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A B S T R A C T

Systematic bias in eddy-covariance flux measurements are pervasive. These arise both from unmeasured terms
such as advection, and sampling bias in representativeness of the footprint for both turbulent and storage fluxes.
As a result, the majority of eddy-covariance towers suffer from unaccounted bias when comparing to gridded
earth system models and fail to close the surface energy balance. We hypothesize that one cause for these two
problems is a mismatch between mass and energy fluxes measured within a time-varying source area and the
actual storage and net vertical flux over a presumed “control volume”, a novel concept derived theoretically in
Metzger (2017). Here, we practically implement this theory to estimate the true net surface-atmosphere ex-
change (NSAE) over such control volume, thus resolving “storage flux” and “vertical advection” issues by ap-
plying the environmental response function (ERF) technique to a virtual control volume (VCV). In this method,
flux observations are related at high spatio-temporal resolution to meteorological forcings and surface properties
within the estimated flux footprint, and these relationships are utilized to map the control volume explicitly in 3-
D over space and time. Volume integration then allows, for the first time, retrieval of the NSAE. When ERF was
applied to eddy covariance and profile observations in July and August 2014 from the AmeriFlux Park Falls
WLEF tower in Wisconsin, USA, heat emission integrated over the target domain increased substantially over the
tower observations by +18.2 Wm−2 (+20.6%). Storage flux contributes up to 30% of NSAE at hourly timescale.
The systematic uncertainty of ERF-VCV method applied for vertical flux and storage flux is within 15% and 20%,
respectively. This systematic uncertainty is effectively corrected in projections. Volume-controlled NSAE pro-
vides improvements for mapping unbiased surface-atmosphere exchange for model-data comparison, assimila-
tion and model building at model grid scale. These advances also present a promising direction for reconciling
energy balance non-closure.

1. Introduction

The eddy-covariance technique has been used worldwide to monitor
the surface atmosphere exchange for decades (Baldocchi et al., 2001;
Bonan et al., 2011). Theoretically, it provides reliable observations for
comparison with remote sensing data and earth system models (ESMs)
to constrain model performance and to improve our understanding of
the impact of global climate change (Dietze et al., 2014; Richardson
et al., 2012; Schaefer et al., 2012). However, despite its widespread use,
the eddy covariance technique faces a number of challenges especially
when attempting to monitor surface-atmosphere exchanges in condi-
tions that deviate from assumptions used to derive the method.

Among those challenges, location bias (Desai et al., 2008; Chen
et al., 2011; Schmid, 1997; Stoy et al., 2013) and energy imbalance
(Leuning et al., 2012; Foken et al., 2011; Foken, 2008) are two major

ones. Location bias refers to the surface influencing the eddy covariance
flux varying temporally and usually within the areas of 10−1–101 km2.
This area is far smaller than typical ecosystem scales and the resolution
of most earth system models (102–104 km2), leading to a mismatch of
scale and potentially representativeness in model-data comparison.
Furthermore, almost all flux towers suffer from an imbalanced energy
budget: the sum of measured sensible and latent heat flux is consistently
less than available net radiation minus ground heat flux, which may
also indicate bias in other trace gas fluxes such as CO2 (Foken, 2008).

Here, we argue that one root cause for these challenges are the in-
herent assumptions of the eddy covariance technique allowing the
measured vertical turbulent flux (Fig. 1b) to represent the net surface-
atmosphere exchange (NSAE) across a volume (Fig. 1a). This volume is
confined vertically from the surface to the measurement height, across
a horizontal target domain that is large in comparison to the flux
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footprint. The vertical turbulent flux measured at the top of the tower is
assumed to be spatially representative across the entire target domain.
However, in reality, the corresponding flux measurement footprint ty-
pically represents a small fraction (order 1%) of the target ecosystem or
ESM grid cell.

Further, the location of this fraction changes with time. Many sites
have differing frequency of wind directions and magnitudes at daytime
versus nighttime (Xu et al., 2017). This results in vertical turbulent flux
observations at daily scales being a convolution of the diurnal cycle
with a related systematic change in flux footprint. In non-homogenous
conditions, which are common, this temporally varying and small flux
footprints directly leads to location bias in eddy covariance measure-
ments (Xiao et al., 2014; Desai et al., 2015).

Second, long-term storage flux is often assumed to be either zero,
filtered out using steady state criteria, or vertical profile measurements
are assumed to be horizontally representative of the storage flux across
the virtual box as a whole. However, in reality, the storage flux is not
necessarily negligible for typical eddy flux averaging intervals, in par-
ticular for tall towers over complex surfaces. Lack of consideration of
this term has been shown to contribute to the observed energy im-
balance (Leuning et al., 2012). Moreover, each vertical profile ob-
servation used to calculate storage flux has its own footprint, resulting
in an influence area that increases with measurement height. This can
be another source of location bias in flux tower observations (Schmid
1997; Raupach et al., 1988).

