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[1] The Ecosystem Demography (ED) model was parameterized with ecological, forest
inventory, and historical land use observations in an intensively managed, wetland-rich
forested landscape in the upper midwest United States. Model results were evaluated
against a regional network of eddy covariance flux towers and analyzed about the roles of
disturbance, forest management, and CO2 fertilization. The model captured modern
regional vegetation structure with worst comparison in wetlands. Model net
ecosystem exchange of CO2 (NEE) was highly correlated on monthly (r2 = 0.65) and
annual (r2 = 0.53) timescales to 7 years of NEE observed at a 396-m-tall eddy covariance
(EC) tower and to 2 years of growing season NEE from 13 regional stand-scale EC sites of
varying cover and age (r2 = 0.64). Model summer NEE had higher than observed net
uptake for the tall tower and mature hardwood sites, and correlation to growing season
ecosystem respiration at these sites was poor (r2 = 0.09). Exclusion of forestry led to
overestimation of aboveground living plant biomass accumulation by 109% between two
forest inventory cycles (1996–2004). On the long-term (200 years), forestry
significantly altered ecosystem cover and age, and increased NEE by 32%. CO2

fertilization over that time period increased NEE by 93% owing to a doubling of plant
density. While the model showed that harvest and afforestation had smaller impacts on
NEE than CO2 increase, the former were still significant and require consideration
when making future NEE predictions or scaling plot-level data to regional and global flux
estimates.
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1. Introduction

[2] It is difficult with direct scaling of eddy covariance
flux tower measurements [e.g., Desai et al., 2007] and
coarse resolution biogeochemical models [e.g., Heinsch et
al., 2006] to adequately capture spatial gradients [Ahl et al.,
2004] or provide process understanding of regional land-
atmosphere CO2 flux. Models of ecosystem-atmosphere
exchange offer the unifying framework needed to assimilate
observations, extrapolate data points across space and

time, and predict future change [Moorcroft, 2003]. Most
coupled and uncoupled ecosystem-atmosphere models are
driven primarily by net incoming radiation, meteorology
and a ‘‘big-leaf’’ representation of regional average radia-
tion and climate sensitive ecosystem parameters that
vary with biome, mean climate, soil type, and elevation
[Moorcroft, 2003]. However, spatial and temporal variabil-
ity in ecosystem-atmosphere fluxes are functions of both
exogenous, abiotic variability arising from variations in the
physical landscape and climate, and endogenous, biotic
variability driven by stochastic tree mortality and distur-
bance processes.
[3] Since biotic ecosystem dynamics (e.g., disturbance,

mortality, reproduction) are typically more likely than
abiotic variability (e.g., climate, soils, topography) to occur
on small spatial scales, develop over long timescales, and
have a stochastic component, they are often ignored, or
modeled with simple, externally prescribed events [e.g.,
Thornton et al., 2002]. These mortality and disturbance
processes, along with prior anthropogenic modification of
disturbance regimes, however, may lead to nonlinear feed-
backs and leave an imprint on current ecosystem structure
and fluxes [Law et al., 2004; Schimel et al., 1997].
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[4] Mounting evidence from inventory estimates, ecosys-
tem models, and atmospheric inversions suggests that
ecosystem recovery from prior land clearing is responsible
for a substantial portion of the modern observed North
American carbon sink [Caspersen et al., 2000; Hurtt et al.,
2002; Pacala et al., 2001; Schimel et al., 2001]. Several
ecosystem models are able to incorporate prescribed dis-
turbances [e.g., Masek and Collatz, 2006; Thornton et al.,
2002] and there is emerging application of global-scale
coarse-resolution dynamic ecosystem models [e.g., Cramer
et al., 2001; Foley et al., 1996]. However, explicit incor-
poration of processes leading to small-scale, stochastic
disturbances has been, until recently, limited to gap-scale
(�10 s of m) models. Computational ability prohibits use of
gap models at the regional or global scale. An example of a
new class of ecosystem models is the Ecosystem Demog-
raphy (ED) model [Moorcroft et al., 2001]. ED uses a
statistical-dynamic approach to capture the mean impact
of gap-scale subgrid disturbances on the model grid scale
and regional scale, similar to other size-structured models
[e.g., Pacala and Deutschman, 1997], but with specific
incorporation of the net effect of stochastic disturbance
events and prescribed harvest events on stand age distribu-
tion and development.
[5] Dynamic ecosystem models, however, are difficult to

