The Use of Hyperspectral Imagery to Assess the Sensitivity of Ecosystem **Photosynthetic Parameters Along Two California Climate Gradients** Sean DuBois¹, Ankur R Desai¹, Shawn Serbin^{1,2}, ¹University of Wisconsin – Madison Phil Townsend¹, Eric Kruger¹, Clayton Kingdon¹ ²Brookhaven National Laboratory

- We combined imaging spectroscopy (IS) with thermal infrared (TIR) imagery to create spatially explicit estimates of two key photosynthetic traits

- comprised of 10 ecosystems, including four forests (Fig. 2a)
- found at field sites allow for robust testing of our methods

- driver for inter-annual variation in

productivity for each site

Figure 3. Maps depicting spatial variation of photosynthetic parameter V_{cmax} across four sites in CA. Flux tower locations/filed sites are designated by a triangle. V_{cmax} is highly variable across the landscape for the exception of the agricultural sites. These estimates are created from AVIRIS imagery collected on April 19, 2013 (109th day of the year).

Methods

INICUIOUS
AVIRIS and MASTER imagery
were used to estimate
photosynthetic metabolism
through the implementation of
PLSR algorithms (Singh et al.,
in prep). This allowed for the
creation of maps depicting the
spatial variation of V _{cmax} around
the flux tower sites (Fig. 3).
Flux tower data were used to
estimate V _{cmax} by inversion of
Farquarian photosynthesis
model, and to model GPP via
flux partitioning.

Conclusion

- Scaling up leaf metabolism and chemistry to the canopy scale using novel algorithms is feasible with remote sensing data
- Correlated decrease in GPP and V_{cmax} demonstrates impact on vegetation of drought and has implications for the future
- Land use change, including transition to agriculture & urbanization, pollution & changing climate have dramatic effects on photosynthesis
- These and other stress events can be monitored on the regional scale by the methods used in this study
- Implementation of a space-borne imaging spectrometer offers the ability to monitor such global changes
- Further research is required to determine an efficient scaling method for V_{cmax} to eliminate discrepancy between flux tower estimates and those from gas exchange estimates & hyperspectral observations

Acknowledgements