Third, advection terms are typically assumed to cancel each other or
to be smaller than the turbulent flux. However, local advection can
contain spurious low-frequency mesoscale contributions to the NSAE,
which has been argued as another source for energy imbalance
(Finnigan, 2008; Finnigan et al., 2003; Kanda et al., 2004; Foken 2008;
Eder et al., 2015; Sakai et al., 2001). Low-frequency flux contributions
can be caused by turbulent organized structures (TOS; Kanda et al.,
2004; Finnigan et al., 2003) and/or secondary circulations associated
with surface heterogeneity (Schlegel et al., 2014; Eder et al., 2015). In
the presence of these structures, strong convection of warmer/wetter
air occurs in spatially confined updraft zones, countered by a slight
subsidence of cooler/dryer air across the majority of the target area.
The corresponding timescales exceed typical eddy covariance averaging
periods, thus these structures manifest themselves as advection rather
than as turbulent contribution to the net surface-atmosphere exchange.
In addition, this flux contribution can appear as a component of hor-
izontal advection, vertical advection and storage, or combinations
thereof, depending on the location of updraft and downdraft zones with
respect to the measurement location. Due to the skewed distribution of
updraft and downdraft zones, heat fluxes will thus tend to be under-
estimated when only considering the turbulent vertical flux in the
standard eddy covariance approach (Mauder et al., 2008).

To mitigate the first assumption (representativeness) on vertical
turbulent flux, two main upscaling approaches, process-based and data-
driven approaches, have been utilized. However, each is subject to

specific limitations. Purely process-based scaling (Wang et al., 2006;
Desai et al., 2008; Xiao et al., 2011) relies on prescribed mechanistic
relationships, oftentimes based on laboratory calibrations and far-
reaching assumptions. Purely data-driven scaling (Xiao et al., 2014,
2008; Hutjes et al., 2010) minimizes the number of assumptions em-
ployed by inferring relationships among observations directly from the
available data, but are limited in model robustness and predictive
performance. More recently, Metzger et al. (2013) and Xu et al. (2017)
developed the environmental response function (ERF) approach that
combines the process-based and data-driven approaches. The under-
lying principle of ERF is to relate high-frequency (minute-to-minute)
fluxes over fast-varying footprints with appropriate spatial or temporal
drivers, e.g. meteorological and surface ecological forcings. The ex-
tracted relationships are then used for spatio-temporal mapping over a
large domain.

To address the second and third assumption, Metzger (2017) de-
veloped ERF further, and derived the ERF virtual control volume (ERF-
VCV) framework. In essence, ERF-VCV attempts to apply the ERF
technique to all terms in the continuity equation, including storage flux,
advection and turbulent flux, to estimate the control volume net surface
atmosphere exchange (NSAE). The two main assumptions of ERF-VCV
theory are: i) the eddy covariance observations are dominated by sur-
face flux, not entrainment, and ii) all relevant atmospheric and surface
dynamics/state-space combinations are sampled by the eddy covar-
iance platform.

Here we ask, based on an example case using one single tower
during July and August 2014 over a heterogeneous environment of
AmeriFlux Park Falls WLEF very tall tower in North Wisconsin, USA:

1. Can assumptions made in ERF-VCV theory be fulfilled in a real-
world setting and enable the method to retrieve VCV-estimated
storage and vertical heat fluxes?

2. How do ERF-VCV produced heat fluxes compare in magnitude and
pattern to the tower-measured turbulent heat fluxes and what does
it imply for location bias?

3. How does ERF-VCV enable addressing advective heat fluxes?
4. Do the virtual control volume integrated heat fluxes provide insight

into how energy balance closure can be further addressed?

To answer these questions, we first introduce the climate, biophy-
sical properties in the study area and footprint composition of the WLEF
tower data (Sect. 2). The methodology of ERF-VCV and associated un-
certainty algorithms are described in Sect. 2.2. We present the extracted
relationships, scaled storage and vertical flux grids and the associated
uncertainty budget in Sect. 3. The previous four key questions are
discussed in Sect. 4, and conclusions are provided in Sect. 5.

Fig. 1. Conceptual plot of eddy covariance measurements in ideal condition (a) after Finnigan (2004) and in reality (b). Ideally, tower measurements can represent the net surface
atmosphere exchange across the virtual control volume around it (a). However, in reality tower measurements can only represent a cone-shape that is confined by the footprint area over a
heterogeneous surface.
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2. Materials and methods

2.1. Study area and data acquisition

The 447-m tall WLEF television tower (45.9°N, 90.3°W) is located in
the Mississippi River Basin, within the Park Falls Ranger District of the
Chequamegon-Nicolet National Forest, Wisconsin, USA (Xu et al.,
2017). The surrounding landscape is a mix of wetlands and upland
forests. The tower footprint climatology samples a landscape that is
representative of much of the Upper Midwest U.S. forested region
(Desai et al., 2008, 2015). The surrounding forest canopy has ap-
proximately 70% deciduous and 30% coniferous trees, and a mean
canopy height of 20 m. The whole region was heavily logged around the
beginning of the 20th century. Soils are sandy loam and are mostly
glacial outwash deposits. The site has an interior continental climate
with cold winters and warm summers.

Observations used in this study include tower-measured meteor-
ological variables, storage, turbulent, and vertical advection fluxes, as
well as remote sensing products. Tower-based 10 Hz observations were
chosen from 6th July to 31st August 2014 for WLEF at both 30 m and
122 m levels. The flux footprint along-wind distance was 0.1–0.8 km
and 2–5 km for 30 and 122 m height measurement at 90% cumulative
level (Fig. 2), respectively. For 30 m and 122 m levels, fast response
wind speed and air temperature were derived from a sonic anemometer
(Applied Technogies., Inc. Seattle, USA, ATI Type K). Dry mole fraction
of water vapor were measured by a closed-path infrared gas analyzer
(LI-COR, Inc. Lincoln, USA, LI-6262) at both levels. Reference air
temperature and relative humidity were also measured (Vaisala, Inc.
Louisville, USA, HMP45C). Additional measurements at the surface
included the barometric air pressure (Vaisala, Inc. Louisville, USA,
PT101B).