parameterize and evaluate. There is growing interest in
using eddy covariance flux towers for both model evalua-
tion [e.g., Hanson et al., 2004] and parameter optimization
[e.g., Braswell et al., 2005; Knorr and Kattge, 2005;
Ricciuto et al., 2007; Sacks et al., 2006]. However, careful
selection of eddy covariance tower networks and ancillary
data are required for dynamic ecosystem model assimila-
tion or evaluation so as to ensure that the full range of
ecosystem complexity relevant to carbon exchange is
characterized.
[6] Forest inventory techniques provide a complementary

method to quantify current biomass and flux across larger
spatial scales [Jenkins et al., 2001; Smith et al., 2004].
While spatial sampling density of inventory methods is
high, national inventory programs typically suffer from
long (multiyear) measurement intervals, lack of observa-
tions in all carbon pools, and ecosystem sampling biases.
Still, inventories can be used to derive disturbance, mortal-
ity, and ecosystem structure parameters for ecosystem
models.
[7] We applied the ED model at the regional scale to test

the influence of disturbance and land cover variability on
ecosystem structure and CO2 fluxes. Forest inventory bio-
mass, density, mortality, land cover data, remotely sensed
land cover, preinventory land use history data, and eco-
physiological field observations were used to initialize and
parameterize the model. Input variables of historical mete-
orological observations and atmospheric CO2 proxies were
used along with automated, tower-based hourly observa-
tions of these variables made since 1996.
[8] The region of study is north-central Wisconsin

in the upper midwest, United States, location of the
Chequamegon-Ecosystem Atmosphere Study (ChEAS:
http://cheas.psu.edu). A unique aspect of ChEAS is the
globally unique eddy covariance flux measurements made
since 1995 on a very tall (447 m) television transmitter
(WLEF) near Park Falls, Wisconsin. Over the years, as

many as 11 other stand-scale flux towers were in operation
in the region across a range of 14 vegetation and stand age
categories [Desai et al., 2007]. The very tall tower has
observed a small annual source of CO2 to the atmosphere
since the measurement campaign started [Davis et al., 2003;
Ricciuto et al., 2007]. In contrast, most of the stand-scale
towers observed sinks of CO2 [Desai et al., 2007]. An
ecosystem model that did not include disturbance or land-
use overestimated daytime growing season net CO2 uptake
compared to the tall tower [Baker et al., 2003]. Prior stand-
scale flux tower upscaling [Desai et al., 2007] and tall
tower downscaling [Wang et al., 2006] suggested that
forested wetlands and recently disturbed forests are under-
sampled and potentially explained the CO2 source observed
by the tall tower flux measurement.
[9] The parameterized ED model provides an alternative,

independent estimate of regional flux, based entirely on an
integration of forest inventory, historical meteorology and
ecological data. Fluxes measured from the tall tower and the
multitower upscaling allowed for evaluation of ED model
performance. The ED model was then used to test the
hypothesis that the impact of disturbance in the footprint
of the tall tower on net CO2 flux was underestimated by the
stand-scale towers. The parameterized model was also used
to test whether or not land use history and CO2 fertilization
over the past 150 years had a significant impact on the
current forest structure and CO2 fluxes in the region.

2. Methods

2.1. Site Description

[10] Observational data were collected and the model was
parameterized over north-central Wisconsin, located in the
uppermidwest region of theUnited States, in an area centered
on the Park Falls, Wisconsin WLEF eddy covariance tower.
The region is heavily forested, lacks sharp elevation gradients
and has a low human population density. The primary forest
types includemature northern uplandmesic hardwoods (Acer
spp., Tilia americana, Betula alleghaniensis, Fraxinus spp.)
and younger aspen (Populus termulouides), with smaller
coverage of xeric softwoods and hardwoods such as red
pine (Pinus resinosa), balsam fir (Abies balsamea), and jack
pine (Pinus banksiana) [Desai et al., 2007]. Forested and
shrub wetlands and grassy meadows cover close to 30% of
the region, typical of glacial outwash landscapes in this
region. Primary wetland trees include black spruce (Picea
mariana), white cedar (Thuja occidentalis), tamarack (Larix
laricina), alder (Alnus spp.), and willow (Salix spp.) species
[Desai et al., 2007].
[11] Forests, both public and private, are heavily man-

