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Abstract Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial
pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria.
However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and
equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from
the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient
of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate
equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2.
The empirical random errors in CO2-related parameters were mostly below 2% of their median values.
Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group
and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When
compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates
with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic
uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from
uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2

estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2

measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater
components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision
of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.

Plain Language Summary Lakes, ponds, streams, and rivers process a large amount of organic
matter, some of which is emitted to the atmosphere as global-warming greenhouse gases like carbon
dioxide or methane. The rates and amounts of these emissions influence how quickly atmospheric
greenhouse gas levels, and hence climate change, progress. Though it is currently not feasible to make direct
measurements of carbon dioxide in most lakes on Earth, it is often possible to estimate carbon dioxide
quantities from other sets of commonly taken aquatic chemistry measurements. However, we lack
information if these estimates are close to each other andmatch true values, and hence, are trustworthy. Here
we analyze a unique three-decade long data of the key measurements across a gradient of 11 lakes to show
that even pretty similar repeated measurements can sometimes cause large scatter of estimated carbon
dioxide. Further, we compare a subset of observations to direct measurements of carbon dioxide and find
estimated quantities to be differ from directly measured carbon dioxide quantities. Our results suggest
that we need to learn more about factors causing data scatter and differences if we want to trust our
estimates of freshwater carbon dioxide emissions. We provide a set of recommendations to advance carbon
dioxide estimates and measurements.

1. Introduction

Outgassing of carbon dioxide (CO2) from inland waters has been estimated to offset approximately 20% of
net uptake of carbon into the terrestrial biosphere (Ciais et al., 2013). However, this calculation is based on
estimates of source strength at the air-water interface that are highly uncertain (Raymond et al., 2013).
One of the largest unknowns is the accuracy and precision of freshwater partial pressure of CO2 (pCO2)
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estimates. Improving understanding of pCO2 observational uncertainties is therefore a key step toward
achieving robust estimates of CO2 emissions from inland freshwaters, leading to confidence in detection
of long-term change relevant to global terrestrial carbon cycling

The net air-water CO2 exchange is calculated as a product of the CO2 gas transfer velocity (k), the CO2

solubility constant (K0), and the gradient between pCO2 in the atmosphere and water (ΔpCO2). The aquatic
component of ΔpCO2 in current estimates of carbon evasion from inland waters relies on calculating pCO2

using carbonate equilibria due to scarcity of direct pCO2 measurements at regional and global scales
(Butman & Raymond, 2011; McDonald et al., 2013; Raymond et al., 2013). Given the high accuracy and
precision of atmospheric pCO2 measurements (Andrews et al., 2014), uncertainties attributed to measure-
ment errors in aquatic carbon system parameters are likely the largest source of uncertainty in ΔpCO2.

Carbonate equilibria use temperature and the combination of two of three CO2-related parameters (i.e., pH,
alkalinity (ALK), and dissolved inorganic carbon (DIC)) to calculate pCO2 (Parkhurst & Appelo, 1999; van
Heuven et al., 2011). Thus, pCO2 errors directly arise from measurement errors in these parameters. These
measurement errors include systematic errors and random errors. Systematic errors (e.g., instrument limita-
tions and methodological errors) affect the accuracy of the measurements (Skoog et al., 2014) and lead to
directional (i.e., positive or negative) biases in the measurements of pH, ALK, and DIC concentration
(French et al., 2002; Herczeg & Hesslein, 1984; Lozovik, 2005). Systematic errors are likely to cause biased
pCO2 estimates in surface waters (Abril et al., 2015; Butman & Raymond, 2011; Herczeg & Hesslein, 1984),
and their contributions to regional and global CO2 emissions from freshwaters have not yet been quantified
(Raymond et al., 2013).

While targeted efforts can help minimize systematic errors, random errors will always be present in
observations of carbonate system parameters, and thus must be considered during data analysis, model-data
comparison, and interpretation of trends (Richardson et al., 2012). Difficult to control factors (e.g., fluctuations
of temperature or barometric pressure) or insufficient understanding of errors in analytical procedures cause
data to scatter around the mean values and affect parameter precision (Skoog et al., 2014). Measurement
precision can be characterized by estimating the standard deviation from multiple measurements collected
under different conditions (reproducibility) or from a pair of independent measurements made under
identical conditions (repeatability), assuming normally distributed errors (International Organization for
Standardization (ISO), 2004). While a few studies address random uncertainties in measurements of
carbonate parameters (French et al., 2002; Phillips et al., 2015; Wilkinson et al., 1992) and direct and calculated
pCO2 (Baehr & DeGrandpre, 2004; Herczeg & Hesslein, 1984), none of existing studies evaluates how
parameter uncertainties propagate on random uncertainty in pCO2 calculated from multiple carbonate
equilibria, identifies key parameters contributing to pCO2 errors, or tests if existing uncertainties would allow
for detecting long-term change.

Oceanographers have made significant efforts to standardize and reduce these errors, resulting in thermody-
namically consistent measurements of CO2-related parameters, highly precise and accurate estimates of the
seawater carbonate system (Lueker et al., 2000; Millero, 2007), and thus of the ocean sink for anthropogenic
carbon (Ciais et al., 2013; Khatiwala et al., 2013; Sabine et al., 2004). In contrast, acceptable accuracy and pre-
cision levels have not been standardized for freshwater systems. Additional challenges stem from diverse
chemical composition of inland waters (Dickson & Riley, 1978), using data originally designed to monitor
other characteristics of ecosystems, not pCO2, and general lack of published error estimates to assess the
uncertainty of CO2 source strength from aquatic systems.

In view of growing interest in integrating aquatic and terrestrial components of carbon balances and
persistent use of carbonate equilibria to estimate pCO2 and C flux from freshwater systems, we asked: what
uncertainties are attributed to pCO2 calculations from carbonate equilibria using two CO2-related
parameters? We answered this question with a comprehensive error analysis of three-decade long
historical observations at the North Temperate Lake Long-Term Ecological Research (NTL-LTER) site. We
quantified random errors in pH, DIC, ALK, and temperature measurements and propagated these to
estimate uncertainties in pCO2 calculated from three carbonate equilibria for four lake groups across a broad
gradient of water chemical composition. We also compared uncertainties in a subset of these pCO2 observa-
tions with directly measured pCO2 to determine the relative importance of random to systematic pCO2 errors.
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2. Materials and Methods
2.1. Study Site and Data Collection

We quantified random error using observations from the NTL-LTER data set for years 1986–2011 (NTL-LTER
Website: https://lter.limnology.wisc.edu/data). Carbonate system parameters have been measured since
1986 in seven lakes located in northern Wisconsin, USA, and in four lakes in southern Wisconsin since 1996.
The northern lakes are located in the Northern Highland Lake District (NHLD), which has a mosaic of mixed,
hardwood, and coniferous forests (~53% of total area), wetlands (28%), lakes (13%), and other land coverages
(Buffam et al., 2011). Soils in the NHLD are dominated by sandy gravel and gravelly sand with dominance of
silicate over carbonate (Attig, 1985). The southern lakes are located in the Yahara River Lake District (YRLD),
which is dominated by agriculture (65%), urban (20%) land uses, and the remainder for forest, wetland, or
water bodies (Carpenter et al., 2007). Soils in YRLD are dominated by glacial tills, most commonly sand, silt,
and clay accumulated over dolomite and limestone parent geology (Clayton & Attig, 1997). Differences in soil
composition are reflected in heterogeneous water chemical composition of lakes studied (Table 1).

