Uncertainty of Regional Carbon Fluxes and Boundary Layer Heights in Complex Terrain: The Airborne Carbon in the Mountains Experiment 2007

William Ahue, University of Wisconsin – Madison and other AMCE 2007 Co-Authors

2009 Fall AGU Meeting B53F-08, 18 December 2009

Acknowledgements

- ACME 2007 Co-Authors
 - Ankur Desai, University of Wisconsin Madison
 - Stephan DeWekker, University of Virginia
 - David Moore, King's College London
 - Teresa Campos, NCAR
 - Britton Stephens, NCAR
 - Russell Monson, University of Colorado at Boulder
 - David Schimel, NEON, Inc.
 - Bjorn Brooks, University of Wisconsin Madison
- Funding Sources
 - DoD SMART Scholarship
 - National Science Foundation
 - University of Wisconsin Graduate School

Motivation

- Abundant ecosystem in the Central Rocky Mountains is likely an important carbon sink
- Ongoing stresses have added to the uncertainty about future carbon uptake
- CO₂ land-atmosphere exchange is poorly constrained in global models

Stressors

Niwot Ridge AmeriFlux Tower vs. CarbonTracker

What is ACME?

- Field experiment that flew paired morning upwind and afternoon downwind profiles to measure carbon in the Central Rocky Mountains
- Collected airborne measurements of CO, CO₂, O₂ and H₂O as well as other atmospheric variables
- Over 60 hours of flight time from May to August
 - University of Wyoming's King Air Aircraft
- First conducted in 2004, then methods were improved for 2007

Particle Dispersion and Flight Profile

How is ACME Different from other Regional Carbon Studies?

- Experiments was conducted in the Central Rocky Mountains
 - Complex terrain with various mesoscale flows
- Used multiple parallel profiles

Lessons Learned from ACME04

- Complex terrain imparted flux variations
 - Multiple parallel profile approach needed
- Vertical sheer was large
- Valley cold pools vented later than expected
 - Shifted times of flights

Research Questions

- What is the magnitude of carbon uptake in the Central Rocky Mountains?
- How do flux estimates from the boundary layer budget (BLB) method compare with CarbonTracker and Niwot Ridge and what is the uncertainty?
- What is the uncertainty of boundary layer heights in the region?

Issues with Inverse Modeling

- Why not use an inverse model??
 - It is HARD!!!
- Global inverse models provide too coarse a resolution
- Regional inverse models require good inflow fluxes and accurate assimilation methods
- Also have to account for spatial heterogeneity and local processes

Boundary Layer Budget Method

(Raupach et al., 1992)

$$F_c = PBL_{\text{max}} \frac{dC_{avg}}{dt}$$

- Column averaged variations are not affected by variations in boundary layer height
- Issues with Method
 - Ability to track air masses from one region to another
 - Requires accurate estimates of boundary layer height

Why use PBL_{max}?

- The convective boundary layer is a vertically confined column of air (Stull, 1988; Garrat, 1990)
 - It incorporates overlaying air into it as it grows
 - Resolves issues with vertical entrainment
- Bulk properties of the column are independent of small scale heterogeneities (Stull, 1988; Garrat, 1990)
 - Natural integrator of surface fluxes over complex terrain
- Simulations with idealized initial conditions using RAMS show PBL_{max} to be a good proxy when compared with observations (DeWekker, in prep)

Data

- NEE from Niwot Ridge AmeriFlux Tower
- NEE from 2008 release of CarbonTracker (NOAA ESRL)
- Airborne Observations from seven flight days

 North American Regional Reanalysis Boundary Layer Heights (NOAA NCEP)

NEE using PBL from NARR

Niwot Ridge AmeriFlux Tower vs. CarbonTracker with BLB

BLB

Bulk Gradient Richardson Number

$$Ri_{B} = \frac{gz\Delta\Theta_{v}}{\overline{\Theta_{v}}[u(z)^{2} + v(z)^{2}]}$$

- Altitude at which Ri_B
 became greater than Ri_c
 was selected as the
 boundary layer height
- $Ri_c = 0.25$ (Pleim and Xiu, 1995)

NEE using PBL from Ri_B

Comparison of NEE from different estimates of PBL

Niwot Ridge AmeriFlux Tower vs. CarbonTracker with Best Estimate from BLB

BLB

BLB Flux vs. CarbonTracker

Summary

- Broad agreement among the three methods for mean daytime flux
- CarbonTracker shows less uptake in mid-summer when compared to Niwot Ridge and airborne observations
- Spatial and temporal averages of CarbonTracker fluxes over the domain show an inverse relationship when compared with airborne observations
- Accurate estimates of boundary layer growth required to further narrow the uncertainty of carbon fluxes in complex terrain

Questions?

Contact Information

Address: University of Wisconsin - Madison

Department of Atmospheric and Oceanic Science

1225 W. Dayton St., Rm. 839

Madison, WI 53706

Email: ahue@wisc.edu

Website: http://flux.aos.wisc.edu