Land surface temperature (LST) and enhanced vegetation index
(EVI) were chosen as biophysical surface drivers. These two drivers
were acquired from Moderate Resolution Imaging Spectroradiometer
(MODIS) data products. 250 m 16-day interval MOD13Q1 (V005) EVI
and 1000 m 8-day daytime MYD11A2 (V005) LST. Atmospheric
boundary layer (ABL) height, zi, was obtained by linear interpolation
into one-minute interval from the North American Regional Reanalysis
(NARR) 3-hourly data produced by National Oceanic and Atmospheric
Administration (NOAA).

2.2. Environmental response function − virtual control volume (ERF-VCV)
approach

The ERF flux scaling procedure for tower eddy covariance mea-
surements is based on Metzger et al. (2013) and Xu et al. (2017). The
underlying principle of ERF is to relate high-frequency (minute-to-

minute) fluxes via fast-varying footprint estimates with appropriate
spatial or temporal drivers, e.g. biophysical surface and meteorological
forcings. The extracted relationships are then utilized for spatio-tem-
poral mapping over a domain that exceeds the typical footprint extent.
The ERF method uses the footprint variation to re-assemble the NSAE.
In order to project flux into one area, the exact same area doesn’t ne-
cessarily have to be measured as long as its properties are within the
state space of the training dataset used by the machine learning.

Unlike the work of Xu et al. (2017), where ERF was applied solely to
vertical turbulent flux for a single month, here ERF flux scaling is
realized not only for vertical turbulent flux ′ ′w c( ), but also for low-
frequency turbulent contributions to the vertical advection term wc( )
and storage flux ∂

∂
( )c

t observations over a longer-time period (2 months)
to retrieve flux across the whole virtual control volume (VCV, Metzger,
2017). This procedure for the first-time permits addressing these terms
in the mass continuity equation that are neglected by the standard eddy
covariance methodology.

We first determined appropriate temporal scales for vertical trans-
port, and calculated high-rate (one-minute) flux responses using wa-
velet discretization for tower-based vertical transport permitting in-
clusion of transporting scale up to three hours (Sect. 2.2.1). Next, the
storage flux was determined using measurements at multiple vertical
levels (Sect. 2.2.2). Lastly, ERFs were extracted using machine learning
(Fig. 4) and used for projection for both vertical and storage flux (Fig. 5,
Fig. 6) in Sect. 2.2.3. Our routines were developed in GNU R version 3.1
(R Development Core Team, 2014), and code and examples are being
developed for a public repository (Metzger et al., 2017).

2.2.1. Wavelet discretized vertical exchange
Building on Metzger et al. (2013) and Xu et al. (2017), several

preprocessing steps were performed: de-spiking after Brock (1986)
(Table 1, Row 1) and Starkenburg et al. (2015), planar fit rotation
(Wilczak et al., 2001), fixed lag correction using maximum correlation,
and point-by-point conversion of sonic temperature to air temperature
based on Schotanus et al. (1983). Only hours with more than 80%
available raw data were used for further analysis (Table 1, Row 2).

Since flux footprint varies rapidly even within one hour (Xu et al.,
2017), we use high-frequency (sub-hourly) flux responses to avoid
footprint blending. At the same time, the spectral range of aggregated
transporting scale from 10 Hz up to three hours permits combining
high-frequency vertical turbulent flux and vertical advection (up to
three hours) together into a single “vertical flux” term (Finnigan et al.,
2003; Steinfeld et al., 2007; Mauder et al., 2008; Mahrt 1998). Wavelet
decomposition (Torrence and Compo, 1998) can satisfy these two re-
quirements to achieve high temporal resolution while including trans-
porting scales up to several hours (Charuchittipan et al., 2014). How-
ever, wavelet decomposition assumes data are circulate, this

Fig. 2. Footprint climatology (30%, 60% and 90%, white contour lines) for 122 m level measurements superimposed over average MODIS land surface temperature (LST) within 20 × 20
km2 target domain surrounding the tower, which is indicated with the central crosshairs. (a) entire study time period; (b) daytime (9:00–17:00 CST), and (c) nighttime (17:00–9:00 CST).
In this study, the footprint had a diurnal cycle and LST over the footprint area was lower than over the whole domain.
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Fig. 3. Conceptual figure of a tower measuring (a) no mesoscale circulation, (b) the updraft branch and (c) the downdraft branch of mesoscale circulation. Red arrows are updrafts and
blue arrows are downdrafts. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Equidistant response plots of temperature (T) time-rate of change, from which heat storage is derived. In decreasing order of explained variation in the flux signal (partial R2 in
braces), the drivers are cosine of the azimuth angle (cos(azi)), sine of the azimuth angle (sin(azi)), water vapor mixing ratio (q), relative height within boundary layer (zm/zi), land surface
temperature (LST), enhanced vegetation indix (EVI), and potential temperature (θ). The black lines are the fitted integrated response over the range of one individual driver. Smoothed
representations of the fitted function (locally weighted polynomial regression) are in red bold lines. The equidistant response plots use uniformly distributed percentiles within the range
of training data (inward tickmarks on the lower x-axis). Inward tickmarks on the upper abscissa represent training data percentiles. (W), (E) under sin(azi) subplot and (N), (S) under cos
(azi) subplot indicate western, eastern, northern and southern direction of the solar azimuth, respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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assumption leads to larger uncertainty at the begin and end times of the
dataset compared to its center (Torrence and Compo, 1998; Metzger
et al., 2013). Therefore, the vertical flux over transporting scale of up to
three hours were calculated using 15 h of raw data in order to avoid this
edge effect. Here, we integrated over wavelet transport scales of up to
three hours, with flux results discretized over a five-minute window
that for each observation moves one-minute forward in time. Within the
entire observation period, 55,160 one-minute vertical flux observations
were obtained and qualified for machine learning.

