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Abstract. A central challenge to understanding how climate anomalies, such as drought and heat-
waves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal varia-
tion in ecosystem gross primary productivity (GPP). Existing empirical and model-based satellite
broadband spectra-based products have been shown to miss critical variation in GPP. Here, we evalu-
ate the potential of high spectral resolution (10 nm) shortwave (400–2,500 nm) imagery to better
detect spatial and temporal variations in GPP across a range of ecosystems, including forests, grass-
land-savannas, wetlands, and shrublands in a water-stressed region. Estimates of GPP from eddy
covariance observations were compared against airborne hyperspectral imagery, collected across Cali-
fornia during the 2013–2014 HyspIRI airborne preparatory campaign. Observations from 19 flux tow-
ers across 23 flight campaigns (102 total image-flux tower pairs) showed GPP to be strongly
correlated to a suite of spectral wavelengths and band ratios associated with foliar physiology and
chemistry. A partial least squares regression (PLSR) modeling approach was then used to predict GPP
with higher validation accuracy (adjusted R2 = 0.71) and low bias (0.04) compared to existing broad-
band approaches (e.g., adjusted R2 = 0.68 and bias = �5.71 with the Sims et al. [2008] model). Signif-
icant wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco
(wavelengths 1,680, 1,740, and 2,290 nm) and Vcmax (wavelengths 1,680, 1,722, 1,732, 1,760, and
2,300 nm). These results provide strong evidence that advances in satellite spectral resolution offer sig-
nificant promise for improved satellite-based monitoring of GPP variability across a diverse range of
terrestrial ecosystems.

Key words: eddy covariance; gross primary productivity; hyperspectral imagery; HyspIRI; imaging spectroscopy;
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INTRODUCTION

Recent work by Serbin et al. (2015) and Singh et al.
(2015) has shown promising advancements in the use of
hyperspectral imaging, collected from high-altitude airborne
missions, to map the variation in the drivers of gross pri-
mary productivity (GPP) through measurement of leaf
structure, metabolic capacities, and related biochemistry.
While the use of broadband spectroscopy on tower, air-
borne, and satellite platforms to quantify seasonal variation
in vegetation greenness, leaf area, and photosynthesis is well
established (Carlson and Ripley 1997, Myneni et al. 2002,
Heinsch et al. 2006), imaging spectroscopy affords new
opportunities to more accurately monitor spatial and tem-
poral variation in ecosystem function based on its sensitivity
to leaf physiology. Imaging spectroscopy (also known as
hyperspectral imagery) is here defined as reflectance data
consisting of narrowband (5–10 nm) measurements across

the full range of visible, near infrared and shortwave infra-
red wavelengths (VSWIR, 400–2,500 nm). Such high-dimen-
sional data take advantage of narrow spectral features
related to specific leaf functional, chemical, and structural
traits (Curran 1989, Serbin et al. 2012).
In this study, we test an approach using imaging spec-

troscopy data collected across two years as part of the NASA
HyspIRI Preparatory campaign to estimate GPP based on
linkage to eddy covariance (EC) data from flux towers, which
are currently the most widely used ground data for inferring
ecosystem-level GPP. Although data from broadband sensors
such as Landsat and MODIS have been used to generate
GPP maps across large spatial scales (Running et al. 2004,
Jung et al. 2011), the resulting estimates are subject to large
biases and appear to primarily detect broad differences in
GPP among ecosystem types and across vegetation density
gradients, potentially missing physiological influences on
GPP arising from variations in leaf traits responding to win-
ter dormancy, plant stress, and stomatal response.
For example, the NASA Terra/Aqua-based MODIS GPP

MOD17 product correlates well to flux tower GPP esti-
mates, but, on average, monthly GPP overestimates site-level
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average GPP by 20%–30% across a range of land cover types
compared to EC, with significant discrepancies between EC
and MODIS emerging during phenological transitions (par-
ticularly spring green-up; Heinsch et al. 2006). As well,
MODIS GPP did not capture spatial variability observed at
the flux tower level between sites of similar vegetation type
(Heinsch et al. 2006), especially at the regional scale. As
such, a general conclusion is that MODIS may characterize
broad variation among physiognomically different ecosys-
tems by detecting differences in vegetation structure and/or
cover rather than physiology.
The limits of current broadband remote-sensing techniques

to accurately predict spatial or temporal GPP variation
(Heinsch et al. 2006) provide an impetus to test the use of
imaging spectroscopy to detect variation in vegetation func-
tion directly related to GPP. This is motivated by increasing
evidence that hyperspectral data are sensitive to biochemical
and physiological properties important to ecosystem function
(Martin and Aber 1997, Smith et al. 2002, Ollinger and
Smith 2005, Asner et al. 2007, Martin et al. 2008, Wolter
et al. 2008, Ollinger 2011, Jetz et al. 2016, Lee et al. 2015,
Schimel et al. 2015, Serbin et al. 2015, Singh et al. 2015). For
example, high-resolution spectral data have the ability to cap-
ture variation in foliar concentrations of water, chlorophyll,
cellulose, lignin, nitrogen, and other leaf constituents (Green
et al. 1998), and studies have shown the ability to use hyper-
spectral data to map these and other leaf traits (Ustin and
Gamon 2010, Serbin et al. 2012, Singh et al. 2015).
The NASA HyspIRI Preparatory Airborne mission

