Why a meteorologist studies forests: The almospheric carbon cycle, turbulent eddies, pessimistic trees, and you!

Ankur Desai University of Wisconsin-Madison

Atmospheric CO₂ has increased rapidly to levels above anything in Earth's recent past

 1600
 Vostok Ice Core
 Joday
 360
 300
 240
 800
 Sources: Petit et al (1999) Nature 399:429-436 and IPCC(2000)

3700

2100?

Fossil Fuel and Cement Emissions

CARBON

PROJECT

GLOBAL

Global fossil fuel and cement emissions: $36.1 \pm 1.8 \text{ GtCO}_2$ in 2013, 61% over 1990 • Projection for 2014 : $37.0 \pm 1.9 \text{ GtCO}_2$, 65% over 1990

Estimates for 2011, 2012, and 2013 are preliminary

Source: CDIAC; Le Quéré et al 2014; Global Carbon Budget 2014

Global Carbon Budget

CARBON

PROJECT

GLOBAL

The cumulative contributions to the Global Carbon Budget from 1870 Contributions are shown in parts per million (ppm)

Figure concept from <u>Shrink That Foolprint</u> Source: <u>CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013;</u> Le Quéré et al 2014; <u>Global Carbon Budget 2014</u>

Fate of Anthropogenic CO₂ Emissions (2004-2013 average)

GLOBAL

CARBON

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014

Global Carbon Budget

CARBON

PROJECT

GLOBAL

Emissions are partitioned between the atmosphere, land, and ocean

Source: CDIAC; NOAA-ESRI ; Houghton et al 2012; Giglio et al 2013; Joos et al 2013; Khatiwala et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014

Changes in the Budget over Time

CARBON

PROJECT

GLOBAL

The sinks have continued to grow with increasing emissions, but climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO₂ in the atmosphere

Source: CDIAC; NOAA-ESIRE; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014

The residual land sink is increasing with time to 9.2 ± 1.8 GtCO₂/yr in 2013, with large variability Total CO₂ fluxes on land (including land-use change) are constrained by atmospheric inversions

Source:

Individual estimates from Zhang et al. (2013); Oleson et al. (2013); Jain et al. (2013); Clarke et al. (2011); Smith et al. (2001); Sitch et al. (2003); Stocker et al. (2013); Krinner et al. (2005); Zeng et al. (2005); Kato et al. (2013); Peters et al. (2010); Rodenbeck et al. (2003); Chevallier et al. (2005). References provided in Le Quéré et al. (2014).

Terrestrial Biosphere CO₂ Flux Dominates Carbon Cycle Prediction Uncertainty

Observed Emissions and Emissions Scenarios

Emissions are on track for 3.2–5.4°C "likely" increase in temperature above pre-industrial Large and sustained mitigation is required to keep below 2°C

Data: CDIAC/GCP/IPCC/Fuss et al 2014

CARBON

PROJECT

GLOBAL

Over 1000 scenarios from the IPCC Fifth Assessment Report are shown Source: Fuss et al 2014; CDIAC; Clobal Carbon Budget 2014

Terrestrial carbon cycle feedback is a leading order uncertainty for climate simulation

IPCC AR5 WG1 CH6

What do I (we) do?

http://flux.aos.wisc.edu

- Probe spatial heterogeneity in biologically-mediated surfaceatmosphere exchanges from sites to regions (meters-1000s km)
 - Forests, wetlands, lakes, urban (temperate-boreal-tropical-Mediterranean-alpine, terrestrial-aquatic, management gradients)
 - Multiple greenhouse gases (methane), esp. with eddy covariance
 - Feedbacks from energy balance and a land surface variability on the atmospheric boundary layer and synoptic-PBL interactions in observations and models (LES, PBL, mesoscale, climate)
 - Up/down scaling across multiple measurements: eddy covariance, biometric, airborne budgets, inverse modeling, hyperspectral remote sensing (leaf to satellite)
 - Informing ecosystem and atmospheric models with diverse measurements across space (data assimilation, model informatics)

- http://pecanproject.org

Who we are

Willow Creek - NetCam SC IR - Thu Sep 20 11:31:17 2012 Temperature: 36.0 °C internal, 9.0 °C outside RH: 0%, Pressure: 944.0 millibars Exposure: 400

II. TURBULENT EDDIES

Eddy covariance is mature technology

History

- 1880-1920s Turublence theory (Reynolds, Prandtl, Richardson, Taylor)
- 1940s-1950s Surface-layer theory (Monin-Obhukov, Kolmogorov), development of fast sensors for anemometry
 - 1960s early measurements (Inoue, Wyngaard, Kaimal)
- 1970s forest fluxes (Raupach, Lenschow, Denmead)
- 1970s CO₂ fluxes (Desjardins, Leuning)
- 1980s Infrared gas analyzers (Verma, Anderson, Valentini)
- 1990s First long-term regional CO₂ flux networks (Wofsy, Baldocchi, Goulden, Law, Aubinet)
- 2000s Global syntheses (FLUXNET, Falge, Papale, Reichstein)
- 2010s Model-data integration, development of operational measurements (NEON, ICOS, you?)