2.2.2. Storage flux
We also determined the averaging time for storage flux. Following

Finnigan (2006), we should avoid storage flux estimates influenced by
single or a small number of eddies influencing the observations.
Instead, we should use a period long enough to capture an adequate
ensemble of these eddies. Here we consider the integral time scale of
the turbulent time series between these eddies, and multiply it by one
order of magnitude as the basis of storage flux computation.
Considering the maximum integral space scale (98.4 m) and the
average mean wind speeds of 2.2 m s−1 and 0.5 m s−1 at 122 m and
30 m, respectively, we determine 15 min as storage flux averaging time.
For example, the storage flux estimates for timestamp 08:00:00 is cal-
culated as the time average of measurements from 8:00:00 to 8:14:59

minus the average from 7:45:00 to 7:59:59. Within the entire ob-
servation period, 3304 storage flux observations are obtained and
qualified for machine learning.

2.2.3. Environmental response function extraction and projection
The operator underlying the extraction of environmental relation-

ships is the flux footprint model which links the flux responses to sur-
face biophysical drivers. ERF builds the relationships among the ob-
served fluxes, meteorology and footprint weighted surface properties to
unveil the whole, time-varying flux field. In addition, by including
transporting scales of three hours, one tower may sample updraft
branch and downdraft branch in a mesoscale circulation, which prin-
cipally enables ERF to reproduce large eddy circulations over the vir-
tual box (Fig. 3).

Storage flux is the time-rate-of-change of a state variable such as
temperature or mixing ratio of water vapor, as opposed to the state
variable itself. Thus, we need to also consult a flux footprint model
instead of concentration footprint model. Therefore, storage flux en-
vironmental relationships were also generated with observed storage
exchange (response) and flux footprint-weighted biophysical surface
properties and meteorological forcings (drivers). Flux footprint ma-
trixes were calculated (Metzger et al., 2012; Kljun et al., 2004). The
footprint model is valid for certain ranges of input parameters. Instead

Fig. 5. Volume projection of heat storage flux from the displacement height to the 122 m measurement height, across the tower-centered 20 × 20 km2 target region. The color is the
temperature time-rate-of-change in Wm−3. The volume projections show a developing convective boundary layer from 2014 Aug 17 7:00 a.m.–10:00 p.m. CST. White spaces are time-
space locations that cannot be projected as they exceed the range of the training data.

Fig. 6. Projected vertical flux grids of sensible heat for August 19th, 2014, 12:00-13:00 CST for the tower-centered 20 × 20 km2 target region at (a) 76 m and (b) 122 m level. Subplot (a)
may indicate suitable conditions for surface heterogeneity-induced mesoscale circulations. Subplot (b) shows the flux grids at a higher elevation with less spatially distinct features due to
blending.
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of discarding footprints when the input parameters that exceed the al-
lowable range, we instead set parameters that exceeds the input range
to be minimum or maximum, i.e. roughness length less than 1e−5 is set
to be 1e−5, and larger than 1 is set to be 1, vertical wind speed variation
0.23–1.23, and u* less than 0.2 is set to be 0.2, only for the purpose of
footprint matrix calculation. Only for the purpose of footprint mod-
eling, 11.7% of the data were constrained to match the valid range of
footprint model inputs. Both storage and vertical fluxes are filtered for
(i) unreliable nighttime data; (ii) spikes; and (iii) connectivity with the
surface using (Table 1) the integral turbulence characteristic (ITC) test
after Foken and Nappo (2008), as shown in Table 1, Row 3–5, sepa-
rately. It should be mentioned that nighttime data considered as un-
reliable for the purpose of this study may still contain valid information
for dealing with different phenomena.

In terms of driver selection, solar azimuth angle azi, relative mea-
surement height within boundary layer, temperature and water vapor
gradients between surface and atmosphere were selected according to
Xu et al., 2017. To explain the diurnal cycle and solar radiation, we
derived and included cos(azi) and sin(azi). Considering the relative
measurement height in the ABL, zm/zi, not only permits combining
eddy covariance measurements from multiple heights zm, but also to
explicitly account for vertical flux divergence during ERF projection.
This property allows us to project to all vertical levels above displace-
ment height. Lastly, the vertical gradients of temperature and water
vapor were explained using air potential temperature (θ in K) and mole
fraction of water vapor in dry air (q in mmolmol−1), as well as LST and
EVI as corresponding land surface drivers. LST and EVI matrixes were
downscaled from MODIS data products, bi-linearly to 100 m in space,
and linearly to one-hour in time. Surface properties are more re-
sponsible for spatial variability of the response in machine learning,
while meteorological drivers, e.g. air temperature, are more responsible
for the diurnal cycle and temporal variability. Considering the coarse
temporal resolution (8/16 day) of surface properties, we chose to use
simple linear interpolation in time for LST and EVI matrixes.