provided an opportunity to collect a large quantity of high-
resolution imagery across a range of EC flux towers in
California covering numerous seasons across gradients of
vegetation type, density, and physiology of temperate and
semi-arid ecosystems with large variation in average GPP.
Studied ecosystems ranged from coastal sage and valley
grassland systems to high-elevation conifer forests. Our objec-
tive was to evaluate the ability of imaging spectroscopy data,
through time and across multiple EC flux towers encompass-
ing a range of ecosystem types, to estimate local-scale vegeta-
tion productivity. Flux tower measurements were combined
with high-spectral and high-spatial resolution narrowband
visible to shortwave infrared imaging spectroscopy, repeat-
edly captured at each tower site with high-altitude airborne
sensors, to identify which spectral wavelengths, or combina-
tions of multiple wavelengths (Inoue et al. 2008), relate most
strongly to GPP variation within and across sites and com-
pare the use of narrowband (400–2,500 nm) spectroscopy
data for estimating GPP against existing approaches (e.g.,
fromMODIS) that rely on broadband data.

METHODS

Gross primary productivity estimates using eddy covariance

The EC flux towers span two climate/elevation gradients, a
collection of wetland, grassland, and savanna sites in central
California, and chaparral/coastal sage sites in southern Califor-
nia (Appendix S1: Table S1). The latitudinal and topographic
gradients create a wide range of mean annual temperature and
precipitation among the sites (Appendix S1: Fig. S1). Further,
given the climatological wet season that typically lasts from

late autumn to early spring, a number of ecosystem types and
plant hydrological adaptations occur in this region, allowing us
to observe awide range of GPP patterns.
Three sets of sites were used here. One climate/elevation

gradient crosses the San Jacinto Mountains in southern Cal-
ifornia, the other ascends from the San Joaquin Valley into
the Sierra Nevada Mountains in central California, and the
third set includes agricultural and wetland sites (Fig. 1). The
southern California gradient includes the following sites (all
site names corresponding with the dominant vegetation
type): Grassland, Coastal Sage, and Oak–Pine Forest on the
western slope of the San Jacinto Mountains, and Pinyon–
Juniper Woodland, Desert Chaparral, and Sonoran Desert
on the eastern slope (Kelly and Goulden 2008, Goulden
et al. 2012), rising from 470 m elevation to 1,300 m and
back down to 275 m in the desert (Table 1). The Sierra gra-
dient is situated within the Upper Kings River watershed,
and comprises grassland–savanna (Oak–Pine Woodland)
and forest (Ponderosa Pine and Mixed Conifer) sites
(Fig. 1), increasing in elevation from 405 to 2,015 m (Goul-
den et al. 2006).
The wetland and agricultural sites (pasture, rice paddy,

and alfalfa) are near the San Joaquin River, in the grass-
land–savanna of the lower Sierra Nevada foothills, and
grassland in the Altamont Hills. The wetlands (Twitchell
East End Wetland and Mayberry Wetland) are recently
restored (2010–2014) and the nearby agricultural fields
(Twitchell Island, rice paddy; Twitchell Alfalfa, alfalfa field;
Sherman Island, pasture) are actively managed. The sites
located in the foothills are located on privately owned land
and occasionally grazed by cattle. The Diablo grassland,
located in the Altamont Hills, is owned by the Lawrence
Livermore National Laboratory and is not actively man-
aged. The southern California shrubland sites are located at
the Sky Oaks Field Station (San Diego State University),
with one flux tower in old-growth chaparral (Sky Oaks
New) and the other in recently naturally burned (2003) cha-
parral (Sky Oaks Young).
From all 19 tower sites, half-hourly estimates of CO2 flux

were measured using the eddy covariance technique (Aubi-
net et al. 2011). We gap-filled missing and quality-screened
data points using the Desai-Cook gap filling model (Cook
et al. 2004, Desai et al. 2005). This model was applied to
data filtered according to a turbulence threshold based on
friction velocity (u*), utilizing the 30-min averages for turbu-
lent carbon flux or net ecosystem exchange (NEE). The
model uses a variable moving-window mean diurnal varia-
tion method to estimate missing meteorological data, with
the window size depending on the completeness of the data
set. The Eyring function (Cook et al. 2004) was then applied
to the data to estimate ecosystem respiration (Reco). GPP
was then estimated as the residual between the 30-min mod-
eled Reco and the measured NEE data. Variation in the esti-
mated GPP was then related to 30-min averages for site
photosynthetically active radiation (PAR) with a Michaelis-
Menton reaction rate equation (Falge et al. 2001). The
resulting models afforded GPP predictions when there were
NEE gaps in the original data set, allowing us to adequately
characterize seasonal and annual GPP dynamics (Baldocchi
et al. 2015). However, comparisons to imagery were limited
to periods when NEE observations were measured.
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FIG. 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the study region (California, USA) in 2013 and
2014 (imagery: Google Earth).

