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Significant advances have been made over the past decades in capabilities to simulate 16 
diurnal and seasonal variation of leaf-level and canopy-scale photosynthesis in temperate 17 
and boreal forests. However, long-term prediction of future forest productivity in a 18 
changing climate may be more dependent on how climate and biological anomalies 19 
influence extremes in interannual to decadal variability of canopy ecosystem carbon 20 
exchanges. These exchanges can differ markedly from leaf level responses, especially owing 21 
to the prevalence of long lags in nutrient and water cycling. Until recently, multiple long-22 
term (10+ year) high temporal frequency (daily) observations of canopy exchange were 23 
not available to reliably assess this claim. An analysis of one of the longest running North 24 
American eddy covariance flux towers reveals that single climate variables do not 25 
adequately explain carbon exchange anomalies beyond the seasonal timescale. Daily to 26 
weekly lagged anomalies of photosynthesis positively autocorrelate with daily 27 
photosynthesis. This effect suggests a negative feedback in photosynthetic response to 28 
climate extremes, such as anomalies in evapotranspiration and maximum temperature. 29 
Moisture stress in the prior season did inhibit photosynthesis, but mechanisms are difficult 30 
to assess. A complex interplay of integrated and lagged productivity and moisture-limiting 31 
factors indicate a critical role of seasonal thresholds that limit growing season length and 32 
peak productivity. These results lead toward a new conceptual framework for improving 33 
earth system models with long-term flux tower observations. 34 
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Introduction  38 
Every year in modern times, photosynthetic organisms on land and in the ocean 39 

assimilate around 120,000,000,000,000 kg of carbon dioxide from the atmosphere, a 40 

process which drives the entire cycle of biosphere metabolism, production and 41 

decomposition (Beer et al., 2010). Variation of photosynthetic rates across space is strongly 42 

a function of adaptation of species to climatic, geological, and biological limiting factors of 43 

temperature, light, soil nutrients, moisture, disturbance, and competition. These 44 

adaptations are often manifested in differences in plant functional form, such as leaf shape, 45 

leaf longevity, tree heights, root	
  depths,	
  etc…	
  Similarly,	
  variation of photosynthesis in time 46 

is governed by how species in an ecosystem respond and adapt to diurnal, seasonal, and 47 

interannual changes in limiting factors. 48 

Today, society faces a grand challenge as feedbacks between carbon dioxide uptake 49 

by photosynthetic organisms and the climate system are a leading source of uncertainty in 50 

the magnitude and severity of future climatic change, on the same order as scenarios of 51 

future anthropogenic emissions and aerosol or cloud feedbacks (Booth et al., 2012). 52 

Coupled carbon-climate models show a large range of future climate states depending on 53 

assumptions built into models about biospheric uptake, particular in the terrestrial 54 

biosphere (Friedlingstein et al., 2006). Extreme interannual anomalies in biospheric uptake 55 

have been linked to large-scale climate features like El Niño Southern Oscillation (ENSO), 56 

and recent increasing trends in the fraction of fossil fuel emissions that remain in the 57 

atmosphere point to troubling concerns about the state of the biospheric carbon sink (Le 58 

Quéré et al., 2009).  59 
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Quantifying these variations and improve predictive ecosystem models at the scale 60 

of regions to the globe over time periods of days to decades requires careful lab 61 

experimentation and long-term field observations (Moorcroft, 2006). Early experiments in 62 

the late 1970s and into the 1980s that included careful monitoring of leaf photosynthesis 63 

and isotopic discrimination in controlled environments along with theoretical 64 

thermodynamic and biochemical arguments led to the first successful representation of leaf 65 

photosynthesis through the simplified equations for C3 (and later C4) assimilation as 66 

reviewed in Farquhar and Sharkey (1982) and co-occurring development of leaf-67 

atmosphere canopy conductance coupling as reviewed in Collatz et al (1991). While major 68 

advances have been made on understanding the biochemistry of photosynthesis at the 69 

genomic, cellular, and leaf level, many reported in this journal, most of these have not 70 

significantly altered these equations and similar formulations that are prevalent in most 71 

sophisticated ecosystem models (Schaefer et al., 2012). 72 

The reason for the lack of more sophisticated leaf-level photosynthesis models is 73 

partly a question of computational resources in that models can not simulate every leaf in 74 

an ecosystem, let alone every cell. But a larger source of uncertainty rests in how one goes 75 

from the leaf-level model to an ecosystem patch or grid box. Early attempts focused on the 76 

issue of scaling of canopy radiative transfer, given that the variation of light through a 77 

canopy is the dominant mode of variability of limiting factors within an ecosystem patch to 78 

be	
  simulated.	
  Original	
  models	
  include	
  the	
  “big-leaf”	
  representation	
  of	
  the	
  average	
  semi-79 

transparent leaf (e.g., Sellers, 1985), partly owing its success to the ability to characterize 80 

vegetation fraction and photosynthesis through satellite remote sensing of visible and 81 

infrared canopy reflectance (Kumar and Montieth, 1981). However, field observations 82 
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noted that canopy radiative transfer may not necessarily scale so neatly (Baldocchi et 83 

al ,1985), leading to development of multiple canopy layer models (e.g., De Pury and 84 

Farquhar, 1997). At the minimum, sunlit/shaded fractions of the canopy have to be treated 85 

separately in models for accurate simulation of photosynthesis (Sprintsin et al., 2012). 86 

More sophisticated models now allow for multiple cohorts of interactively competing and 87 

shading species with varying plant functional types (Medvigy et al., 2009). 88 

The primary production model in most ecosystem models now consists of a leaf-89 

level photosynthesis mechanism, embedded within a leaf boundary-layer coupling, leaf 90 

energy balance model, canopy scaling algorithm, a soil water and humidity-sensitive 91 

transpiration model, and sometimes a nutrient transformation and transport model, 92 

primarily for nitrogen. Despite the apparent complete description of canopy 93 

photosynthesis, interactions and small changes in parameters of these components causes 94 

ecosystem models predict widely divergent estimates of the sensitivity of canopy 95 

photosynthesis to climatic and biotic changes,	
  even	
  when	
  they’re	
  using	
  the	
  same	
  equations 96 

(Schaefer et al., 2012). Differences in parameters that controls rates of leaf respiration, 97 

canopy architecture, or microclimate variation have large effects on canopy photosynthesis 98 

rates and sensitivity. 99 

Uncertainties also arise in our understanding of variation in radiation quality and 100 

sun flecks, multiple interacting species, age-dependent changes in photosynthesis and 101 

transpiration, moisture and nitrogen availability in soil, transformation of assimilated 102 

carbon into storage pools, and canopy-scale stomatal and photosynthetic rate responses to 103 

atmospheric CO2 enrichment (e.g., Fig. 1). Models tend to underestimate variability in 104 

canopy photosynthesis in response to climatic anomalies, but overestimate threshold 105 
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responses to climate and biospheric state shifts. On the one hand, ecosystems, as an 106 

assemblage of species, and hence comprised of species that are adapted to have 107 

compensating responses to environmental change are more conservative that the single 108 