Building on Metzger et al. (2013) and Xu et al. (2017), we used
boosted regression trees (BRT) as machine learning technique, which is
based on categorization and regression. 55,160 vertical fluxes and 3304
storage fluxes served as the training dataset in machine learning to
produce fluxes over grids and volumes, respectively. Ten cross-valida-
tions were operated at 10 nodes before the model with the best
agreement between the fitted fluxes and the training dataset was se-
lected. In the end, 70,000 split points were used for vertical flux re-
gression and 3040 split points for storage flux regression.

The extracted ERFs were summarized in equidistant response-sen-
sitivity plots (Cacuci, 2003), which show the driver-response relation-
ships stored in the ERF (Fig. 4). In each plot, the ERF was evaluated
with random combinations of drivers drawn from uniform distribu-
tions, and the response was aggregated for each driver individually. The
contribution of each driver to the explained variance was determined
from the reduction of R2 when removing one driver at a time. The re-
sulting ERF acted as a transfer function and was applied to project
vertical flux to each 100 m grid cell across the 20×20 km2 target do-
main at 122 m, and to project storage flux to the whole virtual box at
five levels, 30 m, 53 m, 76 m, 99 m and 122 m, at hourly interval.
During projection, for the meteorological drivers we used the median

value during the time interval, assuming that the atmospheric state
above the target area was spatially homogeneous. In particular, above
the blending height, this assumption is weak compared to invoking a
homogeneous land surface in the standard eddy covariance technique.

When summarized over the study period, due to the uneven dis-
tribution of qualified observations and projections (more observations
and projections during daytime than nighttime), the monthly averaged
observations and projections were calculated as the mean of the
monthly-mean diurnal cycle.

2.2.4. Uncertainty budget
To evaluate the significance of the presented approach, we esti-

mated the uncertainty budget for both storage and vertical fluxes. We
used stratified cross-validation to evaluate how well ERF-VCV performs
when projecting to areas the tower footprint had never covered during
the training period. Following Xu et al. (2017), we divided the target
area into four quadrants: northeastern, southeastern, southwestern and
northwestern. On this basis, four incomplete training datasets were
created, each of which omitting all data from one quadrant by wind
direction. For each incomplete training dataset, (i) the ERF was trained
with data from three quadrants; (ii) the resulting ERF along with the
state variables from the omitted quadrant were used for projection; (iii)
The resulting projection was compared to the observation. In this cross-
validation, all uncertainty sources through the ERF-VCV method, i.e.
input state variables, footprint modeling, and machine learning, were
included in this uncertainty quantification.

We use median and median absolute deviation (MAD) for quanti-
fying systematic and random uncertainty, respectively (Croux and
Rousseeuw, 1992; Rousseeuw and Verboven, 2002). The resulting
combined uncertainty estimates correspond to a single projected grid
cell in the for virtual box.

3. Results

3.1. ERF-VCV projected storage flux

Fig. 4 shows ERFs extracted from BRT. To note, the absolute values
shown on the y-axis of Fig. 4 do not imply the actual projected flux, as
the responses were not projected with the actual driver combination,
but random combinations of uniformly distributed samples within the
range of the drivers. However, these equidistant plots are most useful
for revealing the relationships among driver and response stored in the
ERF. Temperature time-rate of change shows a strong diurnal cycle,
negative during daytime and positive during nighttime. The pulse at sin
(azi) = 0.4 corresponding to 7–9 a.m. local time is the sign of increase
in storage flux when convective eddies are overcoming nighttime stable
stratification during initiation of the convective boundary layer (CBL).
Temperature time-rate of change is larger in shallower ABLs (larger zm/
zi), and also has a positive relationship with LST and θ, while it has a
negative relationship with EVI. The ERF-VCV predictions fit very well
the observed fluxes (-1% for vertical H, 0% for vertical LE,−4% for dT/
dt, and −8% for dq/dt), but in all cases the 99% confidence intervals
include the unity slope.

On Aug 17, 2014, the lower part of the convective layer developed
as follows: From 7:00–8:00 a.m., an initiation of buoyancy on the

Table 1
Data filtering steps and the remaining percentage of data after each filtering step.

Processing step Data filtering standard Data remaining%

De-spiking median filter de-spiking after Brock (1986) 99.5%
Data quality 3 h periods with missing data ≫> 20% were discarded 60%
Unreliable nighttime data removal Measurements at 122 m were discarded when sensible heat measured at 30 m ≪−10 W m−2 50.4%
Spike removal Lowest and highest 1% of flux values were removed 49.9%
Integral Turbulence Characteristics (ITC) test Vertical velocity ITC≪ 250% were selected 49.8%
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surface due to solar forcing was detected (Fig. 5). Warm bubbles built
up and began to release from the surface. During 8:00–9:00 a.m., cri-
tical buoyancy was reached. As a result, heated air detached from the
surface in discrete events, leading to the creation of a spatial pattern
with distinct zones that exhibit varying degrees of heating. From 9:00
a.m.–10:00 p.m., the whole volume was continued to be heated.

3.2. ERF-VCV projected vertical flux

Fig. 6 shows an example of the domain-scaled vertical transport of H
flux over the predefined 20 km× 20 km target area at 86 m and the
measurement height, 122 m. The white cells in the figure are areas with
state-space combinations of drivers for which no extracted response
relationship exists. Over the whole experiment, the coverage was ex-
tended from the original 1% (average footprint area relative to 20 km x
20 km) to 92% ± 3%, and 94% ± 3% for 20 × 20 km2 target do-
main for H, LE respectively, where the tolerance here is one standard
deviation.