aged, though the magnitude of forest harvest is in decline
[Frelich and Reich, 1995]. The region was heavily clear-cut
from the mid-nineteenth to early twentieth century. Preset-
tlement upland forest consisted primarily of upland eastern
hemlock (Tsuga canadensis), northern hardwoods and white
pine (Pinus strobus) [Schulte et al., 2002]. Natural distur-
bance is dominated by extreme meteorological or climate
events (e.g., wind storms, drought), while large-scale fire is
rare [Frelich and Reich, 1995]. Given the large diversity in
vegetation cover type and age but minimal variation in
climate across space, the region allows for investigation of
the role of biotic factors and anthropogenic disturbance on
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ecosystem-atmosphere flux and forest structure while min-
imizing the effect of climatic gradients.

2.2. Ecosystem Demography Model

[12] Forest gap models are dynamic ecosystem models
that track the fate of every plant and associated biogeo-
chemical flux within the scale of a single overstory canopy
tree [Pacala et al., 1996]. The model is called a ‘‘gap’’
model since it is the stochastic dynamics of disturbance in
canopy individuals that leads to dynamic ecosystem evolu-
tion via release and growth of subcanopy species in canopy
gaps. Using these gap models at scales larger than a forest
stand is limited both by computational ability and stochastic
instability/sensitivity to initial conditions. Instead,Moorcroft
et al. [2001] argue that for scales with sufficiently large
numbers of gaps, regional biogeochemical cycling and
ecosystem structure can be captured by modeling the time
evolution of an ensemble average of all gaps, similar to the
statistical-mechanical approach used in modeling turbulent
fluid transport as parcels of fluids instead of tracking the
fate of every molecule.
[13] The key to a well-formed ensemble average is

conditioning the ensemble with respect to the key differ-
ences among gaps that lead to heterogeneity in ecosystem
structure across space. Moocroft et al. [2001] showed that a
plant cohort size– and gap age–structured mean-moment
model explicitly conditioned on stand age since disturbance
properly accounts for the primary resource variability lead-
ing to ecosystem structural differentiation and competition,
namely heterogeneity in the subcanopy light environment as
a function of stochastic disturbance of canopy trees. This
insight forms the basis of the ED model. Partial differential
rate of change equations (PDEs) for plant community
evolution in size and plant functional type distribution as
functions of growth, mortality, seedling recruitment, and
disturbance rates are derived for ensemble-average gaps of
different ages since disturbance (Appendix A).
[14] The original model was parameterized for use in

South American tropical forests and grasslands [Moorcroft
et al., 2001]. Hurtt et al. [2002] extended the original model
for use in North America, defining three new plant func-
tional types (cold-deciduous trees, coniferous trees and C3
grass types), reparameterizing the probability of fire distur-
bance, and spread and extending the model to incorporate
anthropogenic disturbance and land-use change. Land-use
change was incorporated by specifying a land-use transition
matrix to track the movement of land between different
land-use classes. Albani et al. [2007] further refined the
model for use in the northeastern United States parameter-
izing seven new plant functional types (early, mid, and late
successional deciduous tree types, northern pines, southern
pines, and late successional conifer trees) and adding a new
disturbance routine for pathogen outbreaks. More recently, a
coarse woody debris (CWD) submodel has been added
(P. Moorcroft et al., unpublished paper, 2004) that tracks
the fate of dead structural material into the structural soil
carbon pool.
[15] To apply the model to this study, several other

modifications were made. Individual grid cells in the model,
typically 1� � 1� in resolution, are considered independent
in ED. The ED equations essentially describe the subgrid
biotic dynamics assuming abiotic factors across the grid cell

are constant. The focus of this study was to test the role of
biotic dynamics in explaining regional flux since climate
variability across the region was shown to be negligible
[Desai et al., 2007]. The model was recast as a single-region
model consisting of essentially one 40-km-radius grid cell
centered on the Park Falls, Wisconsin, tall tower. However,
abiotic variation due to soil type and topography could not
be neglected in the footprint, so the grid cell was divided
into three independent models: mesic northern upland hard-
woods, xeric conifer/mixed forests, and lowland forest/
wetlands, with each having its own soil type, soil moisture
retention, initial plant community, plant functional types,
and forest harvest parameters. Minor changes were also
made in the biogeochemical functions to better reflect plant
dynamics in northern forests as detailed in the appendices.

