Generally, sites started absorbing carbon in late May/early June, and crossed 244 

zero in cumulative NEE by mid-June, and turned back into carbon sources by late August or 245 

early September, except for US-PFa which turned into a carbon source much earlier in August. 246 

While the dates were similar for each site, small variations in those dates led to large differences 247 

in the length of carbon uptake period, with the largest at the mature forests and wetlands, and 248 

shortest in the old-growth forest and regional site. This finding provides one basis that growing 249 

season timing and length were a strong controlling factor of annual carbon flux, and hence IAV. 250 

When compared to seasonal flux tower NEE, the IFUSE model (averaged across the same years 251 

as observations) generally replicated this pattern regardless of optimization mode (Fig. 2, dotted 252 

and gray lines). In all cases, the AH experiment best replicated half-daily variations in NEE, 253 

explaining 83%-93% of variability (Table 3), followed in most cases by AI, except at US-UMB, 254 

where the S model outperformed AI. Both AH and AI performed worst at US-PFa, perhaps 255 

because of the mixed footprint, while the S model performed worst at US-Syv. All modes 256 

underestimated the strength of growing season uptake at US-PFa. Differences of model 257 
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performance due to change in cost function are discussed in the next section. Visually (Fig. 2), it 258 

is apparent that the AI model better captured seasonal variation than AH at most sites, especially 259 

at US-Syv, but for magnitude of annual NEE, all modes did well with respect to uncertainty in 260 

observations, except for AH at US-Syv.  261 

3"!"$:*'(.)**;)2$<).&)=&2&'>$262 

IAV at all sites was present and ranged from modest in the case of the wetland, to large in the 263 

case of the mature and old-growth forests (Table 1). When mean annual NEE is subtracted from 264 

observations and the anomalies are then normalized by standard deviation, consistent patterns 265 

emerge among the sites (Fig. 3). At most sites, IAV rarely exceeded 1-!, with the exception of 266 

2001, coincident with a large regional forest tent caterpillar outbreak (Cook et al., 2008). Year-267 

to-year fluctuations were quite common, and hints of a longer decadal scale variability were 268 

evident. The spatial coherence of these anomalies are discussed in the next section. 269 

No relationship existed between NEE magnitude and 1-! IAV (Table 3). In absolute terms, IAV 270 

was smallest in the wetland, barely detectable within the uncertainty in mean NEE, and largest at 271 

US-WCr, the site most impacted by the 2001 insect outbreak. However, in relative terms (ratio of 272 

1-! IAV to NEE), the largest IAV was at US-Syv, where NEE was near neutral. In all cases, 273 

IAV was a major fraction of NEE. 274 

Despite all modes being able to capture most of the seasonal pattern of cumulative NEE at all 275 

sites, simulation of IAV anomalies was poorly modeled at all sites by AH (Fig. 4a), but 276 

significantly improved in AI (Fig. 4b). This result highlights the importance of the dual-277 

likelihood cost function used by AI. AI IAV anomalies were significantly correlated (p<0.05) to 278 
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observed IAV anomalies at US-WCr, US-UMB, and US-PFa, strongly correlated (p<0.1) to US-279 

Los, and weakly correlated to US-Syv (Table 3). The tradeoff, of course, was loss of explanation 280 

of variance at the half-daily scale ranging from 3-11% and an increase in mean absolute error of 281 

half-daily NEE by 0.03 to 0.3 gC m
-2

 day
-1

. 282 

Further evidence that the fit of AI to observations is not just an artifact of modeling comes when 283 

AI Lon and Loff dates were compared to similar data observed at US-WCr. The observed dates 284 

were derived from calibrating a simple LAI model to the ratio of above and below canopy 285 

downwelling PAR and observed LAI (Cook et al., 2008). While correlations are modest, the 286 

model generally captured the pattern of anomalies in LON and LOFF, though it did appear to 287 

underestimate the variability in Lon and overestimate the variability in Loff. The net effect, 288 

however, was good performance at simulating variations in growing season length. 289 

In parameter space, there are a number of differences between AH (Table 4) and AI (Table 5). 290 

Among phenology parameters, the net effect was in most but not all cases to increase the values 291 

of phenology slope parameters, " and #, to higher values (steeply curved), consequently 292 

modifying the phenology climate thresholds. Covariances between these parameters and 293 

photosynthesis parameters then led to changes in LUE and temperature regulation of 294 

photosynthesis, since these parameters can also act like phenology parameters. Less clear were 295 

the reasons behind large changes in respiration parameters. While both AH and AI essentially 296 

optimized to a value of zero for b3 (fraction of GPP respired), AI has significantly smaller b2 (less 297 

temperature sensitivity for plant growth respiration), and some large differences for b1 for the 298 

mature forest sites, suggesting equifinality in model solutions for respiration and highlighting the 299 

difficulty of estimating optimal respiration parameters from eddy covariance data. 300 
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While the magnitude of NEE and IAV varied across sites and with time, coherent anomalies in 302 

