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Abstract 
A central challenge to understanding how climate anomalies, such as drought and heatwaves, 

impact the terrestrial carbon cycle, is quantification and scaling of spatial and temporal 

variation in ecosystem gross primary productivity (GPP). Existing empirical and model-based 

satellite broadband spectra-based products have been shown to miss critical variation in GPP. 

Here, we evaluate the potential of high spectral resolution (10 nm) shortwave (400-2500 nm) 

imagery to better detect spatial and temporal variations in GPP across a range of ecosystems, 

including forests, grassland-savannas, wetlands, and shrublands in a water-stressed region. 

Estimates of GPP from eddy covariance (EC) observations were compared against airborne 

hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne 

preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total 

image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths 

and band ratios associated with foliar physiology and chemistry. A partial least squares 

regression (PLSR) modeling approach was then used to predict GPP with higher validation 

accuracy [adjusted R2 = 0.71] and low bias (0.04) compared to existing broadband approaches 

[e.g., adjusted R2 = 0.68 and bias = -5.71 with the Sims et al. (2008) model]. Significant 

wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco 

(wavelengths 1680, 1740 and 2290 nm) and Vcmax (wavelengths 1680, 1722, 1732, 1760, and 

2300 nm). These results provide strong evidence that advances in satellite spectral resolution 

offer significant promise for improved satellite-based monitoring of GPP variability across a 

diverse range of terrestrial ecosystems.  
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Introduction 
Recent work by Serbin et al. (2015) and Singh et al. (2015) has shown promising advancements 

in the use of hyperspectral imaging, collected from high-altitude airborne missions, to map the 

variation in the drivers of gross primary productivity (GPP) through measurement of leaf 

structure, metabolic capacities, and related biochemistry. While the use of broadband 

spectroscopy on tower, airborne, and satellite platforms to quantify seasonal variation in 

vegetation greenness, leaf area, and photosynthesis is well established (Carlson and Ripley, 

1997; Myneni et al., 2002; Heinsch et al., 2006), imaging spectroscopy affords new opportunities 

to more accurately monitor spatial and temporal variation in ecosystem function based on its 

sensitivity to leaf physiology. Imaging spectroscopy (also known as hyperspectral imagery) is 

here defined as reflectance data consisting of narrowband (5-10 nm) measurements across the 

full range of visible, near infrared and shortwave infrared wavelengths (VSWIR, 400-2500 nm). 

Such high-dimensional data take advantage of narrow spectral features related to specific leaf 

functional, chemical and structural traits (Curran, 1989; Townsend et al., 2016). 

In this study, we test an approach using imaging spectroscopy data collected across two years as 

part of the NASA HyspIRI Preparatory campaign to estimate GPP based on linkage to eddy 

covariance (EC) data from flux towers, which are currently the most widely used ground data 
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for inferring ecosystem-level GPP. Although data from broadband sensors such as Landsat and 

MODIS have been used to generate GPP maps across large spatial scales (e.g., Running et al., 

2004; Jung et al., 2011), the resulting estimates are subject to large biases and appear to 

primarily detect broad differences in GPP among ecosystem types and across vegetation density 

gradients, potentially missing physiological influences on GPP arising from variations in leaf 

traits responding to winter dormancy, plant stress, and stomatal response.  

For example, the NASA Terra/Aqua-based MODIS GPP MOD17 product correlates well to flux 

tower GPP estimates, but, on average, monthly GPP overestimates site-level average GPP by 20-

30% across a range of land cover types compared to EC, with significant discrepancies between 

EC and MODIS emerging during phenological transitions (particularly spring green-up) 

(Heinsch et al., 2006). As well, MODIS GPP did not capture spatial variability observed at the flux 

tower level between sites of similar vegetation type (Heinsch et al., 2006), especially at the 

regional scale. As such, a general conclusion is that MODIS may characterize broad variation 

among physiognomically different ecosystems by detecting differences in vegetation structure 

and/or cover rather than physiology.  

The limits of current broadband remote-sensing techniques to accurately predict spatial or 

temporal GPP variation (Heinsch et al., 2006) provide an impetus to test the use of imaging 

spectroscopy to detect variation in vegetation function directly related to GPP. This is motivated 

by increasing evidence that hyperspectral data are sensitive to biochemical and physiological 

properties important to ecosystem function (Martin and Aber, 1997; Smith et al., 2002; Ollinger 

and Smith, 2005; Asner et al., 2007; Martin et al., 2008; Wolter et al., 2008; Ollinger, 2011; Lee et 

al., 2015; Schimel et al., 2015; Serbin et al., 2015; Singh et al., 2015; Jetz et al., 2016). For 

example, high-resolution spectral data have the ability to capture variation in foliar 

concentrations of water, chlorophyll, cellulose, lignin, nitrogen, and other leaf constituents 

(Green et al., 1998), and studies have shown the ability to use hyperspectral data to map these 

and other leaf traits (Ustin and Gamon, 2010; Serbin et al., 2012; Singh et al., 2015).  