“model”	
  species	
  represented	
  by	
  the	
  typical	
  plant	
  functional	
  type	
  approach	
  in	
  models. On 109 

the other hand, overall ecosystem variance is large and since species present on the 110 

landscape are partly a function of local climate and soils, they may show additive effects in 111 

response to climate anomalies that exceed the a threshold (i.e., an extreme). 112 

Consequently, there is a role for long-term canopy scale observations of 113 

photosynthesis toward evaluating and improving these kinds of model responses. The rise 114 

of canopy-scale observations of net ecosystem exchange of CO2 (NEE) and inference of 115 

gross primary productivity (GPP) through tower-based eddy covariance methods 116 

(Baldocchi, 2008) and other canopy-scale experiments have expanded our ability to make 117 

claims of model fidelity and sensitivity. For example, recent articles have focused on 118 

dryness (Yi et al., 2009), temperature (Niu et al., 2012), light response (Schaefer et al., 119 

2012), phenology (Richardson et al., 2012), short-term climate fluctuations (Medvigy et al., 120 

2010), interannual variations (Keenan et al., 2012a), disturbance (Amiro et al., 2010), and 121 

CO2 enrichment (Norby and Zak, 2011). Still, many of these studies are limited by short 122 

time series at most sites. Advanced methods to link anomalies of environmental drivers to 123 

fluxes have only been applied in limited cases. 124 

In this manuscript, I focus on the value of longer-term observations of high-125 

frequency photosynthetic flux observations at the canopy scale. Are there effects of lagged 126 

environmental drivers that are masked at shorter time scales? Can ecosystem adaptation 127 

and community reorganization responses from extremes be detected? Hypotheses have 128 
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been put forward suggesting that canopy-scale productivity may be linked to prior season 129 

carbon storage of non-structural or labile carbohydrates (Carbone et al., 2007) and also 130 

antecedent moisture availability in mesic forests (Ricciuto et al., 2008; Desai et al., 2010). 131 

These lagged responses would not be seen at the leaf level, where direct controls of 132 

moisture availability and leaf carbon content influence photosynthesis strongly by limiting 133 

rates of light harvesting and total leaf area. 134 

The purpose of the analysis here is not to put forth brand new models of canopy 135 

photosynthesis, but rather to highlight the path forward with long-term observations. As 136 

such, my goals are twofold: 1) to demonstrate advanced statistical methods to evaluate 137 

modes of variation of long-term environmental data and 2) observe how these methods 138 

provide new insight into lags and switches of canopy photosynthesis that make it so hard 139 

to model and so different from leaf-level responses. In particular, I use a 15-year record of 140 

regional NEE from a very tall tower in the north central US to test which of antecedent soil 141 

moisture availability and prior productivity most influence canopy productivity. Moisture 142 

lags likely represent the accumulation and storage of available water that allows a canopy 143 

to respond to periods of high water demand or physiological stress. Similarly, prior carbon 144 

accumulation influences current carbon uptake both in changes in allocation and 145 

development of carbohydrate reserves. Can these effects be seen in observations and if so, 146 

which is the most relevant to include in models? 147 

I hypothesize that short-term (daily) drivers of photosynthesis are primarily light 148 

and temperature, but longer-term (weekly to annual) is limited primarily by moisture and 149 

internal storage of prior photosynthate. These hypotheses are tested against the landscape-150 

scale observations of net carbon uptake and associated surface and meteorological forcing. 151 
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Methods 152 

Analysis Framework 153 
Many of the analyses described in the prior section attempted to use many short-154 

term (2-5 year) ecosystem flux observations to improve prediction or modeling by 155 

substituting space for time (e.g., Yi et al., 2010). Many sites each with a few years of data 156 

are analyzed to make inferences about long-term evolution of biosphere to climate and 157 

environmental drivers. However, there is some evidence that predictions made in this form 158 

across sites do not necessarily map well onto long-term predictions at a single site (Desai, 159 

2010; Keenan et al., 2012a). The limiting factor is the lack of long-term high-frequency 160 

observation of the state of the biosphere.  161 

Short-term measurements are difficult to use for diagnosing anomalies and 162 

extremes. Short-term multi-site studies can diagnose mean state and mean variability of 163 

carbon fluxes, but may underestimate the true level of variability over years and how 164 

extremes in climate and biotic disturbance (including both large short-term pulse and long-165 

term press (steady pressure) disturbances) can drive carbon assimilation differently than 166 

short-term responses. For example, many eddy covariance flux tower studies focus on a 167 

few years of data to identify particular climate responses (e.g., wet year versus dry year), 168 

but are likely to have confounded co-variability among climate factors, to miss multi-year 169 

responses, or and have low probability of capturing extreme climate events and the role of 170 

pre-conditioning of ecosystem states. Community-scale response from changes in resource 171 

availability and competitive advantages to these can occur in forest ecosystems at 172 

timescales of years to decades (Gellesch et al., 2013). 173 
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While some processes like photosynthetic acclimation have been well captured in 174 

lab experiments, they are harder to diagnose with short-term environmental data, even 175 

with a decade long record from enriched CO2 experiments (Norby and Zak, 2011). The 176 

statistical sample for environmental observations of low probability, high impact events is 177 

too small. 178 

A benefit of an evolving measurement network is that over time there are sites that 179 

start having long records where one can look closely at features like memory effects (long 180 

lag relationships), decadal trends, and state shifts that would not be easily noted across 181 

space. Instead, the challenge is addressing the data deluge. A decade long flux tower record 182 

of half-hourly NEE observations and related climate drivers can easily exceed 106 183 

observations. Moreover, the data are strongly auto-correlated and may suffer from 184 

harmonization issues related to changes in instruments, measurement height, and so forth. 185 

As a consequence, many analyses, even at long-term tower sites, limit their analyses to 186 

subsets of the data. For example, Keenan et al (2012b) found no suitable combination of 187 

parameters of a simple model could adequately explain three separate five-year periods in 188 

NEE observed over the 18-year record at Harvard forest.  189 

There is ongoing work on improving harmonization of long-term datasets like 190 

decadal eddy covariance and the evolving National Ecological Observatory Network 191 

(NEON), which will include nearly 60 sites across North America with eventually 30+ years 192 

of carbon cycle and biological observations. These observations provide a suitable data 193 

testbed if and only if the community first develops reliable and usable statistical metrics 194 

and model-data evaluation. Therefore, in this study, I specifically focus on the more than 195 
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15-year record of eddy covariance carbon and water regional flux observations at a 196 

forested site in the north central US (Figs. 2 and 3).  197 

Site Description and Data 198 
I analyzed 15-years of flux tower observations of CO2 and H2O flux from one of the 199 

longest continuously running eddy covariance flux towers in the U.S., the WLEF Park Falls 200 

tower (US-PFa) (Davis et al., 2003), where fluxes have been measured since late 1996 with 201 

minimal disruptions, except in 2002 (Fig. 2). Meteorological variables were also observed 202 

at the site (Fig. 3 and Table 1). WLEF is unique for being the tallest flux tower across the 203 