IAV were readily observed when anomalies were statistically standardized (Fig. 3). These results 303 

indicate the strong role that regional climate variability had on IAV. Even after taking NEE 304 

uncertainty into account, coherence was strong, with most sites showing positive anomalies in 305 

2001 and 2004, and negative anomalies in 1999-2000, and 2002-2003. A bifurcation of trends 306 

across sites occurred in 2005 and 2006. While the tent caterpillar outbreak was one source of the 307 

anomaly in 2001, the outbreak was mostly felt at US-WCr in late spring, to a small extent in the 308 

US-PFa footprint, and barely at the other two sites, suggesting that climate anomalies still 309 

explained most of the 2001 anomaly.  310 

The S model tested whether synchronous IAV can be explained by coupling of phenological 311 

parameters across sites. In this synchronous mode, the model still captured much of the IAV at 312 

US-WCr, US-Los, and US-PFa (p<0.05), but lost ability to simulate IAV at US-UMB, and like 313 

all modes, could not capture IAV at US-Syv (Table 3). Correlation coefficients for the significant 314 

correlations were essentially unchanged compared to AI. It is interesting to note that US-UMB is 315 

the further site from the rest (Fig. 1). 316 

The trade-off in half-daily NEE simulation compared to AH was quite similar to the trade-off 317 

found for AI, though with a larger drop in correlation at US-Syv. Across all sites, AI has a strong 318 

correlation with observed IAV (r
2
=0.81) (Fig. 4b), but the S mode is still strongly correlated 319 

(r
2
=0.68), and with 16 fewer parameters in aggregate compared to AI. Photosynthesis and 320 

respiration parameters in AI (Table 5) and S (Table 6) were more similar than between those and 321 

AH (Table 4). Remarkably, the parameters in S appeared more in line with literature estimates 322 
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than those for AI, especially Topt. Phenology parameters in S are fixed for all five sites, and 323 

appeared to fall roughly near the average of those parameters for each site in AI. 324 

4. Discussion 325 

6"#$10+(2&*9$0@$:AB$$326 

The observed IAV is within the range (~50-100 gC m
-2

 yr
-1

) observed for deciduous broadleaf 327 

forests in mid-latitudes (Yuan et al., 2009), with mature northern hardwood forests exhibiting the 328 

largest. The results here contribute to findings of interannual variations in seasonal temperature 329 

as a dominant driving force of interannual variation in carbon flux at mid-latitudes (Sierra et al., 330 

2009; Yuan et al., 2009). Given the observed coherent IAV across space and likelihood that 331 

seasonal temperature fluctuations were important in the study region, then, it is not entirely 332 

surprising that a model tuned to capture daily to seasonal climate sensitivity of carbon cycling 333 

can adequately capture the observed IAV, especially given that seasonal climate forcing strongly 334 

influenced modeled ecosystem growing season length and timing. Rather, what is surprising is 335 

the level of care needed for proper parameterization and the importance of not just identifying 336 

optimal model structure and parameters, but also optimal model cost functions. In this case, as in 337 

many ecosystem models, the failure of a simple MCMC approach in tuning parameters for 338 

simulating IAV relies partly on the large signal imparted by CO2 flux diurnal variability (large 339 

and negative in day, large and positive at night), which tends to mask the more subtle, but 340 

perhaps more climatically relevant, interannual signal (Stoy et al., 2009). 341 

The simulation presented here, consequently, is one of few models that have been able to 342 

successfully diagnose interannual variability of NEE within a relatively simple ecosystem model. 343 
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Other well-known, and arguably more sophisticated models have shown less ability to model 344 

IAV in north temperate forested regions (Ricciuto et al., 2008; Urbanski et al., 2007). It is likely, 345 

at least in the case of the northeastern forest studied by Urbanski et al. (2007), that successional 346 

trajectory was an important factor in long-term variability at the site, possibly overwhelming a 347 

climate variability signal. A major shortcoming of the approach used here is the inability to 348 

estimate how important succession and disturbance is part of sub-decadal IAV. Investigations at 349 

decadal or longer timescales would certainly need to incorporate these process. Further, the 350 

steady-state spin-up assumption made by developing a model with no carbon pools would not be 351 

valid, and other techniques should be implemented with a pool based model (e.g., Carvalhais et 352 

al., 2008). 353 

Analysis also revealed large variation in IAV variance explained by this model within a small 354 

region that appeared to vary as a function of vegetation type, highlighting the importance of 355 

individual site characteristics in determining the extent to which interannual carbon cycling may 356 

be more controlled by climate or internal biotic dynamics (Polley et al., 2010). Strong internal 357 

control of NEE variability appears to have played a part in the lack of model predictive ability at 358 

the old-growth forest. Desai et al. (2005) also highlighted the greater sensitivity to moisture 359 

stress that has been found at this forest compared to nearby mature forests. 360 

One way to assess biotic control that has been demonstrated both by Polley et al. (2010) and 361 