TABLE 1. Eddy covariance flux tower site information, including average temperature and precipitation anomalies for 2013–2014 against
the average for 2003 through 2012.

Site name Latitude (°N) Longitude (°W) SiteID PFT classification

2013–2014
temperature
anomaly (°C)

2013–2014 precipitation
anomaly (percentage

of average)

Twitchell Island 38.1055 121.652 USTWT wetlands 1.5 61
Twitchell East End Wetland 38.103 121.641 USTW4 wetlands 1.8 61
Mayberry Wetland 38.0498 121.765 USMYB wetlands 1.5 63
Tonzi Ranch 38.4316 120.966 USTon grassland–savanna 1.3 58
Vaira Ranch 38.4067 120.951 USVar grassland–savanna 1.3 58
Twitchell Alfalfa 38.1159 121.647 USTW3 grassland–savanna 1.5 61
Sherman Island 38.0373 121.754 USSnd grassland–savanna 1.5 63
Diablo 37.6773 121.53 USDia grassland–savanna 1.4 63
Oak–Pine Woodland 37.1087 119.731 USCZ1 grassland–savanna 1.5 32
Grassland 33.737 117.695 USSCg grassland–savanna 1.6 36
Sierran Mixed Conifer Forest 37.0675 119.195 USCZ3 forest 1.3 34
Ponderosa Pine Forest 37.0310 119.257 USCZ2 forest 1.6 33
Oak–Pine Forest 33.808 116.772 USSCf forest 1.8 51
Coastal Sage 33.734 117.696 USSCs shrubland 1.6 36
Desert Chaparral 33.61 116.45 USSCc shrubland 1.6 46
Pinyon–Juniper Woodland 33.605 116.455 USSCw shrubland 1.6 46
Sky Oaks New 33.38443 116.64 USSO4 shrubland 1.5 58
Sky Oaks Young 33.3772 116.623 USSO3 shrubland 1.5 58
Sonoran Desert 33.652 116.372 USSCd shrubland 1.5 43

Note: SiteID corresponds with Ameriflux Site ID (PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, created
17 May 2016).
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Image acquisition

During the NASA HyspIRI Preparatory Campaign
(Hochberg et al. 2015, Lee et al. 2015), all 19 flux tower
sites were repeatedly overflown by the NASA ER-2 aircraft
at 20 km, collecting imaging spectroscopy and thermal ima-
gery using the AVIRIS (Airborne Visible/Infrared Imaging
Spectrometer) and MASTER (MODIS/Advanced Space-
borne Thermal Emission and Reflection Radiometer Air-
borne Simulator) sensors (Fig. 1). The AVIRIS sensor
measures reflected solar energy in the 380–2,510 nm spectral
region with 224 spectral bands, with an average bandwidth
of 10 nm (Vane et al. 1993, Green et al. 1998). Flights were
conducted at several times throughout the dry and wet sea-
sons and timed to capture maximum variation in plant phe-
nology and ecosystem function (Appendix S1: Table S2).
The NASA Jet Propulsion Laboratory processed data,

including radiometric calibration to surface reflectance fol-
lowing Thompson et al. (2015) and ortho-rectification and
resampling to consistent 18-m pixels. To normalize between-
and within-scene brightness offsets, we performed a bright-
ness correction on all scenes following Feilhauer et al.
(2010) as discussed in Serbin et al. (2015). Images were
topographically corrected using the modified sun-canopy-
sensor topographic method (Soenen et al. 2005), and cross-
track changes in bidirectional reflectance distribution
function (BRDF) were corrected using a quadratic function
of the volumetric scattering term from the Ross-Thick
BRDF model (Roujean et al. 1992, Lucht et al. 2000). Prior
to analysis, we removed the five shortest and longest wave-
bands, along with those influenced by atmospheric water
(1,313–1,453 nm and 1,782–2,018 nm), leaving 172 of the
224 channels of AVIRIS data over the 414–2,447 nm range.