Fluxnet network, allowing us to observe the impact of patchy landscapes and canopy 204 

interactions on carbon assimilation. My collaborators and I have observed fluxes at three 205 

heights (30 m, 122m, 396 m) and use	
  these	
  to	
  develop	
  a	
  single	
  “preferred”	
  flux	
  product 206 

(Davis et al., 2003), based on boundary layer turbulence conditions. The tower samples a 207 

fetch on the order of 1-5 km depending on atmospheric stability and wind speed. 208 

Unlike canopy-scale towers, tall-towers sample fluxes that represent many species 209 

and many soil types. However, an advantage of these observations is they are at a similar 210 

scale to that which ecosystem models represent canopies and plant functional types (10s to 211 

100s of km). Schafer et al. (2012) noted that ecosystem model estimates of daily GPP were 212 

surprisingly well simulated at this site in a large flux tower-model intercomparison of GPP, 213 

either because modelers have used this site significantly for calibration, or, that the fluxes 214 

better	
  represent	
  the	
  “model	
  organism”	
  being	
  represented	
  by	
  the	
  single plant functional 215 

types used in most models. 216 

The site samples carbon and water fluxes from a temperate mixed forest landscape 217 

that consists of approximately ¾ forest equal parts young to intermediate age 218 



 10 

commercially harvested aspen, mature northern hardwood (sugar maple, ash, basswood), 219 

and red pine plantations (Desai et al., 2007). The remaining ¼ is primarily a mosaic of 220 

wetlands and shrub areas, including black spruce and peat bogs, cedar swamps, sedge 221 

wetlands, and shrub fens. Spatial variability occurs in relatively small scales, driven by 222 

microtopography and land management, while the overall landscape topography is flat and 223 

density of human settlement in the tower footprint is minimal. 224 

Estimating Canopy-Scale Photosynthesis 225 
Eddy covariance towers observe the net exchange of trace gases, heat, and 226 

momentum from the surface to atmosphere, based on well-established micrometeorlogical 227 

theory (Baldocchi, 2008). Turbulence properties of the atmospheric surface layer allows 228 

one to take the 30-60 minute mean covariance of high-frequency (>10 Hz) observations of 229 

vertical wind and the flux tracer of interest (e.g., carbon dioxide, water, temperature) 230 

summed with below-sensor net tracer storage and vertical flux divergence to represent the 231 

net surface flux. Sonic anemometry (measuring vertical and horizontal wind components 232 

with sound pulses) and infrared gas analyzers sampling air near the anemometer are 233 

typically used to measure this net covariance. Contributions from low-frequency transport 234 

(advection) are usually neglected, but tend to be small, of the same magnitude as the 10-235 

20% inherent random flux error (Yi et al., 2000). Over the years, researchers have 236 

instrumented nearly 500 of these sites for carbon and water cycle observations and general 237 

quality control approaches have been identified for instrument noise, lag, and spectral 238 

corrections, coordinate geometry rotation for wind velocity, low turbulence screening, and 239 

other turbulence statistics, which are applied here (Berger et al., 2001; Foken et al., 2012). 240 
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The focus of this analysis of the effect of climate anomalies on photosynthesis, not 241 

net exchange (which includes respiration and decomposition processes). Therefore, I 242 

developed a method to represent this photosynthesis from net ecosystem exchange of CO2 243 

(NEE). Unfortunately, there is no single accepted method for doing so, and all require some 244 

level of empirical assumptions or statistical inference that partly takes advantage of the 245 

lack of GPP at night. Consequently, methods diverge on estimates of GPP by more than 20% 246 

and can include artifacts from fitting NEE to respiration models (Desai et al., 2008).  247 

Since I want to focus on the value of NEE to models, I developed an alternate metric 248 

of the effect of canopy photosynthesis on NEE, termed net photosynthetic drawdown (Pd), a 249 

daily metric of canopy photosynthesis that removes assumptions used in many GPP models. 250 

Pd was estimated at a daily timescale from the hourly flux data as the difference in 251 

nighttime to daytime NEE. Maximum nighttime NEE was identified at night when more 252 

than four hours of good observations were available. Maximum is used over mean since it 253 

has been shown to be closer to the advection corrected observations at night (Van Gorsel et 254 

al., 2009). This estimate of nighttime NEE is then differenced with the mean daytime gap-255 

filled NEE between 10 and 14 local time if there are more than four hours of good 256 

observations during that day (when the sun is up). Here I use gap-filled NEE to avoid 257 

biasing the mean NEE, which exhibits a strong diurnal cycle. Gap-filling errors tend to be 258 

much smaller than GPP uncertainty (Moffat et al., 2007). The Pd time series is shown in Fig. 259 

4a. The Pd time series has 5,490 days of data, with 37% of data missing.  260 

Further analysis showed that use of Pd instead of GPP does not significantly change 261 

the results or conclusions of this study and presents a novel way to understand the effect of 262 

climate on photosynthesis. The correlation of Pd to GPP is high, particularly for maximum 263 
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daily GPP (r2=0.81) and greater at the monthly timescale (r2=0.96). The fit is linear for GPP, 264 

with an intercept of 0 (Fig. 5). Since Pd is a detector of maximum daily photosynthetic 265 

uptake and has a greater dynamic range than GPP, it is likely that Pd is better at detecting 266 

extreme photosynthesis responses to climate anomalies. While this method is conceptually 267 

analogue	
  to	
  atmospheric	
  CO2	
  “drawdown”	
  (e.g.,	
  Desai	
  et al., 2010), it is different as the flux 268 

drawdown does not include covariation with boundary layer depth and represents a much 269 

smaller footprint. 270 

Statistical Analysis 271 
I tested the hypotheses mentioned above by testing for both direct and lagged 272 

relationships between Pd and climate forcing factors (Table 1) at multiple time scales and 273 

compared them to the autocorrelation of Pd. A number of studies have identified 274 

characteristic timescales of variability in flux data using wavelet, single spectrum, or 275 

Fourier time-series analysis (e.g., Baldocchi et al ., 2001; Mahecha et al., 2007; Sevanta and 276 

Williams, 2009; Stoy et al., 2009), which have all noted characteristic peaks of variability in 277 

NEE especially at the diurnal, synoptic (3-4 day), seasonal, and interannual timescale. 278 

Similarly, frequency dependent model-data comparisons (e.g., Dietze et al., 2012; Mahecha 279 

et al., 2010; Keenan et al., 2012a) have all found deficiencies of models in representing 280 

many of these modes of variability.  281 

I identified these scales in daily Pd and evapotranspiration (ET) flux using a similar 282 

analysis of empirical model decomposition (EMD), whose results are fed into the Hilbert-283 