The carbon system parameters: pH, total alkalinity (ALK), and dissolved inorganic carbon (DIC), and water
temperature (WT) were measured biweekly (WT), monthly (pH and DIC), or quarterly (ALK). Depending on
the lake maximum depth and thermocline depth, the samples were taken from one to six sampling depths.
On each sampling occasion, blind-paired samples were collected for all variables except water temperature
from a randomly selected depth. To ensure valid comparison across three combinations of input parameters,
we used only data with pairedmeasurements for all three CO2-related parameters. This limited the analysis to
quarterly measurements at one depth per lake.

To prevent CO2 loss or entrainment, water samples for determination of CO2-related parameters were gently
collected, avoiding splashing and air exposure. The bottles were rinsed with the water sampled, then filled to
the top including overflow, and carefully screwed on the displacement cap. Bottles were checked for the
presence of air bubbles by inverting the bottles. Water samples were discarded and refilled again if bubbles
were present.

Water samples for pH measurements were collected with a peristaltic pump and tubing to 20 mL scintillation
vials with displacement caps to exclude air from the vial. In this study, we used the air-excluded pH samples
only. The samples were stored in a cold and dark container to minimize biological activity until just before
analysis, and then warmed up in the same container to room temperature. The pH samples were analyzed
the same day using a potentiometric method in two laboratories: Hasler Lab in Madison (samples from
YRLD) and Trout Lake Station Lab (samples from NHLD). The electrode syringe barrel sealed with teflon tape
around the electrode was conditioned with lake water to be analyzed for at least 15min. After uncovering the
electrode filling solution hole, the conditioning solution was removed from the barrel using the three-way
valve and aspiration system. The electrode chamber was flushed in and out for several times with 2 mL water
samples to be measured. The bottles for pH determination were opened just before analysis to draw of 2 mL
aliquots of the water sample for several runs of measurements. The measurements were repeated until two
consecutive millivolt readings were ±1 mV. Last millivolt reading was recorded. After analyzing all samples,
the millivolt readings for three buffer solutions: pH 10.00, 7.00, and 4.00, were obtained. The recorded buffer
and sample millivolt values were used to calculate pH values. The pH meters were changed from
PHM84 Research pH meter to Orion model 720 pH meter in 1988. Since July 2010, pH was measured using
a Radiometer combination pH electrode and Orion 4Star pH meter. The dates of pH electrode
replacement were unavailable. The relative accuracy of all pH meters was ±0.002 according to
manufacturers’ specifications.

Dissolved inorganic carbon (DIC) samples were collected with the peristaltic pump, tubing and in-line filtered
through 0.40 μm polycarbonate filter into 24 mL glass vials capped with septa, leaving no head space. The
samples were not poisoned prior storage and analysis. The samples were refrigerated at 4°C and sent in
the shipper to Hasler Lab via Fed Ex overnight delivery (NHLD samples only). The samples were stored
refrigerated and analyzed within 2 to 3 weeks. After phosphoric acid addition, the samples were
analyzed with OI Model 700 Carbon Analyzer (before May 2006) or a Shimadzu TOC-V-csh Total
Organic Carbon Analyzer (to date). The detection limit for DIC was 0.15 ppm for the analytical measure-
ment range of 60 ppm. The accuracy and precision of Shimadzu’s Analyzer were 1.5% following
manufacturer’s specification.
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Total alkalinity (ALK) samples were collected with the peristaltic pump and tubing to 20 mL high-density
polyethylene plastic containers with conical caps. The ALK samples were not poisoned prior storage and
analysis. The samples were stored refrigerated at 4°C and then sent to Hasler Lab in Madison via Fed Ex
overnight delivery (NHLD samples only). The samples were stored refrigerated at 4°C until determination,
which typically occurred within 2 weeks. Prior to analytical determination, samples were brought to room
temperature. ALK was determined by titrating water samples to an endpoint pH of ~3.557 by adding
10 μL increments of 0.05 N HCL to 16 mL sample from southern lakes or 0.01 N HCL to 4 mL sample
from northern lakes. Between February 1986 and November 2001, the alkalinity measurements in four
lakes (Trout Lake, Sparkling Lake, Allequash Lake, and Big Muskellunge Lake) were made using a
Brinkmann 636 Titroprocessor. The detection limit for the gran alkalinity titration was approximately
5 μeq L�1, for the analytical range spanning to 4,000 μeq L�1. The accuracy of manual alkalinity titration
is unavailable.

Water temperature measurements were taken using a YSI Model 58 temporDOmeter (before 2011) and a YSI
Pro-ODO temporDO meter. The accuracy was ±0.2°C according to manufacturer’s specifications.

2.2. Random Errors in CO2-Related Parameters

To minimize the impact of outlying observations on distribution and statistical properties of random
errors, we removed paired measurements with chemical composition differences larger than 15%
following the NTL-LTER quality assurance/quality control (QA/QC) protocol. Many of removed observations
were already flagged for different quality control reasons. Quality control led to removal of 8% (58/709)
of pH observations in antilog scale, 9.5% (68/709) of ALK measurements, and 2.4% (14/709) of
DIC observations.

Because carbonate chemistry data in NTL-LTER lakes varied over 1–3 orders of magnitude (Table 1), the lakes
were grouped into four groups based on ALK and dissolved organic (DOC) concentrations: two bog lakes with
low ALK but high DOC (hitherto called “LBALK”), one clear water lake with low ALK and low DOC (“LCALK”), four
lakes with moderate ALK and low DOC (“MALK”), and four lakes with high ALK and moderate DOC (“HALK”).
Grouping lakes also enlarged populations of paired observations to generate reasonable resampling
distribution (Chernick & LaBudde, 2011) for error analysis.

To quantify random uncertainties from paired samples, we followed the approach described in Hollinger
and Richardson (2005). For a given parameter (Pi) we used a pair of independent measurements (X1, X2)
that were made under identical conditions. Because every measurement (Xi) is subject to uncertainties,
each parameter value represents the best estimate of the measured constituent plus the random (ε)
and systematic (δ) errors. Since no information on systematic errors in CO2-related parameters at
NTL-LTER site were available for most of records, we initially focused on the effect of random errors only
while neglecting the effect of systematic uncertainties on the pair. Thus, ε approximated the random
variable with mean 0 and standard deviation σ(ε). Since the mean difference between two independent
measurements (X1–X2) was close to zero and two-sample Kolmogorov-Smirnov test showed that random
uncertainties were independent and identically distributed, the standard deviation σ(ε) can be
determined from equation (1):

Table 1
Chemical Characteristics Within Lake Alkalinity Groups (Low to High); the Values Represent the Median and 5th and 95th Percentiles