The NASA HyspIRI Preparatory Airborne mission provided an opportunity to collect a large 

quantity of high-resolution imagery across a range of EC flux towers in California covering 

numerous seasons across gradients of vegetation type, density, and physiology of temperate and 

semi-arid ecosystems with large variation in average GPP. Studied ecosystems ranged from 

coastal sage and valley grassland systems to high-elevation conifer forests. Our objective was to 

evaluate the ability of imaging spectroscopy data, through time and across multiple EC flux 

towers encompassing a range of ecosystem types, to estimate local-scale vegetation 

productivity. Flux tower measurements were combined with high-spectral and high-spatial 

resolution narrowband visible to shortwave infrared imaging spectroscopy, repeatedly 

captured at each tower site with high-altitude airborne sensors, to identify which spectral 

wavelengths, or combinations of multiple wavelengths (Inoue et al., 2008), relate most strongly 

to GPP variation within and across sites and compare the use of narrowband (400-2500 nm) 

spectroscopy data for estimating GPP against existing approaches (e.g., from MODIS) that rely 

on broadband data. 
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Methods 

GPP estimates using eddy covariance  

The EC flux towers span two climate/elevation gradients, a collection of wetland, grassland, and 

savanna sites in central California, and chaparral/coastal sage sites in southern California 

(Appendix S1: Table S1). The latitudinal and topographic gradients create a wide range of mean 

annual temperature and precipitation among the sites (Appendix S1: Fig. S1). Further, given the 

climatological wet season that typically lasts from late autumn to early spring, a number of 

ecosystem types and plant hydrological adaptations occur in this region, allowing us to observe 

a wide range of GPP patterns.  

Three sets of sites were used here. One climate/elevation gradient crosses the San Jacinto 

Mountains in southern California, the other ascends from the San Joaquin Valley into the Sierra 

Nevada Mountains in central California, and the third set includes agricultural and wetland sites 

(Fig. 1). The southern California gradient includes the following sites (all site names 

corresponding with the dominant vegetation type): Grassland, Coastal Sage, and Oak-Pine 

Forest on the western slope of the San Jacinto Mountains, and Pinyon-Juniper Woodland, Desert 

Chaparral and Sonoran Desert on the eastern slope (Kelly and Goulden, 2008; Goulden et al., 

2012), rising from 470 m elevation to 1300 m and back down to 275 m in the desert (Table 1). 

The Sierra gradient is situated within the Upper Kings River watershed, and comprises 

grassland-savanna (Oak-Pine Woodland) and forest (Ponderosa Pine and Mixed Conifer) sites 

(Fig. 1), increasing in elevation from 405 m to 2015 m (Goulden et al., 2006).  

The wetland and agricultural sites (pasture, rice paddy and alfalfa) are near the San Joaquin 

River, in the grassland-savanna of the lower Sierra Nevada foothills, and grassland in the 

Altamont Hills. The wetlands (Twitchell East End Wetland and Mayberry Wetland) are recently 

restored (2010-2014) and the nearby agricultural fields (Twitchell Island, rice paddy; Twitchell 

Alfalfa, alfalfa field; Sherman Island, pasture) are actively managed. The sites located in the 

foothills are located on privately owned land and occasionally grazed by cattle. The Diablo 

grassland, located in the Altamont Hills, is owned by the Lawrence Livermore National 

Laboratory and is not actively managed. The southern California shrubland sites are located at 

the Sky Oaks Field Station (San Diego State University), with one flux tower in old-growth 

chaparral (Sky Oaks New) and the other in recently naturally burned (2003) chaparral (Sky 

Oaks Young). 

From all 19 tower sites, half-hourly estimates of CO2 flux were measured using the eddy 

covariance technique (Aubinet et al., 2011). We gap-filled missing and quality-screened data 

points using the Desai-Cook gap filling model (Cook et al., 2004; Desai et al., 2005). This model 

was applied to data filtered according to a turbulence threshold based on friction velocity (u*), 

utilizing the 30-minute averages for turbulent carbon flux or net ecosystem exchange (NEE). 

The model uses a variable moving-window mean diurnal variation method to estimate missing 

meteorological data, with the window size depending on the completeness of the dataset. The 

Eyring function (Cook et al., 2004) was then applied to the data to estimate ecosystem 

respiration (Reco). GPP was then estimated as the residual between the 30-minute modeled Reco 

and the measured NEE data. Variation in the estimated GPP was then related to 30-minute 

averages for site photosynthetically active radiation (PAR) with a Michaelis-Menton reaction 

rate equation (Falge et al., 2001). The resulting models afforded GPP predictions when there 
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were NEE gaps in the original dataset, allowing us to adequately characterize seasonal and 

annual GPP dynamics (Baldocchi et al., 2015). However, comparisons to imagery were limited to 

periods when NEE observations were measured.  