Huang spectral transformation (HHT) (Huang and Wu, 2008). EMD is an empirical 284 

approach to time series deconvolution that does not require assumptions of cyclical 285 

behavior (as needed by Fourier) or stationarity and does not require determination of the 286 
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shape of the weighting kernel or wavelet. The discontinuous EMD (Barnhart et al., 2012) 287 

further extends the application to time series with missing data by applying a mirroring 288 

approach to fill the data gaps. EMD decomposes a time series into a series of intrinsic mode 289 

functions (IMF) also in the time dimension, which when fed to the HHT algorithm that 290 

outputs a time by frequency power spectrum.  291 

Timescales for analysis were determined from the HHT of Pd and ET (Fig. 4). Both 292 

signals have a number of similar modes of variability, especially at the synoptic, monthly, 293 

and seasonal timescale. ET has greater temporal variations in these modes and greater 294 

signal on long-time scales (> 100 days). Longer timescale variability is present in the 295 

growing season more than outside of it. HHT identified strong monthly peaks that were not 296 

previously identified and suggests that interannual variability explains less of the signal 297 

than other methods have previously shown (e.g., Baldocchi et al., 2001). Methodologically, I 298 

used this analysis select averaging timescales of 1, 3, 8, 15, 30, 90, 180, 360, 720, and 1440 299 

day, as described next. 300 

The HHT analysis also identified the importance of normalizing variability across 301 

timescale to best identify climatic and internal controls on Pd. For example, there is a 302 

variety of literature that will show high correlation of GPP to other variables, solely 303 

because the main modes of variability (e.g., the annual solar cycle) are strong in both, not 304 

because one truly explains the other. This method of analysis is disingenuous when it 305 

comes to the question I seek to answer here.  306 

One of the benefits of long-term data is the ability to remove much of this co-307 

variability and look at how anomalies or extremes manifest themselves in the data and how 308 

they are correlated to anomalies or extremes in another variable. If a daily time series 309 
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signal X(day,year) is stationary (as it mostly appears to be in this case and discussed more 310 

in the discussion), then an anomaly time series Xan(day,year) can be simply constructed by 311 

removing the ensemble mean: 312 

Xan day, year( ) = X day, year( )  X(day)
year

     (1) 313 

where X(day)|Y is the daily time series of variable X ensemble averaged across all years. To 314 

test across multiple timescales, I applied a forward averaging filter across the time series 315 

(e.g., Fig. 6b), avoiding forecasting by removing the end of the data series: 316 

Xan day, year( ) timescale = 1
timescale

Xan t, year( )
t=day

t=day+timescale

    (2) 317 

where timescale is the number of days to average. One issue that arises when analyzing this 318 

variable across seasonal to interannual timescales is the need for averages to stay aligned 319 

with the solar orbital forcing cycle, so that averages in any one year can comparable to 320 

other years. To do this, I reduced each year to 360 day length by removing the first few and 321 

last few days of data for each year and choosing averaging scales which share divisors with 322 

360. The choice of timing has relatively minimal effect and the choice of winter, where 323 

carbon fluxes are near zero is ideal. A second issue involves gaps in the data. For gaps, I 324 

sampled the data with replacement, filling gaps linearly across small gaps (days) and taking 325 

long-term means for longer gaps (weeks). 326 

To remove the previously discussed solar forcing driven artificial correlation among 327 

variables, I normalized the time series. Flux anomalies (e.g., Fig. 6c) display a strong 328 

seasonality given the change in variability from winter to summer (Fig. 3). Relative 329 

anomalies Xrel,an(day,year)|timescale were derived from averaged anomalies by dividing the 330 
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time series by the ensemble average standard deviation across all years for a given 331 

averaging timescale: 332 

Xrel,an day, year( )
timescale

=
Xan(day, year) timescale

 Xan(day, year) timescale( )
year

   (3) 333 

The remaining time series appears stationary and random (Fig. 6c), and reflects a 334 

statistically defensible view of relative anomalies of the time series as a function of 335 

averaging filter. Relative anomalies in this fashion were computed for Pd (Fig. 6) and a 336 

variety of observations to test hypotheses including variables related to canopy physiology 337 

and structure such as remotely sensed vegetation index (EVI) and minimum, maximum, 338 

mean, and diurnal range of air temperature, remotely sensed land surface temperature 339 

(LST), and variables related to canopy moisture availability including ET, water use 340 

efficiency (WUE, GPP divided by ET), precipitation, and soil moisture, as noted in Table 1 341 

and shown in Fig. 3. Remotely sensed variables were derived from the NASA MODIS TERRA 342 

and AQUA reflectance properties and downloaded from the ORNL MODIS land product 343 

subset server (http://daac.ornl.gov/MODIS/), while other variables were directly observed 344 

by the tower with gaps filled from harmonized daily climate data downloaded from the 345 

National Climatic Data Center archive of National Weather Service co-operative observer 346 

stations and weather forecast reanalysis from the NOAA North American Regional 347 

Reanalysis (NARR). 348 

I compared relative anomalies of all variables to relative anomalies of Pd at all 349 

averaging timescales both with direct linear correlation and with lagged correlation where 350 

climate factors were lagged against Pd at a range of lags equivalent to the averaging 351 

http://daac.ornl.gov/MODIS/
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timescales. A two-tailed t-test for significance was applied to all correlation coefficients and 352 

only those coefficients that were significant at the 90% level were saved.  353 

The significance test was modified to account for the autocorrelation present in all 354 

environmental time series. Consequently, the degrees of freedom to apply to significance 355 

tests should be much smaller than the total number of samples. I reduced the degrees of 356 

freedom using a modified effective degrees of freedom (EDOF) approach of Bretherton et al. 357 

(1999): 358 

N* = N

1  t
N







 t
X  t

Y



t=N /2

N


       (4) 359 

where N* is the reduced degrees of freedom for significance testing of correlation of two 360 

time series X and Y with N samples. tX represents the autocorrelation of time series X at lag 361 

t. Though most of the autocorrelation is in the first few lags, I included all lags to N/2 to 362 

account for long lead correlations. Further, only those correlations of variables to Pd that 363 

exceeded the lagged autocorrelation of Pd are used as a test to compare moisture versus 364 

carbon storage control as predictors of current Pd. 365 

The EDOF of Pd (Fig. 7) reveals that while daily Pd has over 3400 observations, the 366 

EDOF at daily scale is only slightly above 600, and decreases nearly linearly with 367 

logarithmic increases in averaging timescale, such that interannual analysis is limited to 368 

EDOF in the few tens to single digits. As shown in the results, this limits the ability of this 369 

analysis to diagnose correlations of anomalies at multi-year timescales and highlights how 370 

even a 15 year time series may be unreliable for detecting interannual and longer trends 371 

and correlations. The results here shows that a few time series were able to meet 372 
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significance threshold, but multi-year correlation analysis with flux tower data requires 373 

sufficiently long data sets because of high auto-correlation. 374 

A second test was also applied for comparing predictive ability of variables against 375 

inherent autocorrelation of Pd, known as the Granger causality analysis (Detto et al., 2012). 376 