Variable LBALK
a LCALK

b MALK
c HALK

d

pH 5.03 (4.58–5.52) (n = 2136) 6.32 (5.62–7.06) (n = 1543) 7.44 (6.65–8.38) (n = 6016) 8.31 (7.44–9.08) (n = 3631)
ALK (μM) 15 (�16–102) (n = 754) 29 (11–77) (n = 498) 797 (388–997) (n = 2025) 3524 (2608–4196) (n = 1021)
DIC (μM) 263 (45–644) (n = 2060) 62 (30–292) (n = 1508) 855 (429–1227) (n = 5826) 3612 (2475–4499) (n = 3149)
DOC (mg L�1) 16.36 (8.09–28.37) (n = 2055) 1.90 (1.36–2.54) (n = 1492) 3.38 (2.48–4.73) (n = 5782) 6.12 (4.65–8.56) (n = 3129)
TP (μg L�1) 8 (3–32) (n = 2107) 23 (9–106) (n = 1446) 11 (4–90) (n = 5840) 61 (13–463) (n = 4477)
TN (μg L�1) 193 (105–463) (n = 2112) 721 (360–1889) (n = 1537) 311 (166–885) (n = 5948) 920 (610–2540) (n = 1537)

aLakes grouped in LBALK group are: Crystal bog, trout bog. bLCALK group includes Crystal Lake. cLakes grouped in MALK group are Allequash Lake, Big
Muskellunge Lake, Sparkling Lake, and Trout Lake. dLakes grouped in HALK group are Fish Lake, Lake Mendota, Lake Monona, Lake Wingra.

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG003794

GOLUB ET AL. UNCERTAINTY IN FRESHWATER PCO2 ESTIMATES 4



σ εð Þ ¼ 1
√2

σ X1 � X2ð Þ (1)

Therefore, random errors of each parameter, ε(Pi), were quantified as the standard deviation of the difference
of repeated pairs of measurements. We used Shapiro-Wilk test to evaluate the normality of distributions. To
understand the impact of nonnormality on error distribution, we additionally characterized distributions of
parameter errors by fitting the probability density functions (PDFs) using the fitdist function in MATLAB
R2014b and open-source codes. For each pdf, the mean, scaling, and shape (if applicable) parameters, and
skewness and kurtosis were calculated.

2.3. Random Errors in pCO2 Estimated From Carbonate Equilibria

To assess random uncertainty attributed to pCO2 estimation, we propagated errors onto pCO2 derived from
two CO2-related parameters. We used three combinations of two input parameters: pH and DIC (pCO2-pH-
DIC equilibrium), pH and ALK (pCO2-pH-ALK equilibrium), and ALK and DIC (pCO2-ALK-DIC equilibrium).

The mass-conservation equation for DIC calculations was defined as

DIC½ � ¼ H2CO�
3

� �þ HCO�
3

� �þ CO2�
3

� �
(2)

where H2CO�
3 is the sum of aqueous CO2 and carbonic acid (H2CO3). The alkalinity equation neglected the

contribution of non-CO2 species and was defined as

ALK½ � ¼ HCO�
3

� �þ 2 CO2�
3

� �þ OH�½ �– Hþ½ � (3)

For pCO2 calculations, we used in situ water temperature, the dissociation constants for freshwaters after
Millero (1979), and barometric pressure at 1 atm. The influence of ionic strength was neglected, and all
calculations were performed in pH NBS scale. Calculations were performed with the MATLAB version of
the CO2 System Calculations (i.e., CO2SYS; van Heuven et al., 2011). The sets of equations for three parameter
pairs are described in Dickson et al. (2007).

A bootstrap method was used to propagate parameter errors onto carbonate equilibria equations to esti-
mate random pCO2 errors. This approach uses empirical data and does not introduce any assumptions
about error population distributions (Chernick & LaBudde, 2011). It also provides more realistic estimates
of random uncertainty because it allows partial cancelation of errors. At each iteration, the random error
for each parameter was bootstrapped with substitution from the error pools specific for each alkalinity
group. The parameters’ error terms were simultaneously applied to the entire population of observations
within each ALK group representing a full spectrum of chemical and temperature ranges observed in
lakes. Applying errors to all observations at once permitted to investigate errors propagating through
equations, not errors in individual observations (Yanai et al., 2010). The covariance between errors in
parameter pairs was close to zero except for ALK and DIC errors in MALK and HALK groups, however,
all error pairs were statistically uncorrelated. Since parameter measurements were independent and
uncorrelated, parameter-specific random errors were propagated independently without covariance
term added.

We propagated random parameter errors 10,000 times, and at each iteration, computed the population pCO2

median. For highly skewed or heavy-tailed distributions, like distributions found for parameters and random
errors (Table 2 and Figure S1 in the supporting information), the sample median is considered a good
measure of central tendency (Chernick & LaBudde, 2011). From distribution of 10,000 population pCO2

medians, we inferred the properties of random pCO2 error distribution. The population median described
the best estimate of pCO2 within each ALK group, while the standard error of the median population
described pCO2 uncertainty. For each ALK group, we propagated random errors in three runs, one run with
errors in both parameters, and two runs with errors in each parameter separately. The uncertainty attributed
to bootstrapping accounted for <1% in all three carbonate equilibria.

Unlike chemical components of water, no duplicate observations of water temperature exist in NTL-LTER data
set. To calculate temperature repeatability, we used high-frequency buoy temperature observations to
randomly draw 10,000 temperature pairs spaced over a short period of time and under similar climatic
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conditions. The random temperature error was ±0.23°C. Since a long-term behavior of temperature
random was unknown, we used sensitivity analysis to quantify upper bounds of uncertainty due to
temperature. Long-term means of carbonate parameters were kept constant while propagating error over
temperature ranges of 0–25°C to estimate temperature effect for isochemical water.

Although our goal was to demonstrate uncertainty propagating onto pCO2 derived from two carbonate
parameters, we also acknowledge that using just two CO2-related parameters may result in spurious pCO2

estimates in some ALK groups. Therefore, we ran additional simulations: after correcting organic acid
contribution to total alkalinity in the LBALK group and after considering ionic strength influences in the
HALK group. In the LBALK group, 1 μM of ALK was subtracted for each 1 mg L�1 of DOC before running
ALK-based equilibria. The pool of observations for pCO2 calculations decreased by 30% as negative ALK
observations were removed before simulations. Additionally, we corrected thermodynamic constant for
influences of ionic strength before pCO2 calculations in the HALK group. Only one hardwater lake
(Lake Wingra) had historical major ion measurements, and the same ionic strength was applied to all
observations within HALK group. Estimated ionic was calculated from a Debye-Hückel equation (Brezonik &
Arnold, 2011) and accounted for I = 0.0091 M. The activity coefficients were calculated from an extended
Debye-Hückel equation (Brezonik & Arnold, 2011).

The pCO2 values estimated from pCO2-ALK-DIC equilibrium in LCALK, MALK, and HALK groups were biased
relative pCO2 calculated from pCO2-pH-DIC and pCO2-pH-ALK equilibria because observations with DIC
concentrations smaller than ALK concentrations (DIC < ALK) were removed to enable pCO2-ALK-DIC
equilibrium to solve for pH over 10,000 iterations in these ALK groups. Removing DIC < ALK (more alkaline)
observations overestimated the median pCO2 by 22, 123, and 1,448 μatm in the LCALK, MALK, and HALK

groups, respectively. Removed observations accounted for 4 (4.2%) observations in the LCALK group, 77
(11.7%) in the MALK group, and 101 (34.6%) in the HALK group (Text S2 and Figure S2 in the supporting
information). Negative ALK observations were removed before propagating errors in pCO2-pH-ALK and
pCO2-ALK-DIC equilibria.