Image acquisition 

During the NASA HyspIRI Preparatory Campaign (Hochberg et al., 2015; Lee et al., 2015), all 19 

flux tower sites were repeatedly overflown by the NASA ER-2 aircraft at 20 km, collecting 

imaging spectroscopy and thermal imagery using the AVIRIS (Airborne Visible/Infrared 

Imaging Spectrometer) and MASTER (MODIS/Advanced Spaceborne Thermal Emission and 

Reflection Radiometer Airborne Simulator) sensors (Fig. 1). The AVIRIS sensor measures 

reflected solar energy in the 380-2510 nm spectral region with 224 spectral bands, with an 

average bandwidth of 10 nm (Vane et al., 1993; Green et al., 1998). Flights were conducted at 

several times throughout the dry and wet seasons and timed to capture maximum variation in 

plant phenology and ecosystem function (Appendix S1: Table S2). 

The NASA Jet Propulsion Laboratory processed data, including radiometric calibration to 

surface reflectance following Thompson et al. (2015) and ortho-rectification and resampling to 

consistent 18-m pixels. To normalize between- and within-scene brightness offsets, we 

performed a brightness correction on all scenes following Feilhauer et al (2010) as discussed in 

Serbin et al (2015). Images were topographically corrected using the modified sun-canopy-

sensor topographic method (Soenen et al., 2005), and cross-track changes in bidirectional 

reflectance distribution function (BRDF) were corrected using a quadratic function of the 

volumetric scattering term from the Ross-Thick BRDF model (Roujean et al., 1992; Lucht et al., 

2000). Prior to analysis, we removed the five shortest and longest wavebands, along with those 

influenced by atmospheric water (1313–1453 nm and 1782–2018 nm), leaving 172 of the 224 

channels of AVIRIS data over the 414–2447 nm range.  

Image data extraction from tower footprints  

For each tower site, AVIRIS data were extracted only from cloud-free acquisitions. Locations of 

flux towers were identified within AVIRIS images using GPS coordinates, and spectra were 

extracted only from pixels containing within tower influence areas, as described below. The 

total number of acquisitions for our analysis was 102, encompassing 19 towers with an average 

of 5.4 acquisitions from multiple overflights during a 2-year period (Table 1). To identify the 

vegetation influencing tower GPP, a one-dimensional online footprint model, based on Kljun et 

al. (2015), was used to estimate the size of the tower- influenced footprint at the time of each 

overflight. The model uses observations or estimates of conditions in the atmospheric boundary 

layer and canopy layer, including standard deviation of vertical velocity, surface friction 

velocity, instrument measurement height, boundary layer height, and roughness length. These 

were derived from the meteorological measurements made at the flux tower or, in the case of 

boundary layer height, assumed to be 1500 m, for each overflight. Overlapping AVIRIS pixels 

were based on the upwind distance from the tower so as to encompass 90% of the total surface 

footprint influence. The footprint crosswind width was calculated as half the total length, so that 

the footprint was represented as a rectangle beginning from the base of the tower. The 18 m x 

18 m AVIRIS pixels from this footprint rectangle were then extracted for analysis, with the 

pixels in the footprint averaged to create a mean reflectance value for each AVIRIS band. The 

use of the footprint model allows us to address possible bias in flux tower measurements owing 
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to different land cover or photosynthesis rates with direction and distance (Xu et al., 2017), a 

concern particularly at some of the more open and semi-arid sites. 

Linking footprint imagery and tower flux data 

We adopted two approaches to evaluate the sensitivity of imaging spectroscopy data to 

variation in GPP. First, we analyzed relationships between GPP and vegetation indices, which 

are routinely used in remote sensing of vegetation physiology (e.g., Roberts et al., 2011). We 

also statistically modeled GPP variation using partial least squares regression (PLSR) modeling 

approach, a chemometric method (Wold et al., 2001) that is often used for the analysis of 

hyperspectral imagery (Townsend et al., 2003; Martin et al., 2008; Wolter et al., 2008; Serbin et 

al., 2015; Singh et al., 2015) because it can exploit the full reflectance spectrum rather than 

select data subsets (such as vegetation indices) and doesn’t assume the remote sensing data 

were measured without error. Furthermore, PLSR avoids collinearity in the predictor variables 

(i.e. wavelengths, indices) even when these exceed the number of observations (Geladi and 

Kowalski, 1986; Wold et al., 2001, Carascal et al., 2009). These issues are avoided by reducing 

the number of predictor variables down to relatively few, non-correlated latent components, 

using a stepwise selection method with individual bands or indices (Grossman et al., 1996). 

These latent components capture other nuance in the relationship between the spectra and GPP 

(e.g. canopy structure, leaf physiology, nutrients) (Asner et al., 2008; Asner et al., 2011). PLSR is 

not a standard linear regression, and instead uses singular value decomposition (SVD) to reduce 

the predictor matrix to a much smaller set of predictor latent components, which are 

transformed through scores, weightings, and internal relationships to build the vector of 

regression coefficients by wavelength or index (Geladi and Kowalski, 1986; Wold et al., 2001). 

This is not a limitation of PLSR but instead a feature of the approach which can allow for the 

dimensionality reduction of large problems to a much simpler model. 