The method originated from economics, but has recently gained popularity in geophysical 377 

time series analysis. The analysis builds a multiple linear regression of lagged values of a 378 

time series X to predict current values of X. This regression is then compared iteratively to 379 

including an increasing number of lagged values of time series Y that are significantly (two 380 

tailed t-test at 90% level) correlated to X to predict current values of X. When the new 381 

regression significantly improves upon (tested with an F-test) the autocorrelation 382 

regression, those lags of Y are retained and the terminology is that Y “Granger	
  causes”	
  X, or 383 

prior values of X and Y at certain lags explains a significantly larger fraction of X than the 384 

prior values of X does by itself. A minor modification was made here to include the reduced 385 

degrees of freedom for significance testing and the replacement of the F-test with the more 386 

empirical Aikake Information Criterion, which incorporates both the likelihood of the 387 

regression and penalties for number of parameters. Here, I tested Granger causality for all 388 

variables against Pd (Table 2). 389 

Though all of these methods are relatively standard time series analysis, they have 390 

only recently been applied to carbon flux data, mostly because long time series of flux data 391 

are only now becoming common. The results show how the lagged correlation, spectral, 392 

and causality analysis together provide insight on how canopy photosynthesis is different 393 

from leaf photosynthesis and how it can be leveraged to improve canopy photosynthesis 394 

models. 395 
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Results 396 

Modes of variability in observations 397 
Large variability exists in hourly flux data of NEE and ET (Fig. 2). Outliers exist in 398 

most years, but positive anomalies in ET and NEE decreased after 2005. Diurnal and 399 

seasonal variability dominate the signal and trends. The decrease in NEE uptake from 400 

2006-2010 is visually evident, but difficult to discern quantitatively against the variability 401 

at the hourly scale (Desai et al., 2010). Not surprising, hourly data can be challenging when 402 

it comes to statistical data assimilation approaches to constraining ecosystem models 403 

(Zobitz et al., 2011), as these methods tend to force model parameters toward the 404 

dominant modes of variability (diurnal and seasonal) and limit excursions away from the 405 

mean (over-fitting the mean at the expense of the extremes) (Desai, 2010) especially when 406 

data uncertainty is large, as it is the case for hourly flux observations (Raupach et al., 2005). 407 

Not surprisingly, models have great difficulty simulating other temporal modes of 408 

variability in photosynthesis (Dietze et al., 2012; Keenan et al., 2012a). Moreover, many of 409 

the anomalies of photosynthesis that are related to climate anomalies may exist only at 410 

longer timescales. 411 

The EMD analysis directly shows the importance of weekly to seasonal variability in 412 

Pd and ET (Fig. 3), counter to previous wavelet based analyses. For example, Baldocchi et al. 413 

(2001) found a spectral gap in flux tower NEE at the three-four week scale. The 414 

transformed data and the more empirical approach of HHT reveal that there are variations 415 

present at this scale, perhaps more so than at longer scales, and not consistently at a fixed 416 

value. Longer-term variability (90-360 day) is more present in the growing season 417 
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(summer) and more distributed across frequency for ET compared to Pd, suggesting more 418 

coherence in interannual variability of ET than Pd. 419 

Direct Relationships 420 
Given the range of variability in flux tower observations and a general overlap of 421 

modes of variability in ET and Pd anomalies at the daily to seasonal timescales, it should be 422 

expected that some level of correlation exists among these factors. The strongest direct 423 

linear significant correlations between ET and Pd anomalies exist at scales between 30-360 424 

days, but persist down to 1 day, where ET explains around 10% of the variability in Pd at 425 

short timescales and approaches 40% at seasonal scales (Fig. 8). Longer-term correlations 426 

are not significant, but this may partly be the result of insufficient length of time series and 427 

the strict degree of freedom constraint. A similar level correlation is seen for WUE, but not 428 

at annual time scales. This correlation partly stems from self-correlation since GPP, which 429 

goes into the WUE calculation, and Pd are both derived from NEE. 430 

Temperature is a well-known factor influencing leaf-level photosynthesis. Even 431 

though solar forcing leads to a strong correlation between temperature and NEE or GPP at 432 

diurnal and seasonal scales, when the ensemble average is removed and the variables 433 

compared as standardized anomalies, the relationship is much weaker, though it remains 434 

significant from 1 day out to 30 day, with r around 0.15. None of the temperature factors 435 

(average, maximum, minimum, mean, range, or land surface temperature) are particularly 436 

better than others at explaining variation in Pd, though stronger correlations exist for 437 

maximum daily temperature especially at longer timescales, including a particular strong 438 

correlation at the 1440 day scale. It should be noted that LST is provided at 8-day intervals, 439 
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so 1 and 3 day average correlations are not included. For the purpose of the lag analysis, 440 

given similar relationships, only Tmean is further analyzed.  441 

For direct correlation, the results are weaker for soil moisture than for temperature, 442 

but do provide some evidence to the importance of  seasonal moisture budgets on net 443 

carbon assimilation, even in mesic forest/wetland systems. This result less consistent with 444 

an earlier model calibration study that showed interannual variability in NEE at WLEF was 445 

best explained by soil moisture (Ricciuto et al., 2008), but when lags are taken into account, 446 

the results change, as shown below. Though not shown, results with atmospheric humidity 447 

variables were similar to those of Qsoil. Precipitation anomalies only weakly Pd at 3-day 448 

averages. This result may be caused by the intermittent nature of precipitation, the greater 449 

error in short term precipitation, and the importance of soil percolation processes prior to 450 

plant water uptake.  Finally, EVI anomalies are found to have no correlation to Pd anomalies 451 

at any timescale. 452 

Lagged analysis 453 
Lagged analysis (Fig. 9 and Fig. 10) further supports results shown in Fig. 8, but also 454 

reveals subtleties regarding moisture. The non-moisture specific variables support both a 455 

strong autocorrelation of Pd as previously shown in Fig. 6 and lack of correlation at many 456 

timescales for EVI anomalies. Lagged EVI (Fig. 9b) does have some weak, but significant 457 

negative correlation to Pd for monthly averaging timescales and three month lag, and this 458 

correlation exceeds the autocorrelation. This signal represents both the impact of summer 459 

vegetation stress (low EVI) on autumn photosynthesis (reduced) (Wu et al., in press) and 460 

the impact of phenology (late spring = low EVI) on net carbon uptake (reduced). Spring 461 

flush is typically a two-week process and the growing season is around three months.  462 
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The autocorrelation of Pd (Fig. 9a) is persistent at AR-1 and AR-2 out to 30 days. For 463 

any given lag, some amount of autocorrelation exists for all averaging times up to the lag, 464 

increasing as the lag approaches the averaging timescale (i.e., AR-1). Some out of phase 465 