Image data extraction from tower footprints

For each tower site, AVIRIS data were extracted only
from cloud-free acquisitions. Locations of flux towers were
identified within AVIRIS images using GPS coordinates,
and spectra were extracted only from pixels containing
within tower influence areas, as described below. The total
number of acquisitions for our analysis was 102, encompass-
ing 19 towers with an average of 5.4 acquisitions from multi-
ple overflights during a 2-yr period (Table 1). To identify the
vegetation influencing tower GPP, a one-dimensional online
footprint model, based on Kljun et al. (2015), was used to
estimate the size of the tower- influenced footprint at the
time of each overflight. The model uses observations or esti-
mates of conditions in the atmospheric boundary layer and
canopy layer, including standard deviation of vertical veloc-
ity, surface friction velocity, instrument measurement height,
boundary layer height, and roughness length. These were
derived from the meteorological measurements made at the
flux tower or, in the case of boundary layer height, assumed
to be 1,500 m, for each overflight. Overlapping AVIRIS pix-
els were based on the upwind distance from the tower so as
to encompass 90% of the total surface footprint influence.
The footprint crosswind width was calculated as one-half
the total length, so that the footprint was represented as a
rectangle beginning from the base of the tower. The
18 9 18 m AVIRIS pixels from this footprint rectangle were

then extracted for analysis, with the pixels in the footprint
averaged to create a mean reflectance value for each AVIRIS
band. The use of the footprint model allows us to address
possible bias in flux tower measurements owing to different
land cover or photosynthesis rates with direction and dis-
tance (Xu et al. 2017), a concern particularly at some of the
more open and semi-arid sites.

Linking footprint imagery and tower flux data

We adopted two approaches to evaluate the sensitivity of
imaging spectroscopy data to variation in GPP. First, we
analyzed relationships between GPP and vegetation indices,
which are routinely used in remote sensing of vegetation
physiology (Roberts et al. 2011). We also statistically mod-
eled GPP variation using partial least squares regression
(PLSR) modeling approach, a chemometric method (Wold
et al. 2001) that is often used for the analysis of hyperspec-
tral imagery (Townsend et al. 2003, Martin et al. 2008, Wol-
ter et al. 2008, Serbin et al. 2015, Singh et al. 2015) because
it can exploit the full reflectance spectrum rather than select
data subsets (such as vegetation indices) and doesn’t assume
the remote sensing data were measured without error. Fur-
thermore, PLSR avoids collinearity in the predictor vari-
ables (i.e., wavelengths, indices) even when these exceed the
number of observations (Geladi and Kowalski 1986, Wold
et al. 2001, Carrascal et al. 2009). These issues are avoided
by reducing the number of predictor variables down to rela-
tively few, non-correlated, latent components, using a step-
wise selection method with individual bands or indices
(Grossman et al. 1996). These latent components capture
other nuance in the relationship between the spectra and
GPP (e.g., canopy structure, leaf physiology, nutrients;
Asner and Martin 2008, Asner et al. 2011). PLSR is not a
standard linear regression, and instead uses singular value
decomposition (SVD) to reduce the predictor matrix to a
much smaller set of predictor latent components, which are
transformed through scores, weightings, and internal rela-
tionships to build the vector of regression coefficients by
wavelength or index (Geladi and Kowalski 1986, Wold et al.
2001). This is not a limitation of PLSR but instead a feature
of the approach that can allow for the dimensionality reduc-
tion of large problems to a much simpler model.
For the analysis of vegetation indices, we calculated Nor-

malized Difference Spectral Indices (NDSI) for all combina-
tions of the 172 wavebands in our VSWIR imagery, where,
for each pair of bands (e.g., i and j), one band’s reflectance
value (Bandj) is subtracted from the other’s (Bandi), and the
difference is divided by their sum

NDSI½i; j� ¼ ½Bandi � Bandj �=½Bandi þ Bandj �: (1)

Normalized difference spectral indices offers the ability to
examine all narrowband features, in this case 14,792 possi-
bilities, and determine their relationship with ecosystem
function, such as GPP (Inoue et al. 2008, Ryu et al. 2010).
Normalization standardizes NDSI values from �1 to 1 and
reduces atmospheric and BRDF effects not otherwise
addressed in preprocessing. We note that the NDSI
approach includes calculation of several widely used indices,
including Normalized Difference Vegetation Index (NDVI,
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normalized index of 850 and 650 nm; Tucker 1979) and
Photochemical Reflectance Index (PRI, normalized index of
531 and 570 nm; Gamon et al. 1992). NDVI is of interest
because of its wide use as a correlate with variation in above-
ground vegetation structure and greenness, while PRI is
related to stress-induced physiological responses (Penuelas
et al. 1995, Gamon et al. 1997, Garbulsky et al. 2011).
There are a vast number of additional multispectral and
hyperspectral indices that have been correlated with vegeta-
tion function (Ustin et al. 2009), but the NDSI approach,
covering all possible combinations of bands and their linear
combinations, captures the variation expressed in those
indices, so the only additional index we tested was a simple
chlorophyll index (Gittelson and Merzlyak 1996), calculated
as [(1/R700) � (1/R850) � 0.1515]/0.01517.
We first analyzed correlations between GPP and NDSI

using data pooled across all sites, and then performed the
same analysis on data subdivided by the four plant func-
tional types (PFTs). Separating data into PFTs enabled
assessment of the extent to which correlation was simply a
consequence of broad differences in GPP across physiog-
nomic vegetation types that look different in imagery (likely
due to differences in physiognomy and/or soil fraction in the
AVIRIS pixels), and subsequently whether image spec-
troscopy could detect variations within types independent of
the structural differences among them.
PLSR, implemented in Python, was used to examine the