For the analysis of vegetation indices, we calculated Normalized Difference Spectral Indices 

(NDSI) for all combinations of the 172 wavebands in our VSWIR imagery, where, for each pair of 

bands (e.g., i and j), one band’s reflectance value (Bandj) is subtracted from the other’s (Bandi), 

and the difference is divided by their sum: 

 NDSI[i,j] = [Bandi-Bandj]/[Bandi+Bandj] (Eq. 1) 

 

NDSI offers the ability to examine all narrowband features – in this case 14,792 possibilities – 

and determine their relationship with ecosystem function, such as GPP (Inoue et al., 2008; Ryu 

et al., 2010). Normalization standardizes NDSI values from -1 to 1 and reduces atmospheric and 

BRDF effects not otherwise addressed in preprocessing. We note that the NDSI approach 

includes calculation of several widely used indices, including Normalized Difference Vegetation 

Index (NDVI, normalized index of 850 and 650 nm, Tucker, 1979) and Photochemical 

Reflectance Index (PRI, normalized index of 531 and 570 nm, Gamon et al., 1992). NDVI is of 

interest because of its wide use as a correlate with variation in aboveground vegetation 

structure and greenness, while PRI is related to stress-induced physiological responses (Gamon 

et al., 1997; Penuelas et al., 1995; Garbulsky et al., 2011). There are a vast number of additional 

multispectral and hyperspectral indices that have been correlated with vegetation function 

(Ustin et al., 2009), but the NDSI approach, covering all possible combinations of bands and 

their linear combinations, captures the variation expressed in those indices, so the only 
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additional index we tested was a simple chlorophyll index (Gitelson and Merzlyak, 1996), 

calculated as [(1/R700)-(1/R850)-0.1515]/0.01517.  

We first analyzed correlations between GPP and NDSI using data pooled across all sites, and 

then performed the same analysis on data subdivided by the four plant functional types (PFTs). 

Separating data into PFTs enabled assessment of the extent to which correlation was simply a 

consequence of broad differences in GPP across physiognomic vegetation types that look 

different in imagery (likely due to differences in physiognomy and/or soil fraction in the AVIRIS 

pixels), and subsequently whether image spectroscopy could detect variations within types 

independent of the structural differences among them.  

PLSR, implemented in Python, was used to examine the relationship between flux tower and 

imagery data across the full reflectance spectrum, i.e., using all 172 wavebands. Typically, PLSR 

analyses are applied to reflectance from the 172 bands, enabling the exploitation of all 

information in the spectrum and resulting in an equation having a beta coefficient for 

reflectance in each waveband (e.g., Martin et al., 2008; Serbin et al., 2015; Singh et al., 2015). 

Here, we tested a new approach to PLSR, using the 14,792 NDSI combinations rather than 

reflectance bands as inputs. The closest 30 minute average GPP estimate to image acquisition 

was used to minimize the effects of diurnal changes in productivity. We performed 1,000 

permutations of the data with a 2/3-1/3 split for calibration and validation. We determined the 

number of components to be used for model fitting by successively increasing the number of 

components from 1 to 15 until model validation statistics indicated overfitting. Once the 

number of components had been fixed, we extracted 2/3 of the data using a stratified random 

sampling strategy based on the land cover, and applied the model to the 1/3 of the withheld 

data for validation. In addition, to reflect uncertainties in the response variable, we added noise 

equivalent to 20% of each observation during each iteration by sampling from a normal 

distribution with a mean at the observation, and a standard deviation equal to 20% of the mean. 

This way, our modeling strategy accounts for uncertainties in data completeness by randomly 

dropping 1/3 of the tower sites, and in addition, accounts for uncertainties in the observations 

themselves. At each model iteration, we stored the PLSR coefficients, and present calibration 

and validation R2, biases, and RMSEs as a percent of variation as model diagnostics. Table S4 

(Appendix S1) shows overall model performance diagnostics, and diagnostics averaged across 

functional types. A heat graph of model coefficients by wavelength pairs was used to illustrate 

the importance of specific wavelengths and wavelength combinations as predictors of flux 

tower GPP from AVIRIS data. Use of NDSI rather than reflectance enables us to test whether 

identification of narrow absorption features is more predictive of vegetation function than 

magnitude of reflectance at a particular wavelength.  

Lastly, we compared the predictive capacity of imaging spectroscopy from high-altitude AVIRIS 

against standard methods used to estimate GPP from broadband measurements. For this, we 

applied the broadband light-use efficiency method of Sims et al. (2008) to estimate satellite-

derived GPP using Terra MODIS broadband-based enhanced vegetation index (EVI) and land 

surface temperature (LST), which has previously been shown to outperform the traditional and 

similar MOD17 GPP product by including a scalar to account for a water stress response of GPP 

(Sims et al., 2008). For the comparison, we convolved the AVIRIS wavelengths corresponding 

with the MODIS bands used to calculate EVI. We used LST estimates from the MODIS/ASTER 

airborne simulator (MASTER) (Hook et al., 2001), which was acquired simultaneously with 

AVIRIS imagery (Lee et al., 2015). Sims et al. (2008) parameterized the scalar quantity m using 
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three years of flux tower data. The model developed in Sims et al. (2008) requires mean annual 

nighttime LST estimates in the calibration of parameter m. However, there were not enough 

MASTER flights conducted at night to make this approach viable, so we instead used the mean of 

annual nighttime temperature calculated from flux tower data. Finally, we also compared the 

MODIS GPP product to tower GPP using the 1-km MODIS pixel encompassing the tower location 

(LP DAAC, 2015). Tower GPP was then aggregated to 8-day estimates to match the MODIS 

product.  