2.4. Comparison of Uncertainties in Direct and Indirect pCO2 Measurements

To determine how much uncertainty between direct and indirect measurements can be explained by ran-
dom pCO2 errors, we took direct measurements of pCO2 together with carbonate chemistry measurements
for a limited number of observations (n = 21). The measurements of CO2-related parameters were taken
according to sampling and handling protocols described above. The mole fraction of CO2 (ppmv) at 0.1 m
depth was directly measured using a nondispersive infrared Vaisala CARBOCAP CO2 probe enclosed in water-
proof, gas permeable polytetrafluoroethylene membrane following the Johnson et al. (2010) approach. Each

Table 2
Statistical Properties of Random Errors in Carbon System Parameters Within Four Alkalinity Groups Calculated From Paired Observations

Lake group Parameter

Normal distribution parameters

Skewness Kurtosis

t location-scale distribution parameters

(μ) (σn) (μ) (σt) (ν)

LBALK (n = 55) pHa 0.002 0.018 0.021 3.2 0.002 0.016 10.3
ALK (μM) 0.1 2.4 2.0 12.9 0.2 1.1 2.1
DIC (μM) 1.4 12.3 1.8 7.7 �0.9 5.5 1.8

LCALK (n = 48) pHa 0.002 0.017 �0.114 3.7 0.002 0.013 4.3
ALK (μM) 0.3 0.3 0.282 4.4 0.2 1.1 3.3
DIC (μM) 0.9 3.4 1.62 7.7 0.5 1.3 1.6

MALK (n = 331) pH 0.003 0.015 �0.143 4.8 0.003 0.009 2.6
ALK (μM) 0.6 11.7 1.4 12.8 �0.3 3.6 1.4
DIC (μM) �0.3 13.8 �0.4 9.1 �0.4 3.9 1.2

HALK (n = 150) pH 0.003 0.019 0.022 3.0 0.003 0.019 56.2
ALK (μM) 6.8 56.4 0.517 13.0 4.6 13.7 1.2
DIC (μM) 6.1 83.0 �0.44 13.0 4.3 34.7 1.9

Note. The reported values were rounded according to significant figure convention. The significant figures convention reports all certain digits plus the first
uncertain digit.
aThe variable is normally distributed at significance level 0.05 according to Shapiro-Wilk test.

Journal of Geophysical Research: Biogeosciences 10.1002/2017JG003794

GOLUB ET AL. UNCERTAINTY IN FRESHWATER PCO2 ESTIMATES 6



measurement was taken over minimum 16 min, first allowing the probe to equilibrate to environmental
conditions (which generally occurred within 15 min), and then taking a 1 min measurement at 1 s intervals.

The probes were calibrated against gas standards in the laboratory before each field campaign to evaluate
if the probe performs within the manufacturers’ accuracy specifications and to identify potential sensor
drifts. The equilibration time lasted approximately 15 min. Once probe was equilibrated, the average of
the last 60 records was assumed to represent the measured CO2 concentrations. These values were linearly
fitted to calibration curves. The probe accuracy and precision were 1.5% of the range and 2% of the reading at
25°C and 1 atm for a range of 0–3,000 ppm according to manufacturer specifications. However, the median
lab accuracy was �4.2% of gas standards at 22°C and 1,013 hPa. The median precision under repeatability
conditions (ISO, 2004) was quantified from randomly selected 10,000 of 60 s intervals since equilibration
and repeatability standard deviation accounted for ±1% (lab) and ±4.2% (field).

The postmeasurement corrections of calibrated values were applied to compensate temperature and
barometric pressure differences relative to manufacturer’s factory settings (i.e., 1,013 hPa at 25°C),
1.5 ppmv CO2 increase per 1 hPa barometric pressure decrease, and 3 ppmv CO2 decline per 1°C water
temperature decrease. These corrections were derived empirically by the manufacturer. Additionally, the
CO2 values were lowered by 14.7 ppm to compensate for pressure on probes at 10 cm measurement depth
(Johnson et al., 2010). The partial pressure of CO2 (pCO2) in μatm were calculated as a product of mole
fraction and barometric pressure at 1 atm.

Finally, for each data point, we used estimated random temperature error and the combination of corre-
sponding paired measurements of pH, DIC, and ALK to calculate pCO2. The random parameter errors specific
for each alkalinity group were propagated onto each pCO2 observation over 10,000 iterations. Each pCO2

estimates and its random error constituted the median and standard deviation of 10,000 medians.

3. Results
3.1. Random Errors in CO2-Related Parameters

The analysis of nearly 600 paired samples showed that most random errors in CO2-related parameter
measurements were relatively small relative to parameters’ medians when pooled by alkalinity group
(Tables 1 and 2). The random error standard deviation (σn), the estimate of measurements’ precision, in pH
measurements was ±0.02 across all ALK groups and was below 0.4% of the median. Unlike errors in pH,
the random errors in ALK and DIC measurements increased with the magnitude of parameters’ measure-
ments. The random ALK errors ranged from ±0.3 μM in the LCALK group to ±56.4 μM in the HALK group.
Similarly, the smallest random DIC errors were in the LCALK group, ±3.4 μM, while the largest errors were in
the HALK group, ±83 μM. However, when expressed in relative measures, the random uncertainty was the
largest in low ALK groups, accounting for 15.94% of the median ALK in the LBALK group and 5.5% of the
median DIC in the LCALK group. The parameter error magnitudes were also independent of the season, year,
water temperature, and measurement depth (Figure S3).

The empirical distributions of random parameter errors were generally symmetrical around the mean with
skewness values close to zero (Table 2 and Figure S1). Although the kurtosis for pH across all ALK groups
was close to kurtosis values observed in normally distributed data (typically <3), the errors in ALK and DIC
were strongly leptokurtic with characteristic high peaks near the mean difference and heavy tails. Gaussian
distributions were confirmed for random pH errors in LBALK and LCALK groups only (Shapiro-Wilk test,
p < 0.05). Hence, σn would inadequately characterize the parameters’ error dispersion in ALK and
DIC measurements.

At location-scale distribution (tLocat) best characterized distribution of random errors in ALK and DIC
(Figure S1). This distribution has an additional, shape parameter (ν), where small values indicate heavy tails
in error distributions and sensitivity to outliers. Low ν values (<2) indicates undefined variance and were
found in DIC error distributions across all ALK groups and in ALK error distributions in moderate to high
ALK groups (Table 2). For the pH uncertainties, the tLocat distribution provided only a slightly better fit
compared to normal distribution and approached a normal distribution in the HALK group. Other probability
density functions accepting negative values of random parameter errors did not improve the data fit
(data not shown).
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3.2. Random Errors in pCO2 Estimated From Carbonate Equilibria

Random pCO2 errors propagating through ALK-based equilibria were always higher than pCO2 errors
propagating through pCO2-pH-DIC equilibrium (Table 3). The pCO2-pH-ALK and pCO2-ALK-DIC equilibria
showed 6 and 0.2 times higher sensitivities to random parameter errors than pCO2-pH-DIC equilibrium in
the LBALK group. In the LCALK group, the random pCO2(pH-ALK) and pCO2(ALK-DIC) errors were nearly two-
fold higher compared to random pCO2(pH-DIC) errors. While differences between random pCO2(pH-DIC)

and pCO2(pH-ALK) errors were within 10% of the median pCO2 in MALK and HALK groups, the random
pCO2(ALK-DIC) errors were 5 times (in the MALK group) and 30 times (in the HALK group) higher relative
to pCO2(pH-DIC) errors. Random temperature error additionally contributed <1 μatm to random pCO2

errors across all alkalinity groups and carbonate equilibrium used (Figure S5).