2.3. Input Variables

[16] Primary time-varying forcing variables needed by
ED are monthly air temperature (for respiration, phenology,
and sapling mortality), minimum air temperature (for frost
mortality), growing degree days (for phenology), number of
days below 0�C (for phenology and snow hydrology), near-
surface soil temperature (for soil decomposition turnover,
plant water uptake and seedling germination), incoming
precipitation (for canopy filtration and soil moisture),
land-use transition rates, and forest harvest rates. Addition-
ally, hourly midcanopy air temperature, surface-layer atmo-
spheric CO2 concentration, incoming photosynthetically
active radiation (PAR), and vapor pressure deficit (VPD)
are required for solving leaf-level assimilation and evapo-
ration. All of these values were assembled from a combi-
nation of historical and current observed climate and forest
resource data, as described below.
2.3.1. Meteorology and CO2

[17] Daily quality-controlled temperature and precipita-
tion data from National Climate Data Center archived
weather station data of daily maximum and minimum
temperature, total precipitation in Minocqua, Wisconsin
(1905–1947), and Park Falls, Wisconsin (1948–2004),
were provided by the U.S. Historical Climatology Network
(HCN) [Hughes et al., 1992]. Climate pre-1905 was assumed
to repeat 1905–2005 values cyclically. The MT-CLIM
algorithm was used to estimate daily total incident solar
radiation and VPD from diurnal temperature range, precip-
itation, and time of year [Bristow and Campbell, 1984;
Kimball et al., 1997].
[18] The Park Falls, Wisconsin, tower provided hourly

micrometeorological data from 1996–2004. These data
were used to generate synthetic hourly data in the past
using a random similarity matching algorithm. For each day
without hourly data, meteorological fields were populated
with a random member from a subset of days with hourly
data that matched closest in mean daily temperature, diurnal
temperature range, and solar radiation. If no days matched
the criteria, then a 9-year diurnal average for the day was
chosen, corrected for difference in diurnal temperature
range. This synthetic hourly data were then used to generate
the monthly climate variables required by ED.
[19] Carbon dioxide mixing ratios were derived from a

combination of ice core CO2 proxy measurements (prior to
1959) [Robertson et al., 2001], the U.S. National Oceanic
and Atmospheric Administration (NOAA) monthly atmo-
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spheric CO2 (1959–2004) [Keeling and Whorf, 2005], and
hourly surface-layer CO2 concentration at 30 m from the
Park Falls, Wisconsin, tall tower (1995–2004) [Bakwin et
al., 1995]. A linear trend between annual mean CO2 and
annual 1-sigma variance in CO2 was found from the Mauna
Loa record and applied to the proxy CO2 to create monthly
CO2 pre-1959. CO2 concentration offsets between the long-
term records and the tall tower were applied to create a
synthetic continental CO2 monthly data set. Monthly
ensembles of diurnal CO2 as fraction of monthly mean
CO2 were derived from the tall tower record and applied to
the pre-1995 monthly CO2 to create a consistent hourly CO2

data set. Including diurnal and monthly CO2 cycles in the
biogeochemical model created a more realistic representa-
tion of the atmospheric environment experienced by a
canopy leaf, though the overall impact of including these
cycles in ED did not significantly affect ecosystem-
atmosphere fluxes.
[20] Hourly meteorology was used to drive the leaf-level

biogeochemistry in ED and allowed for inclusion of impacts
of short-term weather and synoptic cycles on temperature,
cloudiness and humidity. Growing-season modeled open
stomata assimilation values were generally consistent with
field observations of maximum leaf-level assimilation in an
old-growth hardwood forest [Kreller, 2005]. However,
preliminary comparisons suggested that transpiration values
appeared to be high compared to scaled sap flux observa-
tions [Tang et al., 2006].
[21] Hourly values were integrated to monthly forcing