Results 
The two-year study period occurred during a period of lower than average precipitation and 

higher than average temperature (Table 1, Appendix S1: Fig. S1). Over this time, among our 19 

tower sites, the desert site recorded the lowest daily average tower-based GPP, 0.5 mol m-2 s-1, 

while the irrigated Twitchell Alfalfa site (USTW3), which becomes highly productive between 

cuttings, set the maximum, 25.6 mol m-2 s-1 (Fig. 2). The coefficient of variation for GPP (30-

minute average) at the time of AVIRIS overflights was 70% within individual tower sites, and 

109% averaged across sites.  

Heat graphs (Fig. 3 and Fig. 4) illustrate correlations between GPP (30-minute average) at the 

time of overflight and NDSI calculated for each of the 14,792 waveband combinations in the 

corresponding footprint hyperspectral imagery. GPP and NDSI were closely correlated (|r| > 

0.6) in broad regions of the spectrum when data were pooled across all sites (Fig. 3). In contrast, 

within vegetation types, strong correlations were generally restricted to narrower regions of 

the spectrum. Particular bands of high correlation include 414-434 nm, 704-714 nm, and 743-

792 nm (Appendix S1: Table S3). In forests (Fig. 4a), high correlation (|r| > 0.7) occurred only 

when NDSI was generated from two groups of narrowband wavelength combinations, one 

based on 890-909 nm with 812 nm and another with 2278-2307 nm against 2138-2198 nm, 

reflective of larger differences in near infrared albedo across forest types and changes in 

shortwave infrared related to canopy structure, water content, and leaf nitrogen. Among the 

widely used vegetation indices that we evaluated, NDVI and the chlorophyll index correlated 

with GPP (R2 = 0.70 and 0.44 respectively) across all sites (Fig. 3), but these relationships were 

not significant within the forest type (Fig. 4, p>0.05). PRI, on the other hand, did not correlate 

with GPP across sites (p>0.05). 

PLSR results reveal high fidelity in the ability to predict GPP across all sites and vegetation types 

(R2 = 0.78, P < 0.0001, Fig. 5a), with all cover types performing similarly. The only significant 

difference between slopes of actual vs. predicted GPP occurred between grasslands and forest 

(P = 0.0015). Normalized PLSR coefficients (Fig. 6) indicate that an array of specific features, 

distributed throughout the entire spectrum, contribute substantively to the predictive model. 

Important narrow spectral regions in the predictive model included NDSI band combinations 

using 1250-1280 nm (combined in particular with wavelengths across the NIR), 2030-2050 nm, 

and 2270-2300 nm. Broader SWIR features important to the model incudes NDSIs in the 1710-

1780 nm (when combined with 1250-1270 nm) and 1500-1680 nm regions (Fig. 6).  

In contrast, the Sims broadband approach for remote estimation of GPP from spectra (Fig. 5b) is 

generally able to differentiate highest from lowest values of GPP across all types (R2 = 0.68, P < 

0.0001), but not as well as the PLSR approach, and does not accurately predict spatial and 
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temporal variation in GPP within functional types. Slopes between actual and predicted GPP 

(Fig. 5b) vary significantly between grassland and forest (P = 0.0044), grasslands and 

shrublands (P = 0.041), and grasslands and wetlands (P = 0.0041). The models also deviate 

considerably from the 1:1 line compared the PLSR approach. This outcome is also replicated 

using other approaches such as the MODIS GPP product (MOD17A2.005) (Appendix S1: Fig. S2).  

Discussion 
Water stress is likely one of the strongest drivers of large-scale GPP reductions globally (Ciais et 

al., 2003). Collectively, the results of this study illustrate the capacity of imaging spectroscopy to 

more accurately capture spatial and temporal variation in terrestrial ecosystem GPP over a 

water-stressed landscape, though additional years of observations over the same sites in non-

drought conditions would be required to evaluate the full capability of the approach. In addition 

to its improved predictive capability relative to existing remote sensing approaches, an 

appealing advantage of the narrowband PLSR model we derived, relative to conventional 

broadband approaches, is that it does not require external inputs of meteorology or parameters 

related to plant ecophysiology.  

Although the potential of imaging spectroscopy to track GPP has been shown at individual 

towers (Matthes et al., 2015; Gamon et al., 2015) and with individual indices (Alton, 2017), our 

study is the first to demonstrate the capability across a diverse array of ecosystems, utilizing the 

full information content of narrowband spectra. Our results provide a robust initial assessment 

of the reliability of spatial extrapolation from hyperspectral imagery to justify the benefits of 

proposed future missions to GPP mapping (Schimel et al., 2015).  