Single-parameter propagation revealed that randomDIC error was a dominant source of uncertainty in pCO2-
pH-DIC equilibrium in acidic ALK groups and pCO2-ALK-DIC equilibrium across all ALK groups (Table 3). In
contrast, pCO2 calculated from pH-based equilibria were mostly affected by random pH errors in alkaline
ALK groups. Random ALK error dominated random pCO2(pH-ALK) errors in the LCALK group.

Regardless of carbonate equilibrium used, random pCO2 errors were exponentially proportional to the
median pCO2 (Table 3 and Figure S4). While random pCO2(pH-DIC) and pCO2(pH-ALK) errors showed similar pat-
tern of uncertainties with the highest errors in the LBALK group and similar in the remainder of ALK groups,
the random pCO2(ALK-DIC) errors were higher at both ends of alkalinity gradients (in LBALK and HALK

groups) with the lowest pCO2 error in the LCALK group. Extreme pCO2 errors corresponded to unrealistically
high estimates of median pCO2: 15,225 ± 1,026 μatm (10,999 ± 935 μatm after adjustment) derived from
pCO2-pH-ALK equilibrium in the LBALK group, and 3,725 ± 1,156 μatm (3,129 ± 985 μatm after adjustment)
calculated from pCO2-ALK-DIC equilibrium in the HALK group (Table 3).

Adjustments for contribution of organic acids to total alkalinity in humic lakes (LBALK group) and for ionic
strength in highly buffered lakes (HALK group) decreased random pCO2 errors (Table 3 and Figure S4). The
random pCO2(pH-ALK) error declined by 9%, from ±1,026 μatm to ±935 μatm in the LBALK group; however,
adjusted values were still fivefold higher compared to random pCO2(pH-DIC) errors. Adjusted pCO2(ALK-DIC)

errors in this group nearly doubled. After correcting for ionic strength in the HALK groups, the random
pCO2 errors decreased by 15% across three carbonate equilibria.

3.3. Comparison of Uncertainties in Direct and Indirect pCO2 Measurements

Random error deviation in direct pCO2 measurements expressed here as mean absolute deviation (MAD)
were 14, 5, 10, and 3 μatm, in LBALK, LCALK, MALK, and HALK groups, respectively (Table S1 in the supporting
information). MAD for indirect pCO2 measurements accounted for at least 32, 10, 11, and 35 μatm in these
four ALK groups. The random pCO2 errors between direct and indirect observations cumulatively explained
from 3.6% to 32% of the root-mean-square error (RMSE) between direct and indirect pCO2 observations.

Although carbonate parameter measurements were collected simultaneously with direct pCO2 measure-
ments, the calculated pCO2 failed to reproduce direct pCO2 except for median pCO2 derived from pH and
DIC in the LCALK group (Figure 1 and Table S1). Equilibria pCO2-pH-DIC and pCO2-pH-ALK tended to
overestimate pCO2, while pCO2-DIC-ALK equilibrium generally underestimated pCO2. The largest mismatch
with directly measured pCO2 occurred for observations in the LBALK group calculated from pCO2-pH-ALK
equilibrium and in the HALK group calculated from three equilibria. These discrepancies persisted even after
adjusting pCO2 values for influences of organic acids and ionic strength.

4. Discussion
4.1. Random Errors in CO2-Related Parameters

Most random errors were relatively small relative to median parameter values when pooled by lake
type (Tables 1 and 2). The standard deviations of carbonate parameters derived for a normal distribution
(σn) were compared with published precision values given σn is typically used to characterize random
uncertainties. The pH precision values presented in Table 2 were among the most precise
potentiometric pH measurements reported for freshwaters, which ranged from ±0.01 to ±0.17 pH units
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(French et al., 2002; Herczeg & Hesslein, 1984; Phillips et al., 2015). The reported DIC and ALK uncertainties in
low to moderate ALK groups agreed with published precision values <12 μM (Abril et al., 2015; Baehr &
DeGrandpre, 2002; Wilkinson et al., 1992). However, random errors in highly buffered waters (HALK group)
were higher by approximately fourfold for ALK and sevenfold for DIC (Table 2) than previously reported.

Table 3
The Random Parameter Error Effect on pCO2: Calculations Using Three Carbonate Equilibria in Four Alkalinity Groups Shows That pCO2 Sensitivity to Parameter Errors
Depends on the Choice of Input Parameter Pairs and Lake Groups

Equilibrium

Input
para-
meter

LBALK LCALK MALK HALK

pCO2
(μatm)

SE
(μatm)

RSE
(%)

pCO2
(μatm)

SE
(μatm)

RSE
(%)

pCO2
(μatm)

SE
(μatm)

RSE
(%)

pCO2
(μatm)

SE
(μatm)

RSE
(%)

pCO2-pH-DIC Both 3,554 ±166 ±4.7 653 ±36 ±5.5 1,212 ±45 ±3.7 795 ±38 ±4.8
Both adj. na na na na na na na na na 661a ±32 ±4.8

pH ±46 ±1.3 ±9 ±1.4 ±34 ±2.8 ±34 ±4.3
pH adj. na na na na na na ±28 ±5.1
DIC ±165 ±4.6 ±35 ±5.4 ±28 ±2.3 ±17 ±2.1

DIC adj. na na na na na na ±14 ±2.1
pCO2-pH-ALK Both 15,225 ±1,026 ±6.7 900 ±69 ±7.7 1,281 ±50 ±3.9 866 ±41 ±4.7

Both adj. 10,999b ±935 ±8.5 na na na na na na 719a ±35 ±4.9
pH ±716 ±4.7 ±36 ±4.0 ±43 ±3.4 ±38 ±4.4

pH adj. ±694 ±6.3 na na na na ±31 ±4.3
ALK ±629 ±4.1 ±58 ±6.4 ±25 ±2.0 ±14 ±1.6

ALK adj. ±638 ±5.8 na na na na ±12 ±1.7
pCO2-ALK-DIC Both 2,546 ±198 ±7.8 580c ±59 ±10.2 1,437c ±230 ±16.0 3,725c ±1,156 ±31.0

Both adj. 2,867b ±391 ±13.6 na na na na na na 3,129a,c ±985 ±31.5
ALK ±68 ±2.7 ±25 ±4.3 ±166 ±11.6 ±870 ±23.4

ALK adj. ±375 ±13.1 na na na na ±866 ±27.7
DIC ±198 ±7.8 ±55 ±9.5 ±207 ±14.4 ±1,031 ±27.7

DIC adj. ±285 ±9.9 na na na na ±1,027 ±32.8

Note. Values reported represent best estimates of themedian pCO2 at 1 atmwith error propagated over 10,000 simulations. The random errors of median pCO2 are
expressed as standard error of the median (SE, standard deviation of 10,000 medians) and relative standard error of the median (RSE). Abbreviation na indicates
not applicable.
aCalculations after adjusting thermodynamic constants for ionic strength influences. bCalculations after correcting for organic acid contribution to total
alkalinity. cPresented pCO2 estimates are only for observations when DIC concentrations were larger than ALK concentrations (see section 2 and the supporting
information for more details).