D. Baldocchi

$$\overline{\frac{D\widetilde{C}}{Dt}} = 0 \longrightarrow \overline{\frac{\partial\widetilde{C}}{\partial t}} + \widetilde{U_{j}} \frac{\partial\widetilde{C}}{\partial x_{.}} = 0$$

STORAGE TURBULENT-FLUX
NEE
$$\equiv \int_{0}^{z_{r}} sdz + (\overline{w'c'})|_{z=0}$$

$$= \int_{0}^{z_{r}} \frac{\partial\overline{c}}{\partial t} dz + (\overline{w'c'})_{r} + \overline{w}_{r}(\overline{c}, -\langle\overline{c}\rangle)$$
(4)

J

$$\frac{\partial \overline{C}}{\partial t} + \frac{\partial \overline{c'}}{\partial t} + \overline{U_j} \frac{\partial \overline{C}}{\partial x_j} + \overline{u_j'} \frac{\partial \overline{C}}{\partial x_j} + \overline{U_j} \frac{\partial \overline{C}}{\partial x_j} + \overline{U_j'} \frac{\partial c'}{\partial x_j} = 0$$

$$\frac{\partial \overline{C}}{\partial t} + \overline{U_j} \frac{\partial \overline{C}}{\partial x_j} + \overline{u_j'} \frac{\partial c'}{\partial x_j} = \frac{\partial \overline{C}}{\partial t} + \frac{\partial \overline{U_jC}}{\partial x_j} + \frac{\partial \overline{u_j'c'}}{\partial x_j} = 0$$

Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model

Peter M. Cox*, Richard A. Betts*, Chris D. Jones*, Steven A. Spall* & Ian J. Totterdell†

Negative Feedbacks

Processes and feedbacks triggered by extreme climate events?

M Reichstein et al. Nature 500, 287-295 (2013) doi:10.1038/nature12350

Peatland carbon is vulnerable to climate and hydrological change

- Peat carbon is preserved by cool temperatures and flooded conditions
- Warming and drying can disrupt the process and lead to carbon loss

Ise et al 2008

Hydrology does not drive NEE in four fens

Sulman et al., GRL, 2010

Same for bogs, but in a different way

Sulman et al., GRL, 2010

How well did models simulate peatland processes?

Model name	Temporal resolution	Soil layers	Soil C pools	N cycle	Max soil moisture
DLEM	Daily	2	3	Yes	Saturation
Ecosys	Hourly	8	9	Yes	Saturation (with water table)
LPJ	Daily	2	2	No	Field capacity
ORCHIDEE	30-min	2	8	No	Field capacity
SiB	30-min	10	None	No	Saturation
SiBCASA	30-min	25	9	No	Saturation
TECO	30-min	10	5	No	Saturation

Sulman et al., JGR-G, 2011

Monthly residuals were correlated with observed water table

Maybe longer term?

Ecoregion	Active area fraction
Upland	38%
Mineral wetland	27%
Shrub peat	29%
Graminoid peat	5%

LANDIS-II model

Sulman et al., Ecosystems, 2013

Water table effects on carbon

balance

Landscape

Peatlands:

- 100 cm declines:
 - Short term: C gain
 - Long term: C loss
- 40 cm declines
 - Short term: C neutral
 - Long term: C loss

Mineral wetlands:

- C gain for both Whole landscape
- Short-term: C
 increase
- Long-term: C steady
- Time scale of decline made little difference

20 15 10 5 Ο 5 100 200 300 400 20 15 10 cm 40 cm 105 n 40 yrs Ο cm 10 vrs Zero line 5 고아 300 400 100 200 20 15 10 5 Ο 5 100 200 300 400

Net change from control run for shallow peat simulations: Different water table scenarios

A very tall tower!

Desai, A.R., 2014. Influence and predictive capacity of climate anomalies on daily to decadal extremes in canopy photosynthesis. Photosynthesis Research, 119, 31-47, doi:10.1007/s11120-013-9925-z.