In Fig. 6, for Aug 19, 2014 noontime, the sensible heat flux at 76 m
was positive over warmer surfaces and negative over cooler surfaces.
This may indicate suitable conditions for surface heterogeneity-induced
mesoscale circulations. In addition, vertical flux divergence and
blending can be quantified explicitly in space: Buoyant eddies were
emitted from individual surface patches giving the impression of a clear
spatial separation at lower levels, e.g. 76 m. The flux at 122 m level was
spatially less distinct as a result of blending (Fig. 6b).

3.3. Volume controlled net surface atmosphere exchange

When superimposing vertically integrated projected storage flux
with the vertical flux grids at 122 m, ERF-VCV NSAE of H and LE were
32.3 Wm−2 and 74.4 Wm−2, 33.8% and 15.5% larger compared to
tower observed turbulent flux, 24.1 W m−2 and 64.4 Wm−2 for the
study time period (Table 2). Here, vertical flux refers to the sum of
vertical turbulent flux and vertical advection flux with transporting
scale up to three hours. The sum of NSAE of sensible and latent heat flux
was 106.7 Wm−2, 20.6% greater than the turbulent observation,
88.5 Wm−2. The standard deviation of the diurnal cycle over the study
period was 120.9 Wm−2 and 228.9 Wm−2 for ERF-VCV-projected H
and LE, and 149.5 Wm−2, 256.6 Wm−2 for observed turbulent H and
LE, because spatial averaging ERF-VCV projections were less scattered
compared to direct observations. The fitted linear relationship shows
that the ERF-VCV projections had a larger daytime-nighttime amplitude
(Fig. 7). Temporal standard deviation of the spatially aggregated flux
first decreased and then stabilized at about 10–15 km spatial scale
(Fig. 8). Incorporation of the ERF-VCV approach also reflects the esti-
mated energy fluxes increased until converging around the same
10–15 km spatial scale.

Storage flux is non-negligible even at the monthly scale, and ex-
hibits a sizeable diurnal cycle at hourly temporal resolution for the
virtual box of 122 m height, e.g. 42 Wm−2 amplitude (∼30% of ver-
tical transport flux) for storage flux of H (Fig. 9).

The median systematic and random uncertainty terms (median ab-
solute deviation, in parenthesis) per single projected cell are 10%
(162%), −19% (185%), −15% (232%), and −19% (178%) for vertical

flux of H, storage flux of H, vertical flux of LE, and storage flux of LE,
respectively. Here, we see that the ERF-VCV approach tends to over-
estimate vertical H by 10%, and to underestimate vertical LE by 15%.
The ERF-VCV approach underestimated the storage fluxes of H and LE
by 19%. On this basis, an overall uncertainty of≪ 15% for H and LE
vertical fluxes and ≪ 20% for storage flux is determined. To note, this
systematic uncertainty is raw output from the machine projection, and
subsequently corrected across the target-area via site-specific linear
regression. In result, the + 20.6% or + 18.2 Wm−2 difference for the
sum of H and LE between ERF-VCV-controlled NSAE projection and
turbulent flux tower observation is shown. In addition, ensemble
random uncertainty becomes very small when aggregating flux grid
cells over the whole target domain: the ensemble random uncertainty
for hourly projection over the target domain is confined to within 1%
for all fluxes.

4. Discussion

4.1. Evaluation of the assumptions made in the ERF-VCV theory

A number of assumptions influence the reliability of the ERF-VCV
approach (Metzger, 2017). The first assumption is that the tower suf-
ficiently samples both updrafts and downdrafts. We believe this is sa-
tisfied in the current case study because the near-zero averaged vertical
wind speed = −w ms( 0.01 )1 over the entire study period. and non-zero
hourly vertial wind speeds. These two characteristics imply that both
updrafts and downdrafts were sampled by the WLEF tower during the
study period.

The second assumption is that observations are dominated by sur-
face fluxes rather than entrainment from the top of the boundary layer,
which ensures the relationships reflect information content from the
chosen surface drivers. This assumption is fulfilled by filtering flux re-
sponses for connectivity with the surface through turbulent mixing
tests, primarily the ITC test, which tends to omit data affected by strong
negative vertical velocity. The ITC test does not omit situations when
surface heterogeneity-induced downdraft occurs in a growing boundary
layer, since the net velocity is still upward. Thus, the downward branch
of a mesoscale circulation is still sampled by the tower and used as
training data in ERF-VCV.

Another implicit assumption is that flux footprint can attribute the
main contribution of vertical flux to appropriate surface area even with
transporting scale up to three hours. In other words, we have to assume
that the majority contribution is from the last touchdown with the
surface instead of entrainment (Flesch et al., 1996; Metzger et al.,
2017). Since the majority contribution of the vertical flux is from ver-
tical turbulent flux term (Finnigan et al., 2003; Finnigan, 2004), we use
a flux footprint model instead of concentration footprint model. Fur-
ther, the extracted relationships are built between flux and flux foot-
print-weighted land surface drivers as well as meteorological drivers.
Although flux footprint may fail to attribute low frequency flux con-
tribution to the appropriate surface drivers, the response relationship
can still be propagated via the corresponding combination of meteor-
ological drivers. At this study site, the extracted ERFs and flux projec-
tions appear sound. This suggests that over the ensemble of thousands
of observations the simple footprint parameterization is sufficient to
accurately and precisely relate a large fraction of the flux responses to
their surface drivers.