Figure 1. The comparison of directly measured pCO2 and pCO2 estimated from three equilibria: (left) pCO2-pH-DIC, (middle) pCO2-pH-ALK, and (right) pCO2-DIC-
ALK, shows high uncertainty and directionality of biases attributed to pCO2 estimation. The horizontal and vertical error bars represent standard error of the med-
ian. The global root-mean-square error (RMSE) accounted for 1,087 (987 after adjustment), 6,944 (5,021), and 1,688 (1,611) μatm, respectively. The diagonal line
represents a theoretical 1:1 relationship. The observations coding: LBALK group—navy triangles; LBALK group adjusted—open triangles; LCALK group—grey squares;
MALK group—purple circles; HALK group—blue diamonds; HALK group adjusted—open diamonds. One extreme outlier estimated from pCO2-pH-ALK is outside of a
figure frame.
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Although the tLocat distribution provided a better fit over Gaussian distribution in ALK and DIC
observation within MALK to HALK groups, neither of these two distributions nor any other probability
density functions sufficiently characterized error distribution in some ALK groups (i.e., pH in MALK;
Figure S1 and Table 2). Our results agree with CO2-related studies showing non-Gaussian distributions
of random errors (Ciais et al., 2013; Cueva et al., 2015; Richardson & Hollinger, 2005) and imply that errors
derived from normal distribution will underestimate both small and large random errors. Furthermore, the
variety of error distributions limits the use of statistical and modeling techniques (i.e., assuming normal
distribution) in characterizing random parameter uncertainties and propagating them onto pCO2 derived
from carbonate equilibria.

The heavy tails in the PDFs of random parameter errors might also be indicative of a quality control problem
that warrants further evaluation of NTL-LTER data. The outlying observations with large concentration
differences between duplicates, expressed as high kurtosis and low tLocat shape parameter ν (Table 2), were
present despite removing duplicate pairs that differed more than 15% (Figure S1). The concentration differ-
ences suggest that water samples’ chemical composition can significantly change between sample collection
and analytical analysis. Potential sources behind changing constituents’ composition in duplicate samples
include lack of sample poisoning to stop biological activity (Åberg & Wallin, 2014; Dickson et al., 2007), taking
unfiltered ALK samples with substantial quantity of acid-neutralizing particles (Abril et al., 2015), DOC
interference with pH electrode (Herczeg & Hesslein, 1984), sample transport to another lab, or long shelfing
time. The listed potential errors are systematic, so unlike random uncertainties, cannot be evaluated from
duplicate samples. This finding warrants further targeted efforts toward quantifying and reducing errors in
NTL-LTER site.

Larger uncertainty of certain measurements in some ALK groups might also indicate that the behavior of
systematic errors may vary significantly under certain conditions. For example, the measurements of ALK
in humic lakes (LBALK group) and pH in highly buffered and productive lakes (HALK group) were particularly
vulnerable, with 46% and 17% of paired observations failing the QA/QC criterion. Furthermore, even though
the random parameter errors were generally below 2% of the median, the uncertainties in ALK and DIC
measurements exceeded 5% in low ALK groups (Tables 1 and 2). These results may suggest the presence
of systematic biases in the measurements in these groups (and likely in other ALK groups) and potential
challenges for correcting historical observations for these biases.

4.2. Random Errors in pCO2 Estimated From Carbonate Equilibria

The cumulative effect of random parameter errors on pCO2 calculations across the alkalinity gradient showed
that pCO2 sensitivity to parameter errors varied by the choice of input parameter pairs and alkalinity group.
Although the parameter errors were generally below ±2% of parameters’median values across all ALK groups
(Tables 1 and 2), unadjusted pCO2 errors ranged from ±3.7% to ±31.5%, depending on parameter pairs and
lake ALK group (Table 3).

Among the three equilibrium models, the pCO2-pH-DIC equilibrium was consistently the least sensitive to
random parameter errors (Table 3), while pCO2 estimates calculated from ALK and DIC were the most uncer-
tain. Since ALK-based equilibria require an additional step of calculating DIC or pH, random errors essentially
propagated multiple times through the nonlinear equations, unlike in the pCO2-pH-DIC equilibrium, where
they only propagate once. pCO2-ALK-DIC equilibrium was additionally prone to errors due to similar DIC
and ALK values (Dickson & Riley, 1978). Nonetheless, the highest attainable precision of pCO2 estimates
was ±36 μatm (5.5%) in the LCALK group and ±45 μatm (3.7%) in the MALK group given random uncertainty
of input parameter pairs.

Our repeatability estimates for pCO2-pH-DIC (±3.7%–5.5%) were within range of the few existing studies for
freshwaters, where the precision of calculated pCO2 ranged from 3% to 5% (Baehr & DeGrandpre, 2004;
Herczeg & Hesslein, 1984). Since our lowest pCO2 errors were at least 20 times higher than those reported
for seawaters (Millero, 2007), the results imply low precision of pCO2 estimates based on historical pH, DIC,
and ALK data in our study lakes.

The random pCO2 errors were generally proportional to median pCO2 rather than magnitudes of random
error in input parameter pairs (Figure S4 and Table 3). Similar random pH errors (±0.02) across all ALK
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groups (Table 2) contributed to 27%, 25%, 75%, and 90% to random pCO2(pH-DIC) errors in LBALK, LCALK,
MALK, and HALK groups, respectively (Table 3). Since median pCO2 depends more on the median parameter
values (where pH redistributes DIC species accordingly), the improved accuracy of input parameter pairs
will have greater impact on increasing the precision of pCO2 estimates than improving the
parameters’ precision.

Single-parameter errors contributed to random pCO2 errors nonlinearly in different ALK groups (Table 3).
Random pCO2(pH-DIC) and pCO2(pH-ALK) errors were more prone to DIC and ALK errors in acidic waters whereas
to pH errors in alkaline waters (Tables 1 and 2). Similar exponentially increasing sensitivity to ALK errors with
declining buffering capacity were reported for pCO2-pH-ALK equilibrium (Abril et al., 2015). Thus, a priority
should be placed on closer evaluation of parameters that are key sources of pCO2 uncertainty in
acidic/alkaline lake groups.

The random error temperature effects on random pCO2 errors was negligible and below detection limit
relative to random parameter uncertainties contributing to pCO2 (Figure S5 and Table 3). While the maximum
random temperature effect was 1 μatm, the minimum effects were 9 μatm, 14 μatm (adjusted), and
12 μatm (adjusted) in pH, DIC, and ALK, respectively. The logarithmic coefficients of temperature effect on

pCO2
∂lnpCO2

∂T

� �
in our lakes were 0.0108–0.0263°C�1 (pCO2-pH-DIC equilibrium), 0.0274–0.0276°C�1 (pCO2-

pH-ALK equilibrium), and 0.0170–0.0197°C�1 (pCO2-ALK-DIC equilibrium), low compared to published
values 0.038–0.0384°C�1 for freshwater (Atilla et al., 2011; Lynch et al., 2010) and 0.0423°C�1 for seawater
(Takahashi et al., 2002) systems. Our results imply inability to detect temperature effects on pCO2 estimated
from historical observations of CO2-related parameters.