It is likely that a significant improvement in the fit over broadband occurs primarily from 

directly capturing the effects of physiology on GPP, which are highly variable over space and 

time. This improvement may be most noticeable in evergreen species, whose leaf phenology and 

density may be relatively constant, limiting broadband sensitivity to GPP variation. While a 

direct PLSR approach was not applied to the MODIS bands separately, the Sims model tested 

here represents the best-in-class for currently published MODIS based GPP algorithms. There 

are limitations in the comparison with the Sims model, as we were required to use air 

temperature rather than LST for the nighttime temperature measurements. However, modest 

adjustments in nighttime temperature parameters are unlikely to change the conclusion PLSR 

model outperformed the broadband based model.  

High correlations occurring with NDSIs at using wavelengths close to each other in the spectra 

indicate the importance of narrow features in the spectrum to vegetation properties that 

influence tower GPP. The heat graph of NDSI contributions to the PLSR model of GPP (Fig. 6) 

indicates several key narrowband combinations that are important to predicting tower GPP, 

especially in wavelength regions that have been shown to be important to vegetation 

physiology. Our findings mirror those of previous studies (e.g. Matthes et al., 2015; Zarco-Tejada 

et al., 2001; Singh et al., 2015; Ryu et al., 2010), which show a number of consistent regions of 

high correlation between GPP and narrowband NDSI. Ryu et al. (2010) used NDSI to compare 

spectra in the range of 400 nm and 900 nm with assimilation calculated using a similar flux 

partitioning method at the Vaira Ranch site between 2006 and 2009. The wavelength 

combinations associated with high and low correlation in the NDSI figure from the Ryu et al. 

(2010) study match the NDSI figure from this study for the grassland-savanna group of sites, 
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which includes the Vaira Ranch site. The broad areas of high correlation for the given spectral 

range are present in both figures, as are the narrow features of low correlation associated with 

indices involving 700 nm and the range 400 to 700 nm, and 750 nm and the range 750 to 900 

nm. Unlike Ryu et al. (2010), we were also able to demonstrate consistently important 

wavelengths in the shortwave infrared (SWIR, >1100 nm).  

Our findings confirm that specific features are associated with leaf/canopy spectral traits that 

reflect variation in leaf structure and function. The wavelengths significant to our PLSR model 

coincide with important physiological features, which is consistent with previous analyses 

showing AVIRIS wavelengths can be used to predict photosynthetic capacity via known features 

as opposed to simply measuring canopy structure (Serbin et al., 2015). Narrow NDSI 

combinations of wavelengths in the SWIR (2050 nm) and near infrared (760 nm) appear 

especially influential, as do some broader features around 1200, 1600 and 2200 nm. For the 

shortwave infrared regions, RuBisCo has known spectral absorption features around 

wavelengths 1500, 1680, 1740, 2050, and 2290 (also: 1940, 2170 and 2470 nm) (Elvidge, 

1990), while significant wavelengths in the leaf-level Vcmax model presented in Serbin et al. 

(2012) occur at 1510, 1680 and 1760, nm (also 1940, 2210, and 2490 nm). Using AVIRIS 

imagery, Serbin et al. (2015) identified key features at 1158-1168, 1722-1732 and 2300-2400 

nm.  

In contrast, across all sites, the visible and near infrared regions (VNIR, 400-1100 nm) did not 

exhibit as many key features for predicting GPP as did the SWIR. However, key narrow features 

do appear in the chlorophyll a absorption wavelengths at 414-434 nm, the red-edge (704-714 

nm), and in the NIR (743-792 nm, including 763 nm, near a well-documented chlorophyll 

fluorescence feature). Spectral features such as the broader red edge (690-750 nm) are 

unsurprising as they are known to shift under water stress conditions (Vogelmann et al., 1993), 

one of the major contributors to variations in GPP in the ecosystems of California that were 

strongly affected by drought during our study period (Asner et al., 2016). These findings 

demonstrate that the improved predictive performance of a model based on imaging 

spectroscopy likely results from exploiting multiple mechanistic links among observed plant 

pigments, traits, and functional response. 

Using the NDSIs (rather than raw reflectance wavelengths) allows the identification of 

combinations of narrow features (one or two wavebands wide) that appear repeatedly as 

important in our model. The heat graph for the PLSR coefficients using NDSI show a range of 

narrow features with high contribution to the PLSR (e.g., 2288 nm) and wider features 

indicating broader correlations, likely related to vegetation water content (e.g., 1503-1682 nm). 

In particular, combinations of narrow wavebands centered on 414, 1762, 2048 and 2298 

appeared repeatedly in the PLSR model (indicated by streaks in the heat graph in Fig. 6). The 

value to PLSR used in the way presented here is that we were able to exploit both the full 

spectrum in the PLSR, but also narrow features at specific wavebands that emerged in the 

important NDSIs in the model. 

The differences between the correlation heat maps (Figs. 3 and 4) and PLSR heatmap (Fig. 6) 

demonstrate the value of the imaging spectroscopy and PLSR approaches in estimating GPP 

across broadly varying ecosystems. Simple correlations with NDSI in which all cover types are 

pooled (Fig. 3) indicate that broad areas of the spectrum characterized by widely used indices 

such as NDVI, rather than narrow features that require imaging spectroscopy, are sufficient to 
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capture major variation in GPP that is largely attributable to differences in physiognomic cover 

type (e.g., forest vs. grassland-savanna). This suggests decent discrimination of differences 

between types but poor predictability within types (Fig 5b).  