NEE of CO2

Latent Heat Flux

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2013

From NEE to Productivity

- Flux tower derived "GPP" is sensitive to model selection and gaps (Desai *et al.*, 2008)
- INSTEAD: Use a data-based approach
 - P_d = Max nighttime observed NEE Mean noon (10-14)
 NEE
 - Reject noon NEE is > 50% gap-filled

Problem

- Every flux tower based correlation is significant when you have thousands to tens of thousands of datapoints
 - Effect sizes may be small, though
- Account for autocorrelation using "reduced degrees of freedom" metric!

$$N_{*} = \frac{N}{\sum_{t=N/2}^{N} \left[\left(1 - \frac{t}{N} \right) \rho_{t}^{X} \rho_{t}^{Y} \right]}$$

Bretherton et al., 1999, J Clim

What to test?

Abbreviation	Description	Source
P_d	Photosynthetic drawdown	Flux tower
EVI	Enhanced Vegetation Index, 8-day average	MODIS TERRA/AQUA
ET	Evapotranspiration	Flux tower
WUE	Water Use Efficiency (P_d/ET)	Flux tower
Precip	Daily precpitation	NCDC + NARR
		Reanalysis
Q_{soil}	10 cm soil moisture	NARR Reanalysis
T _{mean}	Daily temperature	Flux tower + NCDC
T _{min}	Minimum daily temperature	Flux tower + NCDC
T _{max}	Maximum daily temperature	Flux tower + NCDC
Trange	Daily temperature range (max - min)	Flux tower + NCDC
LST	Land Surface Temperature, 8-day day/night	MODIS TERRA/AQUA
	average	

What do you get?

- Only significant correlations shown
- Moisture and temperature anomalies
 positively
 correlate with
 P_d at subannual scales

Lags are interesting

- Red squares = correlations > autocorrelation
- Remotely sensed variables (EVI,LST) have limited ability to predict P_d
- Previous year weekly-monthly temperature has a weak negative relationship to P_d

Attack of the beetles

LETTER

Persistent reduced ecosystem respiration after insect disturbance in high elevation forests

Abstract

David J. P. Moore,^{1,†*} Nicole A. Trahan,^{2,†} Phil Wilkes,³ Tristan Quaife,⁴ Britton B. Stephens,⁵ Kelly Elder,⁶ Ankur R. Desai,⁷ Jose Negron⁶ and Russell K. Monson^{1,8} Amid a worldwide increase in tree mortality, mountain pine beetles (*Dendroctonus ponderosae* Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km² valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.

No one trusts a model except the one who wrote it; everyone trusts an observation except the one who made it – Harlow Shapley (by way of Matt Disney)

Forests in Flux

Passive
Preservation
Preservation/Change
Production
Change Unknown

Wood Products

WRF-Noah Setup

Bagley, J.E., Desai, A.R., Harding, K.J., Snyder, P.K., and Foley, J.A., 2014. Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? *J. Climate*, 27, 345-361, doi:10.1175/JCLI-D-12-00369.1.

- Spatial Resolution: 20km x
 20km
- •Timestep: 60 seconds

•For 2003, 2004, 2005, 2007, 2009, and 2010 the model was run from March 15 – October 15 with and without deforestation

•Total of 12 seven-month simulations completed with hourly output

Precipitation Rate (mm/month)

Amazon Rainforest Percent Changes with Deforestation

In nearly every measure the impact of deforestation is greater during drought years

		Pluvial Years I	rought Years	
$\% \Delta$ Precipitation Rate		-4.99%	-5.93%	
% Δ Sensible Heat Flux		+.48%	+4.28%	
% Δ Latent Heat Flux		-3.63%	-5.57%	
% Δ Net Surface Radiation		-2.41%	-2.70%	
% Δ Boundary Layer Height		11%	+1.36%	
% Δ Rel. Soil Moisture Top Laver		-3.00%	-4.38%	
% Δ Rel. Soil Moisture Bot. Laver		+3.50%	+5.09%	
% Δ 2m Specific Humidity		77%	-1.31%	
$\% \Delta$ Level of free convection		+2.62%	+.52%	
$\% \Delta$ Lifting condensation level		+1.29%	+3.94%	

July - September

Final Thoughts

- Terrestrial ecosystem carbon cycle responds to a number of climatic, disturbance, and management forces, but feedbacks can go both ways
- Ecosystem management needs to consider these and Earth system models need to consider management
- All processes are time and space dependent
- Meteorologists need your help!

Thanks!

• Contributors:

 Jonathan Thom, Ke Xu, Arlyn Andrews, Dan Baumann, Bruce Cook, Dave Moore, Britt Stephens, Justin Bagley, Ben Sulman, Mike Dietze, Sebastien Wolf, many others...

- Funding:
 - NSF, NOAA, NASA, DOE, USDA, WI Focus on Energy