4.3. Systematic Errors in pCO2 Estimation

Lack of agreement between three median pCO2 values within each ALK group indicates the presence of sys-
tematic biases in input parameters affecting pCO2 calculations (Table 3). Furthermore, these pCO2

discrepancies generally corresponded to biases between measured and modeled input parameters. For
example, the biases in DIC calculated from pH and ALK accounted for �727 μM (�584 μM adj.) and
�20 μM in LBALK and LCALK groups, respectively. Similarly, biases in pH derived from ALK and DIC were
+0.40 in the LBALK group and �0.60 in the HALK groups. Our results imply internal inconsistency of field
measurements of CO2-related parameters (Millero, 2007) likely leading to thermodynamically inconsistent
pCO2 estimates.

The comparison of directly and indirectly measured pCO2 revealed poor precision and accuracy of virtually all
pCO2 estimated values (Figure 1 and Table S1). Random uncertainty attributed to pCO2 estimation was at
least several fold higher than uncertainty associated with direct pCO2 measurements, except for two
cases (pCO2(pH-ALK) errors in the MALK group and pCO2(pH-DIC) in the LCALK group). Moreover, most
observations significantly deviated from 1:1 line and resultant RMSEs between measured and modeled
pCO2 were only partly explained by random uncertainty. Interestingly, indirect observations of pCO2 derived
from DIC-based equilibria in acidic waters aligned well along the 1:1 line and had relatively low random errors
(Figure 1). In these systems, we conclude that indirect pCO2 can be used in absence of direct
pCO2 observations.

The relative pCO2 probe’s field repeatability used in this study were within the reported precision values
of direct pCO2 measurements ranged from 0.003% to 15% of readings (Abril et al., 2015; Baehr &
DeGrandpre, 2002; Herczeg & Hesslein, 1984; Lynch et al., 2010; Wallin et al., 2014) for freshwaters.
However, these values were at least several times higher than precision for direct CO2

measurements for seawater (Millero, 2007). In the case of reliability of pCO2 estimated from carbonate
equilibria, earlier studies showed indirect observations to be overestimated (Abril et al., 2015; Butman
& Raymond, 2011; Gelbrecht et al., 1998; Herczeg & Hesslein, 1984), overestimated under low ALK con-
ditions (Wallin et al., 2014), unbiased (Cole et al., 1994), underestimated (Riera et al., 1999), or within 8%
agreement (no directionality given) (Baehr & DeGrandpre, 2004) relative to direct pCO2 measurements.

Potential factors contributing to observed mismatches between direct and indirect pCO2 measurements
include changing parameter’s concentrations between sampling and analytical determination, biased
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potentiometric pH measurements (French et al., 2002; Herczeg & Hesslein, 1984; Metcalf et al., 1989), probe
degradation with time, over-simplification of the formulas for pCO2 calculations from carbonate equilibria
(e.g., ignoring non-CO2 acid-bases in ALK and calcium forming ions inference with DIC) (Gelbrecht et al.,
1998), errors associated with dissociation constants (Lueker et al., 2000; Millero, 2007), biotic activity (Atilla
et al., 2011), and multitemporal variability.

Though we did show improved reliability of pCO2 calculations after adjusting for organic acids and ionic
strength, the adjusted pCO2 values remained biased relative to direct pCO2 measurements and pCO2 calcu-
lated from other input parameter pairs (Table 3 and Figure 1). The interferences of organic acids with ALK in
low alkalinity and brown waters, and calcium-forming ions to DIC in waters with pH > 7 were previously
linked to large pCO2 overestimation (Abril et al., 2015; Gelbrecht et al., 1998; Hunt et al., 2011; Wang et al.,
2013). Because of unreliable pCO2 estimates in observations with pH < 5.4 (Raymond et al., 2013), pH < 6
(Jones et al., 2003), and ALK< 40 μM (Cole et al., 1994), a fraction of pCO2 estimates were excluded from ana-
lysis in earlier studies. In line with Abril et al. (2015), our results also imply large overestimation of pCO2 in
hard water.

At present, we cannot elucidate which systematic errors contributed most to observed mismatch between
direct and indirect pCO2 measurements. Our results warrant the need to better quantify systematic errors
and other sources of uncertainty attributed to different parameter measurements. While further investigation
on a larger pool of observations is necessary to validate the accuracy of pCO2 calculations, our results
definitively demonstrate that the effect of random parameter errors on pCO2 was rather small compared
to systematic errors.

4.4. Implications for Estimating Trends in pCO2 and C Flux

Despite using consistent methodology of sample collection, handling, analytical determination, and quality
control, the results from NTL-LTER site indicate large uncertainties arising from pCO2 estimation from car-
bonate equilibria. To test if attainable levels of uncertainty are sufficient to detect long-term change at NTL
site, we propagated random and systematic uncertainties onto a pCO2(pH-DIC) time series at Crystal Lake
(LCALK group) (Figure 2). This lake and carbonate equilibrium consistently showed least uncertain pCO2 esti-
mates, hence represents “a best-case scenario” (Figure 1 and Table 3). Uncertainty around median pCO2

ranged from ±24 to ±40 μatm, and in some cases, made it impossible to determine whether the lake
was classified as undersaturated or supersaturated with respect to atmospheric pCO2. Applying a simple
linear fit indicated an insignificant pCO2 decrease of �2 ± 26 μatm/yr�1 regardless of choice of start and
end year, leading to a result that is not interpretable given the magnitude of random uncertainty.
Moreover, the observed warming water temperature trend of 0.59°C decade�1 (O’Reilly et al., 2015)
increased pCO2 by 0.0014 μatm, indicating temperature-mediated increase below detection limit given
current parameter uncertainties. Our results highlight the challenge of inferring past pCO2 variability and
change and detecting lake-carbon responses to warming climate from historical observations of
carbonate parameters.

Given all sources of uncertainty attributed to pCO2 calculations, we recommend using direct pCO2 mea-
surements to constrain CO2 flux magnitudes and trends from NTL lakes. Further targeted effort is essential
to identify the sources and behavior of systematic errors. Such information is necessary to correct for sys-
tematic biases in pCO2 calculations from historical observations of pH, DIC, and ALK and improve the
accuracy of measurements and pCO2 predictions in the future. Also, the lack of duplicate water tempera-
ture and quantifying the accuracies and precisions of laboratory equipment and resultant parameter
uncertainties need to be addressed. Establishing protocols for routine direct pCO2 measurements is
urgently needed.

4.5. Implications for Estimating pCO2 From Carbonate Equilibria in Freshwaters

Given the overall scarcity of direct pCO2 data from freshwater systems at broader spatiotemporal scale (i.e., 1%;
Raymond et al., 2013), providing confidence levels for pCO2 estimates (whether directly or indirectlymeasured)
is critical to assessing the uncertainty on the contributions of aquatic CO2 systems to regional and global C
cycles. These uncertainty values are essential also for comparing data from different sources and/or derived
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from multiple carbonate equilibria, and building CO2 emission inventories that include more chemically
diverse ecosystem types in many regions and account for potential temporal fluctuations of carbonate system.