relationship between flux tower and imagery data across the
full reflectance spectrum, i.e., using all 172 wavebands. Typi-
cally, PLSR analyses are applied to reflectance from the 172
bands, enabling the exploitation of all information in the
spectrum and resulting in an equation having a beta coeffi-
cient for reflectance in each waveband (Martin et al. 2008,
Serbin et al. 2015, Singh et al. 2015). Here, we tested a new
approach to PLSR, using the 14,792 NDSI combinations
rather than reflectance bands as inputs. The closest 30-min-
ute average GPP estimate to image acquisition was used to
minimize the effects of diurnal changes in productivity. We
performed 1,000 permutations of the data with a two-
thirds–one-third split for calibration and validation. We
determined the number of components to be used for model
fitting by successively increasing the number of components
from 1 to 15 until model validation statistics indicated over-
fitting. Once the number of components had been fixed, we
extracted two-thirds of the data using a stratified random
sampling strategy based on the land cover, and applied the
model to the one-third of the withheld data for validation.
In addition, to reflect uncertainties in the response variable,
we added noise equivalent to 20% of each observation dur-
ing each iteration by sampling from a normal distribution
with a mean at the observation, and a standard deviation
equal to 20% of the mean. This way, our modeling strategy
accounts for uncertainties in data completeness by randomly
dropping one-third of the tower sites, and in addition,
accounts for uncertainties in the observations themselves. At
each model iteration, we stored the PLSR coefficients, and
present calibration and validation R2, biases, and RMSEs as
a percent of variation as model diagnostics. Table S4
(Appendix S1) shows overall model performance diagnos-
tics, and diagnostics averaged across functional types. A heat
graph of model coefficients by wavelength pairs was used to

illustrate the importance of specific wavelengths and wave-
length combinations as predictors of flux tower GPP from
AVIRIS data. Use of NDSI rather than reflectance enables
us to test whether identification of narrow absorption fea-
tures is more predictive of vegetation function than magni-
tude of reflectance at a particular wavelength.
Last, we compared the predictive capacity of imaging

spectroscopy from high-altitude AVIRIS against standard
methods used to estimate GPP from broadband measure-
ments. For this, we applied the broadband light-use
efficiency method of Sims et al. (2008) to estimate satellite-
derived GPP using Terra MODIS broadband-based
enhanced vegetation index (EVI) and land surface tempera-
ture (LST), which has previously been shown to outperform
the traditional and similar MOD17 GPP product by includ-
ing a scalar to account for a water stress response of GPP
(Sims et al. 2008). For the comparison, we convolved the
AVIRIS wavelengths corresponding with the MODIS bands
used to calculate EVI. We used LST estimates from the
MODIS/ASTER airborne simulator (MASTER; Hook
et al. 2001), which was acquired simultaneously with
AVIRIS imagery (Lee et al. 2015). Sims et al. (2008) param-
eterized the scalar quantity m using three years of flux tower
data. The model developed in Sims et al. (2008) requires
mean annual nighttime LST estimates in the calibration of
parameter m. However, there were not enough MASTER
flights conducted at night to make this approach viable, so
we instead used the mean of annual nighttime temperature
calculated from flux tower data. Finally, we also compared
the MODIS GPP product to tower GPP using the 1-km
MODIS pixel encompassing the tower location (LP DAAC
2015). Tower GPP was then aggregated to 8-d estimates to
match the MODIS product.

RESULTS

The two-year study period occurred during a period of lower
than average precipitation and higher than average tempera-
ture (Table 1; Appendix S1: Fig. S1). Over this time, among
our 19 tower sites, the desert site recorded the lowest daily aver-
age tower-based GPP, 0.5 lmol�m�2�s�1, while the irrigated
Twitchell Alfalfa site (USTW3), which becomes highly produc-
tive between cuttings, set the maximum, 25.6 lmol�m�2�s�1

(Fig. 2). The coefficient of variation for GPP (30-min average)
at the time of AVIRIS overflights was 70% within individual
tower sites, and 109% averaged across sites.
Heat graphs (Figs. 3 and 4) illustrate correlations between

GPP (30-min average) at the time of overflight and NDSI
calculated for each of the 14,792 waveband combinations in
the corresponding footprint hyperspectral imagery. GPP
and NDSI were closely correlated (|r| > 0.6) in broad
regions of the spectrum when data were pooled across all
sites (Fig. 3). In contrast, within vegetation types, strong
correlations were generally restricted to narrower regions of
the spectrum. Particular bands of high correlation include
414–434, 704–714, and 743–792 nm (Appendix S1:
Table S3). In forests (Fig. 4a), high correlation (|r| > 0.7)
occurred only when NDSI was generated from two groups
of narrowband wavelength combinations, one based on 890–
909 with 812 nm and another with 2,278–2,307 nm against
2,138–2,198 nm, reflective of larger differences in near
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infrared albedo across forest types and changes in shortwave
infrared related to canopy structure, water content, and leaf
nitrogen. Among the widely used vegetation indices that we
evaluated, NDVI and the chlorophyll index correlated with