(180 day) negative correlation exists as it also does at the very long timescale (1440 day), 466 

the latter of which is difficult to explain. At one level, ecosystem models incorporate this 467 

autocorrelation	
  through	
  the	
  “memory	
  effect”	
  of	
  labile	
  carbon	
  pools,	
  but	
  these	
  are	
  probably	
  468 

not responsible for the observed longer timescale correlations, possibly tied to other non-469 

structural carbohydrate pools (e.g., Carbone et al., 2007) or signals of community 470 

reorganization, ecosystem dynamics, or climate oscillations. However, the lack of long 471 

autocorrelations in Pd do not provide much evidence here for strong long-term internal 472 

control through non-structural carbohydrates, shifts in plant allocation, or community 473 

reorganization. 474 

Lagged temperature is predictive for Pd anomalies at short lags and averaging times 475 

out to a few weeks (Fig. 9c and d), with a positive correlation (warm anomalies lead to 476 

increased Pd one to two weeks out), but these are much weaker than the autocorrelation. 477 

An interesting weak, but stronger than autocorrelation, relationship exists with 90-day 478 

prior daily mean temperature and current Pd, hinting at possible long-lag effects, where a 479 

short early season warm spell (e.g., false spring), can enhance growth. There is also a weak 480 

but significant negative relationship of seasonal average temperature from four years past, 481 

once again difficult to explain. 482 

Moisture anomalies (ET, WUE, Precip, and Qsoil) also have some predicative ability for 483 

Pd anomalies and most all positive – increased ET or precipitation enhances carbon 484 

assimilation. Correlations of lagged ET to Pd (Fig. 9a) exist at short timescales and the first 485 
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two lags for each timescale, but they are surprisingly weak compared to the strong direct 486 

correlation (Fig. 8). Similar to temperature, a four-year lag negative correlation of ET on Pd 487 

is found for seasonal averaging. 488 

Relationships also exist in weekly to seasonal average precipitation and soil 489 

moisture at the 2-3 month lag.  Positive anomalies in soil moisture are more predictive for 490 

future weekly to seasonal Pd than Pd itself, suggesting a long-term moisture control. For 491 

example, early season weekly to seasonal moisture deficits inhibit end of season carbon 492 

assimilation. This effect is of slightly greater magnitude and correlation as the effect of 493 

direct moisture deficits on Pd. Unlike the direct correlation, these results more strongly 494 

support both the work of Ricciuto et al. (2008) and the second hypothesis of long-term 495 

moisture control on Pd. 496 

Causality analysis 497 
The findings of the Granger causality analysis (Table 2) are consistent with the lag 498 

analyses for most except the moisture variables. Daily to weekly temperature and ET both 499 

Granger cause Pd, with additional longer term control by seasonal EVI and annual ET. 500 

Interestingly, Qsoil does not Granger cause Pd at any timescale. Only ET anomalies have 501 

predictive ability at long time scales and highlights the difficulty of dissecting the causes of 502 

seasonal to interannual variability even with 15 years of flux tower data. 503 

Discussion 504 

Role of lagged forcing in photosynthesis 505 
Internal control (carbon assimilation rates related to prior carbon assimilation 506 

rates) is a strong predictor on canopy carbon assimilation at timescales up to a week, while 507 

the key direct climatic modifier of this are temperature and available moisture, but 508 
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primarily on longer timescales and longer lag times. Clearly, this differs from the primarily 509 

direct relationships one finds for leaf photosynthesis controls and highlights the 510 

complexity of modeling canopy photosynthesis and the value of long-term data. 511 

The analysis here is unable to directly identify mechanisms. I assumed that a strong 512 

autocorrelation at long time scales implies carbohydrate storage or other mechanisms of 513 

buffering that limits ecosystem response to climate extremes. However, the evidence that 514 

such occurs here is weak and instead long-lead short-term moisture stress and prior 515 

season temperature anomalies appear to have the strongest effects, suggesting that 516 

moisture control is stronger than expected. A number of biotic interactions are likely in 517 

response to climate anomalies, in addition to changes in internal storage of sugars and 518 

starches, there are possible shifts in allocation in response to extremes or aging or 519 

community reorganization from shifts in competitive pressure. There was very limited 520 

management in the region over the study period and no evidence for a shift in age structure 521 

or dominance of certain ecosystems (Gellesch et al., 2013; Scheffer et al., 2001), which 522 

allowed this analysis to assume stationary conditions. Additionally, it is unclear from the 523 

analysis	
  if	
  any	
  state	
  shifts	
  from	
  multiple	
  or	
  repeating	
  stress,	
  dubbed	
  “ecological	
  stress	
  524 

memory”	
  (Walter	
  et	
  al.,	
  2013),	
  was	
  observed	
  here. Instead, the analysis suggests that 525 

modeling and experimental studies should look and evaluate carbon cycle shifts over long 526 

time scales (seasons to years) in response to relatively short-term drought manipulation or 527 

prior season temperature anomalies. Further, multi-year anomalies that may be related to 528 

patterns and oscillations in biology or climate warrant more investigation. For example, the 529 

negative autocorrelation of Pd at interannual timescales for annual and longer averages 530 
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suggests potential biological oscillations, cycles of herbivory, species successional 531 

processes. 532 

Further	
  evidence	
  on	
  the	
  lack	
  of	
  a	
  strong	
  negative	
  feedback	
  or	
  “internal	
  control”	
  is	
  533 

the surprising lack of correlation between relative anomalies of Pd to EVI. Anomalies of Pd 534 

do not appear to relate to anomalies of EVI at any timescale, calling into question how well 535 

remote sensing can be used to evaluate how climate anomalies drive productivity 536 

anomalies. Many applications have been developed around the ability to apply differences 537 

in infrared and visible reflectance of canopies to estimate global photosynthesis from space, 538 

ever since early work showed the strong link of absorbed radiation to plant carbon 539 

assimilation (e.g., Kumar and Monteith, 1981). For example, remarkably strong monthly to 540 

seasonal correlations exist between NASA MODIS derived monthly GPP against flux tower 541 

estimated GPP (Heinsch et al., 2006). However, many of these papers find that while 542 

satellites can sense large-scale latitudinal variation, significant unexplained variability 543 

exists across smaller regions and across longer timescales.  544 

It appears that EVI and similar metrics of remotely sensed vegetation greenness or 545 

absorbed radiation capture processes like phenology, leaf area, or canopy development, 546 

though they likely do not readily capture the anomalies or extremes as formulated in this 547 

analysis. Though anomalies do not correlate, EVI does explain approximately 75% of the 548 

biweekly variation of Pd. EVI has also been argued as a good proxy for carbon uptake 549 

phenology, but at this site, dates of start and end of carbon uptake period (period when 550 

mean daily smoother Pd is positive)  do not correlate strongly to dates of start and end of 551 

the	
  “greenness”	
  period	
  as	
  identified	
  in	
  EVI. However, I did find that growing season length 552 

as defined by its carbon uptake period has a strong correlation with average growing 553 
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season EVI (r=-0.88), though with a negative relationship and a small effect size, suggesting 554 

that short term and long-term EVI have opposing effects and may partially explain the lack 555 

of correlation of anomalies. The strongest relationship with mean growing season EVI is 556 

with correlation of the end date of this uptake period (r=-0.92), consistent with some 557 

recent work that many temperate forest systems have interannual variability in NEE driven 558 

by end of season signals (Wu et al., in press). The analysis here does suggest caution is 559 

warranted when analyzing anomalies in broadband satellite vegetation indices. 560 