To aid with estimating random uncertainty in other studies, the probability density functions fitted in this
study (Table 2) could help reconstruct characteristics of random parameter errors to be used in Monte
Carlo propagation on data sets with chemical characteristics similar to NTL lakes (Table 1). Likewise, the uncer-
tainty data supporting this study are available with this manuscript to assist bootstrap error propagation. The
relative errors of carbonate parameters and pCO2 estimates (Tables 2 and 3 and S1) could also provide upper
bounds of uncertainty. We encourage all reports to provide levels of uncertainty in pCO2 and C flux
whenever possible.

Limited direct pCO2 observations combined with a growing interest in assessing a role of freshwaters in
regional and global scales have resulted in studies relying on routinely measured CO2-related parameters
to estimate pCO2 and carbon flux from inland waters at global (Aufdenkampe et al., 2011; Cole et al., 1994;
Cole et al., 2007; Raymond et al., 2013; Tranvik et al., 2009) and regional scales (Buffam et al., 2011; Butman
& Raymond, 2011; Lapierre et al., 2017; McDonald et al., 2013) and evaluating temporal trends of inorganic car-
bon species (Jones et al., 2003; Nydahl, Wallin, & Weyhenmeyer, 2017; Seekell & Gudasz, 2016). We demon-
strate, however, that field measurements of pH, ALK, and DIC might be insufficient to provide robust
estimates of mean pCO2 and question if they are sensitive enough to detect long-term change in chemically
heterogeneous lakes (Figures 1 and 2 and Table 3). Previous studies also implied limited value of estimating
pCO2 from monitoring data (Abril et al., 2015; French et al., 2002; Phillips et al., 2015). However, only reprodu-
cing this study approach over larger data sets may help elucidate if insensitivity of reconstructed pCO2 to
long-term change is site-specific or represents a more widespread methodological issue.

To decrease uncertainty of C flux from freshwaters and enable prediction of future CO2 changes, we see two
paths forward: reducing uncertainty of current measurements of CO2-related parameters to achieve
thermodynamically consistent pCO2 estimates and/or using direct CO2 measurements.

If using carbonate equilibria parameters continues to be the most common method of estimating pCO2 in
freshwater systems, the freshwater community must determine the acceptable levels of precision and
accuracy of carbonate parameter measurements to achieve pCO2 estimates sensitive to detect long-term
changes. Overall uncertainty of atmospheric CO2 measurement accounts for <0.2 ppm (Andrews et al.,
2014); hence, freshwater component of ΔpCO2 is a dominant source of uncertainty. For comparison, current
laboratory measurements of seawater have precision and accuracy ±1 μmol kg�1 and ±2 μmol kg�1 for DIC,
±1 μmol kg�1 and ±3 μmol kg�1 for ALK, and ±0.0004 and ±0.002 for pH measurements to produce fugacity
CO2 (fCO2 values are a few μatm lower than pCO2 after accounting for nonideal nature of gas phase)
estimates with uncertainty ±6 μatm or higher (Millero, 2007). While above analytical uncertainties are incom-
parable with error estimates in our lakes (Tables 2 and 3), they serve as a gold standard that sets the bar for
improving freshwater measurements of CO2-related parameters.
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Figure 2. The time series of pCO2 estimates with propagated uncertainties attributed to random and systematic errors
and different beginnings and endings of time series for Crystal Lake demonstrates scatter around best pCO2 estimates
(median of 10,000 median values) and fitted trend line (median of 10,000 fitted linear regression). The slope line
indicates statistically insignificant decline of 2 ± 26 μatm yr�1. Confidence intervals represent standard error of the median
for near-monthly observation (light gray) and trend (light red). The black solid line represents mean annual atmospheric
CO2 at 1 atm.
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Adapting solutions already developed for seawater could potentially advancemethodological improvements
of the CO2 systemmeasurements in freshwater systems. Using the certified reference materials (CRM) of CO2

measurements contributed most toward development of fully calibrated data set with uniformly calculated
estimates (Key et al., 2004; Sabine et al., 2004). The CRM samples were prepared in one certified laboratory
and distributed among laboratories to serve as an independent measurement quality test. Furthermore, a
unified quality assurance and quality control procedure was applied to compare the results from different
research groups and identify laboratories having problems with accuracy and precision. Finally, an unambig-
uous guide on best practices on CO2measurements (Dickson et al., 2007) provided up-to-date information on
the chemistry of the CO2 system in seawater, well-tested analytical methods of analyzing parameters, and
standard operating procedures.

An alternative approach, though not mutually exclusive, would rely on direct CO2 measurements with sup-
porting measurements of carbonate parameters characterizing chemical composition of freshwater systems.
A growing number of recent studies already rely on direct CO2 measurements (Borges et al., 2015; Holgerson
& Raymond, 2016; Wallin et al., 2014). Given direct CO2 measurements always produce least uncertain CO2 in
seawater (Dickson & Riley, 1978; Millero, 2007), directly measured pCO2 is recommended in studies aiming at
constraining aquatic CO2 system. Still, reported uncertainties for freshwater measurements suggest the need
for significant improvement of the precision and accuracy of direct measurements relative to seawater
(±0.5 μatm precision and ±2 μatm accuracy CO2 estimates) (Millero, 2007). While we acknowledge
difficulty in getting direct pCO2 data at broader spatiotemporal scales, uncertain and insensitive to
change past CO2 estimates imply limited use for predicting future of freshwater CO2 system.

5. Conclusions

We evaluated uncertainties in a widely used method of estimating pCO2 from uncertainties attributed to
pCO2 estimation from carbonate equilibria using two of three CO2-related parameters. Random parameter
errors were typically low for pH, dissolved inorganic carbon, and total alkalinity measurements in lakes of
all types of water chemical composition (humic, poorly buffered clearwater, moderate alkalinity, and
hardwater). However, we found that these relatively low random parameter errors could still produce random
pCO2 error approaching one third of estimated median pCO2, depending on the choice of input parameter
pairs and lake alkalinity group. Further, the comparison of direct and indirect pCO2 observations revealed that
nearly all parameter combinations produces biased pCO2 estimates with systematic errors greatly exceeding
random pCO2 errors. Past pCO2 time series in a best-case scenario demonstrated undetectable long-term
change owing high overall uncertainty.

As virtually no choice of input parameter pairs consistently provided reliable and reproducible pCO2

estimates, we recommend direct pCO2 measurements in studies aiming for precise and accurate estimation
of pCO2 and carbon flux from inland waters. While we acknowledge limitations associated with getting direct
CO2 observations at broader spatiotemporal scales, the further use of indirect pCO2 estimates without
reducing uncertainty in current measurements of CO2-related parameters will significantly hinder predictions
of future freshwater pCO2 in face of anthropogenic pressures on aquatic systems. Additional work is needed
to quantify key systematic errors and overall uncertainty and determine acceptable levels of precision and
accuracy to achieve robust pCO2 estimates enabling detection of temporal changes. Given bounds of
uncertainty in global C emissions from lakes and reservoirs (0.32 Pg C yr�1) range from 0.06 to
0.84 Pg C yr�1, and from rivers and streams (1.8 Pg C yr�1) vary from 1.5 to 2.1 Pg C yr�1 (Raymond et al.,
2013), freshwater researchers must make significant efforts to standardize and reduce errors in
pCO2 predictions.
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