GPP (R2 = 0.70 and 0.44, respectively) across all sites
(Fig. 3), but these relationships were not significant within
the forest type (Fig. 4, P > 0.05). PRI, on the other hand,
did not correlate with GPP across sites (P > 0.05).
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correlations exist in a number of broad spectral regions. Histogram depicts frequency of correlation on legend.
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PLSR results reveal high fidelity in the ability to predict
GPP across all sites and vegetation types (R2 = 0.78,
P < 0.0001, Fig. 5a), with all cover types performing simi-
larly. The only significant difference between slopes of actual
vs. predicted GPP occurred between grasslands and forest
(P = 0.0015). Normalized PLSR coefficients (Fig. 6) indi-
cate that an array of specific features, distributed through-
out the entire spectrum, contribute substantively to the
predictive model. Important narrow spectral regions in the
predictive model included NDSI band combinations using
1,250–1,280 nm (combined in particular with wavelengths
across the NIR), 2,030–2,050 nm, and 2,270–2,300 nm.
Broader SWIR features important to the model incudes
NDSIs in the 1,710–1,780 nm (when combined with 1,250–
1,270 nm) and 1,500–1,680 nm regions (Fig. 6).
In contrast, the Sims broadband approach for remote esti-

mation of GPP from spectra (Fig. 5b) is generally able to
differentiate highest from lowest values of GPP across all
types (R2 = 0.68, P < 0.0001), but not as well as the PLSR
approach, and does not accurately predict spatial and tem-
poral variation in GPP within functional types. Slopes
between actual and predicted GPP (Fig. 5b) vary signifi-
cantly between grassland and forest (P = 0.0044), grasslands
and shrublands (P = 0.041), and grasslands and wetlands
(P = 0.0041). The models also deviate considerably from the
1:1 line compared the PLSR approach. This outcome is also
replicated using other approaches such as the MODIS GPP
product (MOD17A2.005; Appendix S1: Fig. S2).

DISCUSSION

Water stress is likely one of the strongest drivers of large-
scale GPP reductions globally (Ciais et al. 2005). Collec-
tively, the results of this study illustrate the capacity of imag-
ing spectroscopy to more accurately capture spatial and
temporal variation in terrestrial ecosystem GPP over a
water-stressed landscape, though additional years of obser-
vations over the same sites in non-drought conditions would

be required to evaluate the full capability of the approach.
In addition to its improved predictive capability relative to
existing remote sensing approaches, an appealing advantage
of the narrowband PLSR model we derived, relative to con-
ventional broadband approaches, is that it does not require
external inputs of meteorology or parameters related to
plant ecophysiology.
Although the potential of imaging spectroscopy to track

GPP has been shown at individual towers (Gamon 2015,
Matthes et al. 2015) and with individual indices (Alton
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FIG. 5. Predicted 30-min average GPP (lmol�[m�2 ground area]�s�1) derived by (a) partial least squares regression of NDSIs based on
all airborne spectra and (b) airborne spectra simulated as broadband and applied to a widely used GPP model (Sims et al. 2008). While both
models capture variability in flux tower GPP across all vegetation types, only the narrowband PLSR model (left) shows low bias (validation
bias is 0.04 for the PLSR model and �5.71 for the Sims model) and similar performance for all cover types (Appendix S1: Table S4). Bars
represent uncertainty in eddy covariance fluxes (vertical, calculated as 20% of the GPP value; Desai et al. 2008) and PLSR regression (hori-
zontal, calculated as one standard deviation based off the 1,000 iterations of the PLSR model).

FIG. 6. Coefficients from the PLSR predicting EC-based GPP
as a function of NDSIs based on all data pooled across all sites.
Values plotted are mean coefficients, based on 1,000 permutations,
and higher absolute values indicate higher contribution to the pre-
dictive model. Only NDSI combinations that were significantly dif-
ferent from zero across the 1,000 permutations are plotted. Also
shown at bottom (shaded) is histogram of how frequently wave-
lengths appear in the PLSR predicting EC-based GPP as a function
of NDSIs, based on all data pooled across all sites.
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2017), our study is the first to demonstrate the capability
across a diverse array of ecosystems, utilizing the full infor-
mation content of narrowband spectra. Our results provide
a robust initial assessment of the reliability of spatial extrap-
olation from hyperspectral imagery to justify the benefits of
proposed future missions to GPP mapping (Schimel et al.
2015).
It is likely that a significant improvement in the fit over

broadband occurs primarily from directly capturing the
effects of physiology on GPP, which are highly variable over
space and time. This improvement may be most noticeable in
evergreen species, whose leaf phenology and density may be
relatively constant, limiting broadband sensitivity to GPP
variation. While a direct PLSR approach was not applied to
the MODIS bands separately, the Sims model tested here rep-
resents the best-in-class for currently published MODIS
based GPP algorithms. There are limitations in the compar-
ison with the Sims model, as we were required to use air tem-
perature rather than LST for the nighttime temperature
measurements. However, modest adjustments in nighttime
temperature parameters are unlikely to change the conclusion
PLSR model outperformed the broadband-based model.
High correlations occurring with NDSIs at using wave-