Finally, it is apparent that both at the direct timescale, through the high correlation 561 

of ET to Pd and at the lagged timescale, through the positive association of seasonal soil 562 

moisture to Pd and the long lag relationships of temperature to Pd, all imply a variety of 563 

moisture retention and moisture use processes influence photosynthesis at a number of 564 

timescales. Some of these maybe related to summer droughts influence late season 565 

photosynthesis and others may be related the dynamics of the snowpack on soil moisture. 566 

The existence of moisture control on plant biogeochemistry in a mesic temperate forest 567 

and wetland landscape in and of itself is surprising and opens up a number of new avenues 568 

for analysis. 569 

Towards a canopy photosynthesis modeling framework   570 
Compared to lab experiments, both uncontrolled and controlled field observations 571 

require greater explicit consideration of time and spatial scale, and the extent to which 572 

variability expressed in one dimension truly reflects the signal one seeks to estimate. This 573 

paper, like others (e.g., Stoy et al., 2009), demonstrate that frequency dependent analysis is 574 

essential for identifying processes over long-time periods or large regions. Otherwise, 575 
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conclusions can be drawn from short-term or small-scale data that have very limited 576 

application to how photosynthesis actually responds to the environment. 577 

Statistical analyses for large environmental data sets are still in development. 578 

Modern computational speeds, open source libraries for advanced programming languages, 579 

and new models of graduate student training have led to continued improvement in these 580 

(Zobitz et al., 2011). Of course, whether the methods presented here are useful ultimately 581 

depend on the interpretation of results.  582 

Moorcroft et al (2006) asked if we have reached a predictive ability for the 583 

biosphere. Progress has been made, especially with advanced coupled dynamic vegetation 584 

and carbon cycling models (e.g., Medvigy et al., 2009), but the community may have 585 

reached a standstill until we seriously reconsider how we confront models with data. 586 

Dietze et al (2012) found among more than a dozen ecosystem models, very little 587 

confidence present in our ability to simulate both the diurnal cycle and interannual 588 

variability, with the latter finding confirmed by Keenan et al (2012). New research further 589 

finds ever short-term environmental variability can strongly affect long-term carbon 590 

cycling (Medvigy et al., 2010).  591 

The analysis here suggests that models need to be evaluated on the temporal 592 

memory of moisture and carbon storage mechanisms. Advances have been made in 593 

applying data assimilation or Bayesian inference methods to sift through data and models 594 

(Williams et al., 2009). Large model-data syntheses as mentioned in the introduction have 595 

contributed to our ability to diagnose consistent model errors. Data uncertainty, machine 596 

readability, and archival have also gotten greater attention. Uncertainty, in particular, is 597 

essential to collect with all these data, given how sensitive model-data comparisons can be 598 
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to them (Raupach et al., 2005). Finally, recent progress has been made on making modeling 599 

and model-data comparisons a routine exercise, or at least, more user-friendly and across a 600 

wider range of data sources (LeBauer et al., in press). 601 

Multiple lag and time filtering should applied to climate extreme experiments 602 

conducted with ecosystem models in the soil moisture and carbon storage domains. 603 

Various model structures and parameters (e.g., root exudates, labile carbohydrate storage, 604 

community shifts, or soil moisture storage rates) can be investigated not for merely how 605 

well they simulate NEE or even Pd, but rather how well they simulate the observed 606 

relationships among variables across time. Some of these responses span over multiple 607 

years. Further, comparisons should be made in anomaly space if we really want to test how 608 

climate extremes influence photosynthesis.  609 

Conclusion 610 
I found that neither the carbon storage control or moisture control hypotheses 611 

could be falsified with long-term data, once seasonal cycle was removed. The extent to 612 

which the hypotheses could be falsified was strongly dependent on the scale of the 613 

averaging filter and the lags analyzed. Using Hilbert spectra to identify relevant lags, I 614 

found a short-term carbon storage link on the order of weeks and a longer-term seasonal 615 

positive soil moisture influence on photosynthesis anomalies. Daily to weekly lagged 616 

positive anomalies of photosynthesis positively influence current photosynthesis, 617 

inhibiting photosynthetic response to direct climate extremes, primarily anomalies on 618 

evapotranspiration and maximum temperature. Moisture stress or surplus in the prior 619 

season did inhibit or promote photosynthesis, but mechanisms are difficult to assess.  620 
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 These results support prior suppositions that spring moisture anomalies and 621 

autumn carbon uptake anomalies influence future carbon assimilation rates, not just length 622 

of growing season or phenology. Further, the results highlight the difficulty that some 623 

commonly used indicators of plant growth such as remotely sensed vegetation indices, can 624 

reliably detecting anomalies in net carbon uptake. Finally, multi-year lagged negative 625 

relationships of temperature and evapotranspiration anomalies on current photosynthesis 626 

are intriguing and suggest new avenues of exploration for the role of long-lead ecosystem 627 

responses to extremes.  628 

 These findings are not necessarily detectable with shorter-term data or leaf-level 629 

analysis, as they involve subtle relationships and canopy and soil level processes. The 630 

results are similar to, for example, recent work by Niu et al. (2012) who argued that 631 

thermal acclimation of NEE (a flux made up of many interacting processes) can occur on 632 

interannual timescales in canopies. Also interesting was the lack of relationship between 633 

spectral indices and Pd, once converted to anomaly space, similar to some of the results of 634 

Heinsch et al (2006) that remotely sensed GPP is adequate for large spatial scale variation 635 

but poor for single pixel interannual variability. 636 

The results here demonstrate the importance of long-term environmental 637 

observation of canopy photosynthesis but the caution that has to be taken regarding the 638 

high temporal autocorrelation that exists in flux and climate data. Strong covariance of 639 

these signals to seasonal orbital forcing requires careful evaluation of spurious correlation. 640 

A disconcerting finding was the lack of strong statistical power at detecting many 641 

correlations at long timescales, beyond interannual, even with >15 years of data. Methods 642 

that seek complementary use of short-term field manipulations, lab observations, and long-643 
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term datasets like Fluxnet and the evolving NEON observatory will require continued 644 

evolution of model-data comparison tools. Other papers in this special issue point to a 645 

number of intriguing new ways to look at photosynthesis in models (Dietze et al., this issue; 646 