In contrast, the correlation heat graph broken out by cover type (Fig. 4) shows widely differing 

correlations between GPP and hyperspectral NDSIs by type, and indicates that both narrow and 

broad regions within different cover types are important correlates with GPP. Moving to a 

predictive framework, the PLSR of all data using NDSIs (Figs 5a, 6) demonstrates that the 

imaging spectroscopy data – using NDSIs – can effectively discriminate variations in GPP 

encompassing differences between and within cover types. When contrasted with broadband 

approaches (5a vs. 5b), both imaging spectroscopy and broadband analyses adequately capture 

variations associated with type differences, although the imaging spectroscopy model exhibits 

less bias (Fig 5a) than the broadband model (Fig 5b), with the imaging spectroscopy PLSR 

approach standing out in that the different cover types more closely align along the same 1:1 

line than the broadband approach. The limited dataset does not allow in depth analysis of model 

performance for each vegetation type, but the model generated more accurate predicted GPP for 

grassland-savanna, shrubland and wetland sites, while the forest type exhibited the lowest 

correlation (Appendix S1: Table S4). The NDSI values associated with the forest set of sites also 

exhibited the lowest overall average correlation (Fig. 4). The lower relative performance of both 

the model and average NDSI correlation for forest sites compared to the other types is expected, 

as the LAI for these sites is relatively constant throughout the growing season, as compared to 

other sites with a less dense canopy. Broad spectral areas of correlation (Fig. 4) are prevalent in 

sites where LAI is highly correlated with ecosystem productivity. For this reason, broadband-

based productivity models can generally perform well across vegetative types, while the 

relationship breaks down within a classification (Fig. 5b). Furthermore, variation within a single 

site has been difficult to detect with all existing models examined, but the narrowband-based 

model presented in this study is able to maintain low error and bias within vegetation types, 

including forest sites which produced the lowest adjusted R2 value (0.32). The result of this 

ability to capture variability within PFTs is a more robust model when compared to broadband 

based predictive models including the Sims model (Fig. 5). We provide the first evidence that a 

complex range of sites can be well simulated with no additional information beyond the spectral 

content and the PLSR model. Additional research and sampling is required to examine potential 

methods to improve predictability within forest sites. 

Collectively, these analyses enable us to determine the capacity to extrapolate ecosystem 

function derived from flux tower data using hyperspectral imagery, and then infer ecosystem 

responses to climate anomalies such as the unprecedented drought that occurred in California 

during our study period (Asner et al., 2016). Challenges remain in handling diverse canopy 

architecture, especially open canopies with large soil exposed gaps, and integrating across 

complex terrain, land management, and seasonally stressed ecosystems (Kobayashi et al., 2012). 

Additional measurements across a wider range of climatic and ecological conditions will be 

required to develop a useful model at broader scales. Nonetheless, our findings have an 

important bearing on proposed future satellite-borne imaging spectroscopy missions that could 

fill the gaps in the globally sparse network of EC flux towers (Schimel et al., 2015). 
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Conclusion 
Flux tower estimates of GPP across multiple ecosystems in a water-stressed region offer 

important observations that can inform remote sensing algorithm development for improved 

detection of drought impacts on carbon cycling and plant productivity. PLSR models based on 

imaging spectroscopy with high spectral resolution are capable of accurately predicting GPP 

independent of vegetation type and season, with significant improvement over traditional 

broadband approaches. Use of NDSIs in our PLSR models enabled us to leverage not only the full 

spectrum, as is common with hyperspectral imagery, but also narrow features identifiable in 

combinations of narrow bands, which has not typically been done in hyperspectral analyses, as 

usually just reflectance by wavelength is used.  

Our findings provide the opportunity to accurately map ecosystem properties where broadband 

sensor capabilities are limited and suggest that spectral resolution is as or even more important 

than spatial resolution in consideration of future sensor design for satellite remote sensing. 

Further, there is strong evidence for mechanistic links among wavelengths and response 

associated with specific elements in leaf structure that influence plant productivity, and 

therefore GPP, on a canopy scale. We conclude that the sensitivity of ecosystem metabolism to 

ongoing and future climatic changes can be monitored continuously at high spatial resolution 

using satellites equipped with sensors similar to the proposed HyspIRI imaging spectrometer. 
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Additional supporting information may be found in the online version of this article at 

http://onlinelibrary.wiley.com/doi/10.1002/eap.xxxx/suppinfo 

 

Data Availability 

Data available from the following:  

PLSR model code and results: https://doi.org/10.6084/m9.figshare.6020153 

Spectroscopy data:  https://ecosis.org/#result/fac4e3cb-7ebb-42d9-a7e3-1273114d4efa 