lengths close to each other in the spectra indicate the impor-
tance of narrow features in the spectrum to vegetation
properties that influence tower GPP. The heat graph of
NDSI contributions to the PLSR model of GPP (Fig. 6)
indicates several key narrowband combinations that are
important to predicting tower GPP, especially in wavelength
regions that have been shown to be important to vegetation
physiology. Our findings mirror those of previous studies
(Zarco-Tejada et al. 2001, Ryu et al. 2010, Matthes et al.
2015, Singh et al. 2015), which show a number of consistent
regions of high correlation between GPP and narrowband
NDSI. Ryu et al. (2010) used NDSI to compare spectra in
the range of 400 and 900 nm with assimilation calculated
using a similar flux partitioning method at the Vaira Ranch
site between 2006 and 2009. The wavelength combinations
associated with high and low correlation in the NDSI figure
from the Ryu et al. (2010) study match the NDSI figure
from this study for the grassland-savanna group of sites,
which includes the Vaira Ranch site. The broad areas of high
correlation for the given spectral range are present in both
figures, as are the narrow features of low correlation associ-
ated with indices involving 700 nm and the range 400–
700 nm, and 750 nm and the range 750–900 nm. Unlike
Ryu et al. (2010), we were also able to demonstrate consis-
tently important wavelengths in the shortwave infrared
(SWIR, >1,100 nm).
Our findings confirm that specific features are associated

with leaf/canopy spectral traits that reflect variation in leaf
structure and function. The wavelengths significant to our
PLSR model coincide with important physiological features,
which is consistent with previous analyses showing AVIRIS
wavelengths can be used to predict photosynthetic capacity
via known features as opposed to simply measuring canopy
structure (Serbin et al. 2015). Narrow NDSI combinations of
wavelengths in the SWIR (2,050 nm) and near infrared
(760 nm) appear especially influential, as do some broader
features around 1,200, 1,600 and 2,200 nm. For the shortwave
infrared regions, RuBisCo has known spectral absorption

features around wavelengths 1,500, 1,680, 1,740, 2,050, and
2,290 (also: 1,940, 2,170 and 2,470 nm; Elvidge 1990), while
significant wavelengths in the leaf-level Vcmax model presented
in Serbin et al. (2012) occur at 1,510, 1,680 and 1,760, nm
(also 1,940, 2,210, and 2,490 nm). Using AVIRIS imagery,
Serbin et al. (2015) identified key features at 1,158–1,168,
1,722–1,732 and 2,300–2,400 nm.
In contrast, across all sites, the visible and near infrared

regions (VNIR, 400–1,100 nm) did not exhibit as many key
features for predicting GPP as did the SWIR. However, key
narrow features do appear in the chlorophyll a absorption
wavelengths at 414–434 nm, the red-edge (704–714 nm),
and in the NIR (743–792 nm, including 763 nm, near a
well-documented chlorophyll fluorescence feature). Spectral
features such as the broader red edge (690–750 nm) are
unsurprising as they are known to shift under water stress
conditions (Vogelmann et al. 1993), one of the major con-
tributors to variations in GPP in the ecosystems of Califor-
nia that were strongly affected by drought during our study
period (Asner et al. 2016). These findings demonstrate that
the improved predictive performance of a model based on
imaging spectroscopy likely results from exploiting multiple
mechanistic links among observed plant pigments, traits,
and functional response.
Using the NDSIs (rather than raw reflectance wave-

lengths) allows the identification of combinations of narrow
features (one or two wavebands wide) that appear repeatedly
as important in our model. The heat graph for the PLSR
coefficients using NDSI show a range of narrow features
with high contribution to the PLSR (e.g., 2,288 nm) and
wider features indicating broader correlations, likely related
to vegetation water content (e.g., 1,503–1,682 nm). In par-
ticular, combinations of narrow wavebands centered on 414,
1,762, 2,048 and 2,298 appeared repeatedly in the PLSR
model (indicated by streaks in the heat graph in Fig. 6). The
value to PLSR used in the way presented here is that we
were able to exploit both the full spectrum in the PLSR, but
also narrow features at specific wavebands that emerged in
the important NDSIs in the model.
The differences between the correlation heat maps (Figs. 3

and 4) and PLSR heatmap (Fig. 6) demonstrate the value of
the imaging spectroscopy and PLSR approaches in estimat-
ing GPP across broadly varying ecosystems. Simple correla-
tions with NDSI in which all cover types are pooled (Fig. 3)
indicate that broad areas of the spectrum characterized by
widely used indices such as NDVI, rather than narrow fea-
tures that require imaging spectroscopy, are sufficient to
capture major variation in GPP that is largely attributable
to differences in physiognomic cover type (e.g., forest vs.
grassland–savanna). This suggests decent discrimination of
differences between types but poor predictability within
types (Fig. 5b).
In contrast, the correlation heat graph broken out by cover