Rogers et al., this issue; Sitch et al., this issue; Tholen et al., this issue). Here, I have shown 647 

that a spectral anomaly framework and long-term flux observation network contribute to 648 

their evaluation and improvement. 649 
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Figures 805 

 806 
Fig. 1 Examples of processes that affect photosynthesis in the environment that make 807 
canopy-scale photosynthesis differ from leaf-level photosynthesis, superimposed on a 808 
photo taken from an eddy covariance flux tower overlooking a temperate hardwood forest . 809 
 810 
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 811 
Fig. 2 Nearly fifteen year time series of (a) net ecosystem exchange of CO2 (NEE) and (b) 812 
evapotranspiration flux (ET) at hourly (black crosses) and biweekly (red line) timescales as 813 
observed from the WLEF Park Falls, WI very tall eddy covariance flux tower from 1997-814 
2012. Long-term datasets like these on canopy-scale carbon and water fluxes are starting 815 
to be made available in the eddy covariance community. The large variability at multiple 816 
timescales presents a significant opportunity and challenge for improving predictions of 817 
ecosystem fluxes. 818 

819 



 36 

 820 
 821 
Fig 3. Time series of daily a) air temperature (Tair), b) precipitation (Precip), c) soil moisture 822 
(Qsoil), and biweekly d) MODIS enhanced vegetation index (EVI), and e) MODIS land surface 823 
temperature (LST). To allow comparisons to the quality-controlled flux data, 2002 was also 824 
removed from these data. 825 

826 
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 827 
 828 
 829 
Fig. 4 Hilbert-Huang power spectral transformation of (a) net canopy carbon uptake (Pd) 830 
and (b) daily evapotranspiration (ET) derived from empirical mode decomposition of the 831 
tall tower fluxes. Raw daily time series are shown below each transformation and marginal 832 
power spectrum on the right. To improve clarity of higher frequency variation, the 833 
transform is cut-off at 400-day wavelength. The time-frequency decomposition reveals that 834 
both carbon and water exchange exhibit a number of characteristic timescales of variability, 835 
including substantial peaks at the monthly and seasonal timescale. Longer-term variability 836 
is much weaker, especially for carbon, but growing season signals of variability on the 100-837 
200 day wavelength exist and strong coherence among water and carbon are also noted. 838 

839 
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 840 
 841 
Fig. 5 Scatterplot of flux tower derived GPP (based on fit of nighttime NEE to temperature 842 
to estimate respiration) to Pd for a) mean daily GPP, b) maximum daily GPP, c) mean 843 
monthly GPP, and d) mean monthly maximum daily GPP. 1:1 fit line shown on all four and 844 
shows that Pd is closely related to maximum daily GPP. Correlation at daily scale is r2=0.81 845 
and monthly r2=0.96.846 
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 847 

 848 
 849 
Fig. 6 Example of generating relative anomalies for lag correlation analysis. Raw daily time 850 
series of (a) net photosynthetic drawdown (Pd), were (b) de-seasonalized by removal of the 851 
ensemble average daily time series and then averaged to the appropriate averaging 852 
timescale, in this example, monthly (red line) and finally (c) normalized to relative values. 853 
The final signal represents the true anomalies of variation across time and has successfully 854 
removed the seasonal variability of solar forcing. 855 
 856 

857 
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 858 
 859 
Fig. 7 Degree of freedom analysis for daily net photosynthetic drawdown from the tall 860 
tower fluxes. The total record has 5490 observation periods (with 37% of observations 861 
missing), but the full autocorrelation analysis reveals an exponentially declining true 862 
degree of freedom from slightly over 600 for no-averaging, to near zero above 360 day 863 
smoothing of the time series. This reduced N is used for all correlation significance tests. 864 

865 
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 866 
 867 
Fig. 8 Direct correlation coefficients of standardized anomalies of climate variables to net 868 
photosynthetic drawdown (Pd) anomalies at daily to multi-year filter scales. Temperature 869 
variables explain a small fraction of weekly to monthly anomalies in Pd, while moisture 870 
variability explains a greater fraction of long-term seasonal variability in anomalies of Pd. 871 
Interestingly, remotely sensed vegetation index anomalies do not significantly explain Pd 872 
anomalies at any timescale. 873 
 874 
 875 
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 876 
 877 
Fig. 9 Analysis of lagged standardized anomalies of (a) Pd, (b) EVI, (c) Tmean, and (d) LST to 878 
Pd at a range of averaging times and lag times. Only significant correlations are displayed, 879 
after correction of autocorrelated degrees of freedom. Red squares indicate significant 880 
correlations that exceed Pd autocorrelation at that averaging and lag scale. Strong AR-1 881 
correlation persist in Pd at lags up to one month and averaging periods to one month, while 882 
small negative correlations show predictive ability for temperature at lags exceeding one 883 
year and EVI at the two-month lag. 884 
 885 
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 886 
Fig. 10 Same as Fig. 9 but for moisture variables of (a) ET, (b) WUE, (c) Precip, and (d) Qsoil. 887 
While ET and WUE have significant direct correlations as shown in Fig. 5, lagged 888 
correlations are small. Stronger positive correlations exist for precipitation and soil 889 
moisture at the weekly to seasonal timescale for seasonal scale lags. 890 

891 
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Tables 892 
 893 
Table 1 Abbreviations used in this paper 894 
Abbreviation Description Source 
NEE Net ecosystem exchange of CO2 Flux tower 
GPP Gross primary production Flux tower 
Pd Photosynthetic drawdown Flux tower 
EVI Enhanced Vegetation Index, 8-day average MODIS TERRA/AQUA 
ET Evapotranspiration Flux tower 
WUE Water Use Efficiency (Pd/ET) Flux tower 
Precip Daily precpitation NCDC + NARR 

Reanalysis 
Qsoil 10 cm soil moisture NARR Reanalysis 
Tmean Daily temperature Flux tower + NCDC 
Tmin Minimum daily temperature Flux tower + NCDC 
Tmax Maximum daily temperature Flux tower + NCDC 
Trange Daily temperature range (max - min) Flux tower + NCDC 
LST Land Surface Temperature, 8-day day/night 

average 
MODIS TERRA/AQUA 

 895 
896 
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Table 2 Granger causality analysis for Pd as a function of averaging period reveals best 897 
predictive models generally include temperature and transpiration observations for daily 898 
to weekly averages but precipitation, soil moisture, and water use efficiency for monthly 899 
time scales, primarily within the first or two lags. No variables could exceed Pd 900 
autoregression in explaining longer averaging scales (> 30 days). 901 
Variable/Averaging 
period (Days) 

1 3 8 15 30 90 360 

EVI      90  
        
Tmean 1 3 8     
        
LST 1 3      
        
ET 1-3 3 8    360 
        
WUE 1-3 3  15-360    
        
Precip        
        
Qsoil        
 902 