Though these assumptions do require additional testing, our results
support the idea that ERF-VCV projections enable explicitly identifying
and quantifying vertical turbulent flux and storage flux. As shown in
Fig. 6, the method was able to detect the initiation of buoyancy from
solar forcing, development of critical buoyancy leading to a well-mixed
volume, and continue mixing driving by mesoscale circulations gener-
ated by surface heterogeneity. These results are remarkably similar to
theoretical expectations of boundary-layer mixing.

The ERF-VCV projections suggest that the ERF-VCV technique is a

Table 2
Comparison between aggregated tower observed turbulent flux and volume-controlled
NSAE over the study period. Numbers in parenthesis are standard deviation of the diurnal
cycle.

H (Wm−2) LE (Wm−2) H + LE
(Wm−2)

Tower observed turbulent
flux

24.1(± 149.5) 64.4(± 256.6) 88.5

Volume-controlled NSAE 32.3(± 120.9) 74.4(± 228.9) 106.7
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practical and theoretically sound approach to retrieve storage and
vertical transport flux in a target box with a maximum (correctable on
site-level) systematic uncertainty of less than 20%. The estimation of
these terms and further evaluation of them allow us to directly examine
several unmet assumptions of eddy covariance in real-world settings
which we discuss below: i) location bias of vertical turbulent flux; b)
difference of profile to whole domain storage flux; and c) the effect of
neglecting vertical advection.

For future development, ERF-VCV requires development of a

transporting-scale footprint model to identify and quantify large
transporting scale eddies. The transporting scale should not be scaled
beyond the spectral gap to avoid ambiguous interpretation of energy
transport at a different scale, e.g. synoptic system. Storage flux with
inclusion of transporting scale up to three hours could be obtained
using wavelet decomposition to match the transporting scale of vertical
flux. The overlapping information content within different drivers
(multicollinearity) can lead to the extraction of process relationships by
the machine-learning that could not be reconciled with physical theory.

Fig. 7. a. Tower observed turbulent flux (light blue) and VCV-estimated net surface atmosphere exchange (violet) for H, LE and projected net surface atmosphere exchanges (NSAE)
integrated over the study period. ERF-VCV estimated NSAE sum of sensible and latent heat flux is 20.6% greater than tower observation when aggregated over the study period. b.
Scatterplot for the observed vertical turbulent heat flux measurements for the sum of H and LE and ERF-VCV projected heat flux. Each point represents a one hour averaging period.
Uncertainties are one standard deviation of the random uncertainties (error bars in x and y direction). Due to spatial averaging, ERF-VCV projections are less scattered. The fitted linear
relationship shows that the ERF-VCV projections have a larger daytime-nighttime amplitude. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 8. Temporal standard deviation (top) and mean (bottom) of hourly area-aggregated net surface flux as a function of the control volume side length. The left and right panels show net
sensible and latent heat fluxes, respectively. Temporal standard deviation decreased and stabilized at spatial transporting scale of 10–15 km.
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It will be interesting to work on reconciling additional constraints and
multicollinearity in machine-learning. Lastly, with sub-canopy eddy
covariance measurements, ERF-VCV should be applicable to capture the
features of eddy scalar and heat transport in sub-canopy.

4.2. The implication on location bias in eddy covariance measurements

Combining reliable, precise measurements with time-frequency
decomposition and flux footprint modeling allows us to transform our
observations into a unified Eulerian coordinate representation, through
which we can finally estimate terms that used to be inaccessible. Our
study reflects that storage flux has very strong diurnal amplitude
(42 W m−2). Therefore, storage flux should not be ignored in ob-
servation and model-data comparison, at hourly temporal resolution,
especially in the case of tall towers. However, in many cases storage
flux is usually assumed to rapidly converge to zero and thus is not
measured at many sites (Foken 2008).

ERF-VCV estimation has a larger vertical H than tower turbulent
observations during nighttime, likely owing to a higher LST across the
target domain than the footprint area (Fig. 2). Similarly, a smaller
vertical LE during daytime is observed in association with a slightly
lower EVI across the domain. In addition, ERF-VCV NSAE shows larger
magnitude both in daytime and nighttime despite substantial scatter in
the tower observations. This reflects the influence of the diurnal cycle
on the transient footprint. Further, in theory, ERF-VCV-projected ver-
tical flux is expected to be larger than tower turbulent observation
because projected vertical flux includes the energy contribution from
mesoscale eddies (Foken et al., 2006). The inclusion of mesoscale ed-
dies tends to increase emitted heat flux, since spatially confined thus
under-sampled updrafts are net warmer compared to spatially ex-
pansive thus over-sampled downdrafts. The resulted difference between
the tower observation and ERF-VCV estimation reflects that WLEF
tower cannot consistently represent the mean VCV estimated surface-
atmosphere flux, implying location bias is pervasive in this case and
potentially reflective also of other flux tower sites in heterogeneous
terrain.

4.3. The role of horizontal advection and the implication on spatial
transporting scale

Theoretically, in a mesoscale circulation we expect vertical advec-
tion to be compensated by horizontal advection and storage flux (Mahrt
1998; Foken et al., 2003; Mauder et al., 2008). Hence, studies con-
sidering only vertical advection instead of advection from both vertical
and horizontal directions have incurred criticism. For example,
Finnigan et al. (2003) and Mauder et al. (2008) argue that only con-
sidering the vertical advection term can produce unrealistic large
convection and rather noisy results on an observation-by-observation
basis.

