Water from Ground to Sky

New approaches to observing
and predicting field to basin
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The digital global map of irrigation areas
October 2013
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Area equipped for irrigation The map shows area equipped for irrigation in percentage of cell area. Projection: Robinson
in percentage of land area For the majority of countries the base year of statistics is in the period Resolution: 5 arc-minutes
2000 - 2008. -

http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm
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War Over Water in a Land of Plenty
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Regionally, terrestrial evapotranspiration (ET)

Is @ dominant component of the water cycle
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Landuse [ Percenage _
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Annual Average water Budget

Water balance Ratio
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Monthly Water Balance
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Field Capacity

Wilting Point
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Evapotranspiration and recharge measurements
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Thermistor, hygrometer,
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Some questions

How tall? The taller the tower, the large area ET you
measure (around 10-100x upwind of tower). Needs to
be at least ~6 feet above canopy.

How much power? Can be run on solar, continuously

log data at ten times a second, output ET and carbon
fluxes every 30 minutes

Cost? $30-40K per system

How reliable? As long as sample area is homogenous
and uptime is good, eddy covariance is the gold
standard for field-regional ET




Five days of observations
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200 days of observations

Sylvania Wilderness site in UP Michigan (Watersmeet, Ml), est. 2001

Example ET from flux tower in two seasons in mm per day (Tang et al., 2006)
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17 years of observations
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8 site-years of observations

— LE Baseline Spring Summer Fall
- — LE 2012 84+16 MJ -202+32 MJ -52+7 MJ

> B\

Energy Fluxes

— Baseline

| - = 2012
Ml relative heating

M relative cooling
| | T I T

B increased vegetation activity

Baseline
—_— 2012

-12% -30% -9%
Jan | Feb| Mar | Apr IMay | Jun | Jul | Aug | Sep | Oct | Nov | Dec |

Wolf et al., 2016




A Eddy Covariance Systems for X
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Results Analyzers Performance Customize Why LI-COR Resources & Training

A flux station for

every need

LI-COR eddy covariance systems are scalable— from
basic systems that measure carbon dioxide
exchange, evapotranspiration, and energy flux, to
advanced systems that measure methane flux and
additional biological and meteorological parameters.
Each flux station automatically calculates flux results
using EddyPro® Software on the SmartFlux® System.
With optional FluxSuite™ Software, your results can
be online—all the time.
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® 20+ yr

® 16-20 yr
11-15 yr
6-10 yr
1-5 yr




Paired site studies in Nebraska

show us effect of irrigation on ET

Ne2 (Irrigated)
Ne3 (Rain Fed)
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Use data to constrain sensitive parameters

Specific Leaf Area Stomatal Slope BB

(FAA

B s~ = 17 (m? kg™") & leaf width = 0.04 (m)
[ IsLA =25 (m?kg™") & leaf width = 0.08 (m) | |
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Flux towers have pros/cons

PRO: Easy to deploy on a tripod in a field, on solar
power, no moving parts, and mostly off-the-shelf
technology, nearly 500 long running sites worldwide,
“gold standard”

PRO: It is one of the only ways to directly measure ET
at hourly time scale, and at the same time, we also
measure the surface heat exchange, carbon dioxide
flux (productivity), and climate

CON: It is relatively expensive (total around $40-50K
to purchase), requires significant expertise (technical
personnel), and regular maintenance

CON: EC measures only upwind of the tower and
when the atmosphere is “turbulent”, requiring
application of methods to fill in data gaps and quality
control data
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