Richardson et al. (2007), is to compare model parameterization with fixed parameters over 362 

multiple years against interannually varying parameters, the latter reflecting variability in biotic 363 

controls on NEE. Polley et al. (2010) argued that biotic control of interannual variability was 364 

significant in grasslands, and Richardson et al. (2007a) similarly argued that the majority (55%) 365 

of interannual variations in a spruce forest in the northeast US was driven by biotic variation. 366 
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Though this study did not test a model with variable parameters, the findings here of strong 367 

explanation by a simple model with fixed-in-time parameters suggests that, at least for mature 368 

hardwood forests of boreal-temperate transition reasons, climate sensitivity, especially of spring 369 

and fall, drove interannual variation of NEE. 370 

While model was able to simulate IAV at the wetland, it was more designed with forest 371 

productivity and aerobic decomposition in mind, suggesting non-shrub or precipitation-fed 372 

wetlands would not fare as well as the shrub fen studied here. Still, this particular wetland site 373 

was not in steady state over the time period due to a significant ongoing decline in water table 374 

(Sulman et al., 2009). Sulman et al. (2009) showed that water table influences both respiration 375 

and productivity this wetland, generally leading to little change in NEE over the time period 376 

studied. Consequently, one could argue that this model may be getting the right answer for the 377 

wrong reasons, given the relatively small interannual variability of NEE. 378 

Differing model structures led the MCMC algorithm to select different optimal values for many 379 

number of parameters. When the models were compared in parameter space, it was not always 380 

immediately obvious how other parameter differences between the models improved the fit to 381 

IAV. These parameter correlations require further examination and suggest that caution is 382 

required when drawing inferences from model parameter optimization techniques without first 383 

testing for optimal model structure. Additionally, a question of overfitting to IAV arises when 384 

relying on datasets with only a few years of data and the modified cost function, which also 385 

requires further examination. 386 
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Another major finding of the work here is the how well a synchronously forced phenology 388 

explained much of the IAV in the region for forests. Though the details of plant phenology vary 389 

strongly by species and microclimate experienced by individual plants, at the scale of stand-level 390 

carbon cycling, results here suggest that carbon cycle responses can generally be estimated by 391 

relatively simple accumulated climatic heating indices and regional soil temperature thresholds. 392 

Within this framework, it is not surprising that the US-UMB site fared poorest under 393 

synchronous forcing, as it is the farthest site both climatically and geographically from the other 394 

sites. These results also hint at a possible way to better estimate the spatial coherence of 395 

phenological forcing by utilizing sets of flux towers to geostatistically test the ability of models 396 

to jointly simulate flux variability. Here, the findings suggest synchronous scales of at least 100 397 

km, reflecting the distance among the tower sites outside of US-UMB. Also, the decline in 398 

explanation of variance at the old growth forest further develops the case that this site has strong 399 

internal control on interannual carbon cycling. 400 

6"3$C).=0*$->-2&*9$)*+$9.0D&*9$,(),0*$2(*9'?$401 

The parameterized AI model can be further examined to suggest mechanisms that connect 402 

climate variability to flux variability, via the interaction of model parameters that impact 403 

growing season length (Fig. 7). For sites where the AI model successfully simulated IAV, the 404 

mechanism of by which phenology impacted IAV was not consistent across all sites. Hardwood 405 

forest sites (US-WCr and US-UMB) showed less carbon uptake (more positive NEE) with later 406 

LON, while other sites had no significant relationship (Fig. 7a). For these two sites, the strength of 407 

this LON relationship drove a negative relationship between growing season length (GSL) and 408 
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NEE (longer GSL = more uptake). This finding is consistent with previous single site studies that 409 

have noted relationships between warmer springs and enhanced annual carbon uptake in a boreal 410 

aspen forest (Barr et al., 2006; Chen et al., 1999), eastern deciduous forest (Goulden et al., 411 

1996), and a spruce-dominated eastern forest (Hollinger et al., 2004; Richardson et al., 2009).  412 