NASA AVIRIS: https://aviris.jpl.nasa.gov/alt_locator/ and directly downloaded at:  

ftp://popo.jpl.nasa.gov/2013_HyspIRI_Prep_Data/L2-Ortho_Reflectance/  

ftp://popo.jpl.nasa.gov/2014_HyspIRI_Prep_Data/L2-Ortho_Reflectance/ 

Ameriflux tower data sites are listed in Appendix S1: Table S1. 
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Tables 
 

Table 1. Eddy covariance flux tower site information, including average temperature (°C) and 

precipitation (%) anomalies for 2013-2014 against the average for 2003 through 2012. SiteID 

corresponds with Ameriflux Site ID. (PRISM Climate Group, Oregon State University, 

http://prism.oregonstate.edu, created 17 May 2016) 

 

  

Site Name Latitud
e 

Longitud
e 

SiteID PFT 
Classification 

2013-2014 
Temperature 
anomaly 
(degrees C) 

2013-2014 
Precipitation 
anomaly 
(percent of 
average) 

Twitchell Island 38.105
5 

-121.652 USTWT Wetlands 1.5 61 

Twitchell East 
End Wetland 

38.103 -121.641 USTW4 Wetlands 1.8 61 

Mayberry 
Wetland 

38.049
8 

-121.765 USMYB Wetlands 1.5 63 

Tonzi Ranch 38.431
6 

-120.966 USTon Grassland-
Savanna 

1.3 58 

Vaira Ranch 38.406
7 

-120.951 USVar Grassland-
Savanna 

1.3 58 

Twitchell Alfalfa 38.115
9 

-121.647 USTW3 Grassland-
Savanna 

1.5 61 

Sherman Island 38.037
3 

-121.754 USSnd Grassland-
Savanna 

1.5 63 

Diablo 37.677
3 

-121.53 USDia Grassland-
Savanna 

1.4 63 

Oak-Pine 
Woodland 

37.108
7 

-119.731 USCZ1 Grassland-
Savanna 

1.5 32 

Grassland 33.737 -117.695 USSCg Grassland-
Savanna 

1.6 36 

Sierran Mixed 
Conifer Forest 

37.067
5 

-119.195 USCZ3 Forest 1.3 34 

Ponderosa Pine 
Forest 

37.031
0 

-119.257 USCZ2 Forest 1.6 33 

Oak-Pine Forest 33.808 -116.772 USSCf Forest 1.8 51 

Coastal Sage 33.734 -117.696 USSCs Shrubland 1.6 36 

Desert 
Chaparral 

33.61 -116.45 USSCc Shrubland 1.6 46 

Pinyon-Juniper 
Woodland 

33.605 -116.455 USSCw Shrubland 1.6 46 

Sky Oaks New 33.384
43 

-116.64 USSO4 Shrubland 1.5 58 

Sky Oaks Young 33.377
2 

-116.623 USSO3 Shrubland 1.5 58 

Sonoran Desert 33.652 -116.372 USSCd Shrubland 1.5 43 
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Figures Captions 
Figure 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the 

study region in 2013 and 2014 (imagery: Google Earth). 

Figure 2. Eddy covariance mean daily GPP for each study site, with flight imagery acquisition 

times noted by dotted lines. Colors represent site plant functional category used in analysis.  

Figure 3. Linear Pearson correlation coefficient of tower GPP to airborne imagery spectra 

normalized difference between all combinations of two bands (NDSI). Black box denotes general 

region and width of normalized difference vegetation index (NDVI) used by broadband sensors 

and yellow box the photochemical reflectance index (PRI). This figure includes all sites. Strong 

positive and negative correlations exist in a number of broad spectral regions. Histogram 

depicts frequency of correlation on legend. 

Figure 4. Same as Fig. 3, but based on plant functional category, including a) forests, b) 

wetlands, c) shrublands, and d) grasslands. In contrast to Fig. 3, many areas of previously 

significant correlation disappear and those that persist are generally narrower in width.  

Figure 5. Predicted 30-minute average GPP (mol [m-2 ground area] s-1) derived by a) partial 

least squares regression of NDSIs based on all airborne spectra and b) airborne spectra 

simulated as broadband and applied to a widely used GPP model (Sims et al. 2008). While both 

models capture variability in flux tower GPP across all vegetation types, only the narrowband 

PLSR model (left) shows low bias (validation bias is 0.04 for the PLSR model, and -5.71 for the 

Sims model) and similar performance for all cover types (Appendix S1: Table S4). Bars 

represent uncertainty in eddy covariance fluxes (vertical, calculated as 20% of the GPP value 

[Desai et al., 2008]) and PLSR regression (horizontal, calculated as one standard deviation based 

off the 1000 iterations of the PLSR model). 

Figure 6. Coefficients from the PLSR predicting EC-based GPP as a function of NDSIs based on 

all data pooled across all sites. Values plotted are mean coefficients, based on 1000 

permutations, and higher absolute values indicate higher contribution to the predictive model. 

Only NDSI combinations that were significantly different from zero across the 1000 

permutations are plotted. Also shown at bottom (shaded) is histogram of how frequently 

wavelengths appear in the PLSR predicting EC-based GPP as a function of NDSIs, based on all 

data pooled across all sites.  
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