type (Fig. 4) shows widely differing correlations between
GPP and hyperspectral NDSIs by type, and indicates that
both narrow and broad regions within different cover types
are important correlates with GPP. Moving to a predictive
framework, the PLSR of all data using NDSIs (Figs. 5a and
6) demonstrates that the imaging spectroscopy data, using
NDSIs, can effectively discriminate variations in GPP
encompassing differences between and within cover types.
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When contrasted with broadband approaches (Fig. 5a vs.
5b), both imaging spectroscopy and broadband analyses ade-
quately capture variations associated with type differences,
although the imaging spectroscopy model exhibits less bias
(Fig. 5a) than the broadband model (Fig. 5b), with the
imaging spectroscopy PLSR approach standing out in that
the different cover types more closely align along the same
1:1 line than the broadband approach. The limited data set
does not allow in depth analysis of model performance for
each vegetation type, but the model generated more accurate
predicted GPP for grassland–savanna, shrubland, and wet-
land sites, while the forest type exhibited the lowest correla-
tion (Appendix S1: Table S4). The NDSI values associated
with the forest set of sites also exhibited the lowest overall
average correlation (Fig. 4). The lower relative performance
of both the model and average NDSI correlation for forest
sites compared to the other types is expected, as the LAI for
these sites is relatively constant throughout the growing sea-
son, as compared to other sites with a less dense canopy.
Broad spectral areas of correlation (Fig. 4) are prevalent in
sites where LAI is highly correlated with ecosystem produc-
tivity. For this reason, broadband-based productivity models
can generally perform well across vegetative types, while the
relationship breaks down within a classification (Fig. 5b).
Furthermore, variation within a single site has been difficult
to detect with all existing models examined, but the narrow-
band-based model presented in this study is able to maintain
low error and bias within vegetation types, including forest
sites, which produced the lowest adjusted R2 value (0.32).
The result of this ability to capture variability within PFTs is
a more robust model when compared to broadband based
predictive models including the Sims model (Fig. 5). We pro-
vide the first evidence that a complex range of sites can be
well simulated with no additional information beyond the
spectral content and the PLSR model. Additional research
and sampling is required to examine potential methods to
improve predictability within forest sites.
Collectively, these analyses enable us to determine the

capacity to extrapolate ecosystem function derived from flux
tower data using hyperspectral imagery, and then infer
ecosystem responses to climate anomalies such as the
unprecedented drought that occurred in California during
our study period (Asner et al. 2016). Challenges remain in
handling diverse canopy architecture, especially open cano-
pies with large soil exposed gaps, and integrating across
complex terrain, land management, and seasonally stressed
ecosystems (Kobayashi et al. 2012). Additional measure-
ments across a wider range of climatic and ecological condi-
tions will be required to develop a useful model at broader
scales. Nonetheless, our findings have an important bearing
on proposed future satellite-borne imaging spectroscopy
missions that could fill the gaps in the globally sparse net-
work of EC flux towers (Schimel et al. 2015).

CONCLUSION

Flux tower estimates of GPP across multiple ecosystems
in a water-stressed region offer important observations that
can inform remote sensing algorithm development for
improved detection of drought impacts on carbon cycling
and plant productivity. PLSR models based on imaging

spectroscopy with high spectral resolution are capable of
accurately predicting GPP independent of vegetation type
and season, with significant improvement over traditional
broadband approaches. Use of NDSIs in our PLSR models
enabled us to leverage not only the full spectrum, as is com-
mon with hyperspectral imagery, but also narrow features
identifiable in combinations of narrow bands, which has not
typically been done in hyperspectral analyses, as usually just
reflectance by wavelength is used.
Our findings provide the opportunity to accurately map

ecosystem properties where broadband sensor capabilities
are limited and suggest that spectral resolution is as or even
more important than spatial resolution in consideration of
future sensor design for satellite remote sensing. Further,
there is strong evidence for mechanistic links among wave-
lengths and response associated with specific elements in leaf
structure that influence plant productivity, and therefore
GPP, on a canopy scale. We conclude that the sensitivity of
ecosystem metabolism to ongoing and future climatic
changes can be monitored continuously at high spatial reso-
lution using satellites equipped with sensors similar to the
proposed HyspIRI imaging spectrometer.
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DATA AVAILABILITY

Data available from the following. PLSR model code and results: https://doi.org/10.6084/m9.figshare.6020153.
Spectroscopy data: https://ecosis.org/#result/fac4e3cb-7ebb-42d9-a7e3-1273114d4efa.
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Ortho_Reflectance/ and ftp://popo.jpl.nasa.gov/2014_HyspIRI_Prep_Data/L2-Ortho_Reflectance/.
Ameriflux tower data sites are listed in Appendix S1: Table S1.
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