The effect of autumn (LOFF) is less clear, with one only forest (US-Syv) showing a significant 413 

positive relationship (later LOFF = less uptake) (Fig. 7b). The wetland site (US-Los) also had a 414 

significant relationship, but the magnitude was very small. A recent paper noted that warmer 415 

autumns led to less carbon uptake in boreal ecosystems, by increasing ER more than GPP (Piao 416 

et al., 2008). This effect is not strongly evident here in the temperate-boreal transition zone. 417 

While strong consistent spring and autumn climate impacts on NEE were not apparent, the effect 418 

of both of these effects on GSL is significant and negative (longer growing season = more carbon 419 

uptake) at all sites except the mixed regional site (US-PFa), consistent with earlier findings 420 

across the flux tower network showing growing season length as a strong determinant of net 421 

carbon uptake (Baldocchi et al., 2001; Churkina et al., 2005). The lack of strong correlation at 422 

the US-PFa site may be related to complementary responses occurring across the mix of stand 423 

types sampled by the tall tower and perhaps the influence of moisture on regional fluxes that is 424 

not apparent at the stand-scale towers (Desai et al., 2010). 425 

With respect to moisture, there is some evidence to suggest that relationships between water and 426 

carbon cycle are an important factor on IAV to consider. Hu et al. (2010) found that evergreen 427 

montaine forest carbon uptake had an inverse relationship with growing season length, due to the 428 

importance of snowmelt as a source of growing season plant available water. The findings here, 429 

showing mostly the opposite case, do not suggest a strong control of snow water on IAV in the 430 

study region. However, other studies in the region have shown that water table depth (Desai et 431 
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al., 2010; Sulman et al., 2009) and summer soil moisture (Ricciuto et al., 2008) may also be 432 

important factors in explaining IAV in the patchy forest-wetland landscape that characterizes the 433 

region, and in similar forests of other regions (Hollinger et al., 2004). Ricciuto et al. (2008) 434 

noted that daytime and seasonal NEE at the regional tall tower (US-PFa) were correlated to soil 435 

moisture, but correlations were weak at the annual scale. The models used here did not consider 436 

these effects, which may explain some of the unexplained variability of IAV, especially at the 437 

wetland and old-growth forest. Time lags are likely in relationships between moisture and carbon 438 

(e.g., Desai et al., 2010; Dunn et al., 2007; Hu et al., 2010), and model mechanisms to couple 439 

these processes require further assessment.  440 

5. Conclusion 441 

Thirty-one site years of near continuous flux tower carbon exchange observations across a meso-442 

network of five established Ameriflux sites were used to identify a coherent signal of interannual 443 

variability in net ecosystem exchange, a likely indicator of the role of regional climate variability 444 

on ecoystem carbon cycling. A model parameterized with climate-sensitive phenology and a 445 

minimal set of carbon cycle functions and parameters to explain daily variations in NEE could 446 

successfully simulate much of this IAV, especially at the mature forest sites, but only when the 447 

model cost function was correctly identified and applied. 448 

Climate variability in this boreal-temperate transition region drove NEE variability in the model 449 

primarily through the impact of growing season length on length of carbon uptake period. These 450 

results also suggest that timescales over which climate impacts decomposition and respiration is 451 

longer, which is not surprising given the longer residence time of carbon in decomposing pools 452 

(soil) versus photosynthetic pools (leaves). The model also highlighted the role that climate 453 
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variability imparts on carbon flux spatial coherence, at least on length scales of 100 km, though 454 

this question would be best further explored with a larger scale geostatistical study of carbon flux 455 

spatial variation. 456 

Old-growth forest and wetland annual carbon flux variability were less well simulated, 457 

suggesting a strong role for internal biotic dynamics and moisture variability on carbon flux 458 

variations at some sites. These dynamics may be an important aspect of regional carbon cycle 459 

variability, especially as forests in the region age and long-term drought conditions persist. Other 460 

noted causes of IAV that also require further consideration, especially at regional scales, include 461 

the role of stochastic disturbance (Desai et al., 2007), pest outbreaks (Cook et al., 2008), and 462 

internal organic matter decomposition dynamics (Ricciuto et al., 2008). 463 

The impact of climate variability on phenology and ultimately ecosystem biogeochemistry is a 464 

first order climate-ecosystem interaction, and of likely importance on the predictability of future 465 

carbon cycles as anthropogenic climatic changes are expected to be strongly felt in mid-466 

continental mid-latitude regions. Preliminary findings from long term flux tower observations 467 

and careful ecosystem model parameterization in a boreal-temperate transition region suggest 468 

that future climate change in the shoulder seasons is likely to affect the carbon balance of mixed 469 

and deciduous broadleaf forests, perhaps more than climatic changes occurring in the central part 470 

of the growing season. However, these findings are limited by lack of longer-term carbon cycle 471 

and phenological observations. Additionally, the variety of findings among montaine, grassland, 472 

temperate, boreal, and temperate-boreal transition regions highlight the need for continued 473 

efforts to better parameterize climate sensitivity of phenology in ecosystem models. 474 
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Figure captions 611 