Here, we argue that the spatial aggregation of projected fluxes over
heterogeneous terrain improves the resilience of the ERF-VCV projec-
tion to horizontal advection. Especially when the spatial scale of ag-
gregation is large, the net low-frequency vertical flux due to updrafts
and downdrafts trends towards its ensemble mean. As shown in Fig. 8,
the temporal standard deviation of the spatially aggregated flux first

decreased and then stabilized at about 10–15 km horizontal scale. This
indicates that ERF-VCV also projects the localized vertical advection
resulting from the observation-by-observation compensation of hor-
izontal advection. However, when integrated over a critical landscape
scale, positive and negative compensatory fluxes cancel out each other,
and only the net low-frequency flux remains. This justifies the choice of
neglecting horizontal advection when aggregating over a horizontal
scale of order 10 km as compared to point-by-point observations. Our
finding here is validated in theory (Metzger, 2017) and generally agrees
with previous studies suggesting that w = 0 over a large spatial domain
is a much weaker assumption compared to w = 0 for an individual
measurement location (Mahrt 1998).

In addition, the indicated surface patch size of 15 km implies that it
is the minimum reliable patch size in the comparison of WLEF eddy
covariance flux observations with model and remote sensing data, akin
to a critical landscape scale. Our approach thus provides a suitable
bridge for the spatial gap between WLEF tower-measured fluxes and
both, remote sensing products and ESM outputs.

4.4. Implications of ERF-VCV on the energy balance closure problem

As discussed in Sect. 4.1, surface heterogeneity-induced updrafts
and downdrafts were sampled by the tower at different times during the
study period (Fig. 3). While changing wind direction and varying
source areas complicate direct interpretation of the flux observations,
they provide an opportunity for including secondary circulations in
ERF-VCV.

At any given time a single tower is unable capture both updrafts and
downdrafts. Due to the skewed spatial distribution of updrafts and
downdrafts, a tower observes sparser but stronger updrafts only occa-
sionally, if at all (Fig. 3b). More frequently, a tower observes abundant
but weaker downdrafts (Fig. 3c), or cannot capture any low frequency
energy transport at all (Fig. 3a). For example Kanda et al. (2004) and
Mahrt (1998) link this spatial patterning and corresponding conditional
sampling characteristics to a buoyancy-related underestimation in
particular of the sensible heat flux.

Different from the standard tower eddy covariance technique, ERF-
VCV provides a potential approach for improving energy balance clo-
sure through spatially and temporally explicit flux projections: the
projections include the likely spatial distribution of both low frequency
updrafts and downdrafts. Once aggregated to the critical landscape
spatial scale the compensatory fluxes cancel out. The resulting net flux
trends positively to its ensemble mean (Fig. 8c,d), which exceeded the
standard tower flux observations over the study period. This warrants
investigating further impacts on the energy balance closure problem,
once spatially explicit net radiation and ground heat flux are available,
e.g. from intensive in-situ observations.

5. Conclusions

Using AmeriFlux Park Falls WLEF tall tower in North Wisconsin,
USA during July and August 2014, ERF-VCV proved useful for re-
trieving the volume-controlled net surface atmosphere exchange
(NSAE). This retrieval is achieved by resolving the storage flux, vertical
turbulent, and vertical advection fluxes, which are not easily measured.

Fig. 9. Diurnal cycle of ERF-VCV projected storage flux (green) and tower observed storage flux (red) for H and LE generated from all data for the study period. Shading area is the
temporal spatial variation for the study area and time period. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ERF-VCV can improve the tower observation from a footprint-variable
representation to a fixed-coordinate representation. This aids reducing
the location bias typically incurred from single-location vertical tur-
bulent flux and single-profile storage flux measurements, as well as the
influence of vertical advection. Particularly, in this study, storage flux
did not converge to zero as often assumed and had significant diurnal
cycle, and should thus not be ignored when comparing eddy covariance
measurements with earth system models (ESMs) at hourly or finer
temporal resolution. Low frequency flux contributions were detected in
this study, and inclusion in the ERF-VCV landscape-scale exchange of
sensible and latent heat led to a 20.6% increase over the tower ob-
servations. In addition, the derived flux can spatiotemporally resolve
mesoscale circulation that contribute to this source of energy im-
balance. Further, we show that spatial aggregated fluxes over hetero-
geneous land cover resilient to horizontal advection. Lastly, in our case
we find that ERF-VCV-estimated NSAE always increased the turbulent
heat fluxes and thus provides a promising research direction for im-
proving energy balance closure.

Substantial improvements are still possible and needed for these
kinds of scaling and rectification methods. First, high intensity in-situ
observations or large eddy simulations (LES) model results can be used
to comprehensively evaluate and verify assumptions of the ERF-VCV
process. Second, with spatially explicit net radiation and ground heat
flux, the potential for improving the energy balance closure problem
can be studied. Third, multiple flux tower or airborne eddy covariance
data lend themselves to investigate how the horizontal advection terms
not addressed in this study could be explicitly resolved.

ERF-VCV is applicable to retrieve volume-controlled NSAE across a
target area. This practically permits rectifying footprint bias for eddy
covariance flux in model data comparison, and provides the potential
direction to improve energy budget closure in eddy covariance tech-
nique.
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