Figure 1. Map of north-central United States showing location of the five flux tower sites used 612 

in this study. 613 

 614 

Figure 2. Ensemble average cumulative daily NEE for observations, and the three model 615 

experiments (AH, AI, and S). Averages were performed over the observed record noted in Table 616 

1. The model generally captured the seasonal pattern of NEE at all sites, with worst performance 617 

at US-Syv and US-PFa. Observed and model uncertainty is not shown to preserve clarity, but 618 

generally fall within 10% of any observation. 619 

 620 

Figure 3. Observed standardized interannual variability in NEE at the five study sites. Strong 621 

coherence in variability in NEE was observed across the time period, even though absolute 622 

magnitudes in NEE variability varied widely. Observational uncertainty in NEE is noted by the 623 

horizontal bars. 624 

 625 

Figure 4. Correlation of anomalies in observed and modeled annual NEE using a) the AH cost 626 

function parameters (Table 4) and b) the AI cost function parameters (Table 5). Significant 627 

improvement in simulation of interannual variability was found for all sites in the latter. 628 

 629 

Figure 5. Comparison of observed light extinction profile derived leaf on (square) and leaf off 630 

(triangle) date anomalies to IFUSE model for the US-WCr site, using the AI parameters. 631 

Generally, variability in both dates was modestly well simulated, though the slope of leaf off 632 

appears too steep, while the leaf on dates mostly fall on the 1:1 line except for one outlier.  633 
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 634 

Figure 6. Same as Fig. 4 but for the S cost function parameters (Table 6). Interannual variations 635 

by the S model were well simulated for most sites, but less successfully for US-UMB and quite 636 

poorly for US-Syv.  637 

 638 

Figure 7. Linear regression derived slope of the relationship between annual NEE and anomaly 639 

in dates of leaf on (LON), leaf off (LOFF) and growing season length (GSL) as quantified from 640 

IFUSE model output using AI cost function parameters (Table 5) plotted against linear 641 

correlation of this relationship at all sites. Dotted line indicates p<0.1 significance level.642 
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Figures 663 

Figure 1. Map of north-central United States showing location of the five flux tower sites used 664 

in this study. 665 

 666 

667 



 40 

Figure 2. Ensemble average cumulative daily NEE for observations, and the three model 667 

experiments (AH, AI, and S). Averages were performed over the observed record noted in Table 668 

1. The model generally captured the seasonal pattern of NEE at all sites, with worst performance 669 

at US-Syv and US-PFa. Observed and model uncertainty is not shown to preserve clarity, but 670 

generally fall within 10% of any observation. 671 

672 



 41 

Figure 3. Observed standardized interannual variability in NEE at the five study sites. Strong 673 

coherence in variability in NEE was observed across the time period, even though absolute 674 

magnitudes in NEE variability varied widely. Observational uncertainty in NEE is noted by the 675 

horizontal bars. 676 

 677 

678 



 42 

Figure 4. Correlation of anomalies in observed and modeled annual NEE using a) the AH cost 678 

function parameters (Table 4) and b) the AI cost function parameters (Table 5). Significant 679 

improvement in simulation of interannual variability was found for all sites in the latter. 680 
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 43 

Figure 5. Comparison of observed light extinction profile derived leaf on (square) and leaf off 682 

(triangle) date anomalies to IFUSE model for the US-WCr site, using the AI parameters. 683 

Generally, variability in both dates was modestly well simulated, though the slope of leaf off 684 

appears too steep, while the leaf on dates mostly fall on the 1:1 line except for one outlier. 685 
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 44 

Figure 6. Same as Fig. 4 but for the S cost function parameters (Table 6). Interannual variations 687 

by the S model were well simulated for most sites, but less successfully for US-UMB and quite 688 

poorly for US-Syv. 689 
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Figure 7. Linear regression derived slope of the relationship between annual NEE and anomaly 691 

in dates of leaf on (LON), leaf off (LOFF) and growing season length (GSL) as quantified from 692 

IFUSE model output using AI cost function parameters (Table 5) plotted against linear 693 

correlation of this relationship at all sites. Dotted line indicates p<0.1 significance level. 694 

 695 