variables needed for vegetation dynamics modules. Monthly
soil temperature was found by calculating the mean monthly
difference in observed air and soil temperature in a mature
forest averaged over several years and applying that to the
entire air temperature record. Changes in the strength of

soil temperature to air temperature differences were found
from tower-based observations with higher and lower canopy
leaf area, which were used to modify ED soil temperature
algorithms to account for radiation penetration to the forest
floor. Additionally, ED was modified so that a positive snow
depth kept near-surface soil temperature at 0�C.
[22] Strong seasonality in climate was evident in the

region as diagnosed by mean monthly temperature and
precipitation climate input to ED from 1800–2004
(Figure 1). A long dormant season over the cold, dry winter
is interjected by a short, mild, wetter summer. Annual
variability in average seasonal temperatures was minimal,
with winter variability exceeding summer. The growing
season typically lasted mid-May to late September. Annual
precipitation variability was driven mostly by variability in
the growing season. Long-term trends over the twentieth
century in temperature or precipitation are not evident,
except for a recent trend of warmer winters.
2.3.2. Land Use and Forestry
[23] Decadal statistics on statewide forest harvest [Adams

et al., 2006] and historical forest land cover [Birdsey and
Lewis, 2003] from U.S. Forest Service (USFS) reports and
FIA and spatially gridded agricultural clearing and aban-
donment estimates from historical records [Ramankutty and
Foley, 1999] were used to populate land use change
transition matrices and harvest rate records. Remotely
sensed and historical estimates of regional forest cover
across Wisconsin were used to correct statewide data to
regional averages. Decadal average values were linearly
interpolated to annual values of forest cover which were
then differenced to compute rates of forest gain and loss.
[24] Rates needed by ED are clearing of primary forest

for agricultural use, clearing of secondary forest for agri-
cultural use, abandonment of agricultural land to secondary
forest, harvest of primary forest, and harvest of secondary
forest. Pre-European settlement vegetation surveys [Schulte
et al., 2002] were used as initial state of vegetation cover in
1800. Historical analysis of loss of old-growth forest
[Frelich, 1995] and modern land cover from FIA and
remotely sensed estimates were used to constrain the forest
gain/loss and agricultural clearing rates and convert them
into the transition and harvest rates used in ED. To simplify
the calculation, proportions of nonagricultural vegetated
land that are mesic hardwood, xeric hardwood, and wetland
were assumed to be constant over the period. No harvest
was assumed to occur on wetlands. This method constrained
ED land cover to be consistent with historical and current
land cover.
[25] Land use transition and forest harvest rates

(Figure 2a) and resulting land cover (Figure 2b) as derived
from presettlement land cover and long-term harvest and
agricultural land cover records revealed the dramatic impact
of forest clearing. Rapid land clearing peaked in the mid-
nineteenth century and removed most of the primary (suc-
cessional end point) forest in the region by the end of the
nineteenth century. Harvest of secondary (regrowth) forest
peaked at the end of the nineteenth century and rapidly
declined until 1950, with slower declines afterward. Clear-
ing for agriculture or settlement occurred at a minimal rate
over the period due to the limited suitability of the region
for crops, with agricultural land cover peaking around 1950
and declining afterward. Consequently, woody encroach-

Figure 1. Annual (black line), summer (light gray line),
and winter (dark gray line) (a) average air temperature,
(b) total precipitation, and (c) atmospheric surface layer
CO2 concentration.
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ment in abandoned agricultural fields increased the amount
of secondary forest. Land cover transition rates were gen-
erally consistent with a new nationally gridded land use
transition database (G. Hurtt, personal communication,
2005).
[26] Modern observations of remotely sensed land cover

type were used to apportion vegetated land into the three
edaphic classes of forest (mesic upland = moist soil, mainly
northern hardwood; xeric upland = dry soil, mainly coni-
fers; lowland/wetland = forested and shrub wetlands), and
the noninteracting agriculture and water land classes as used
by ED (Figure 3). The primary assumption here is that the
percent of vegetation fraction represented by each subregion
was constant over time. Most likely this understates land
cover variability and transition owing to draining of wet-
lands, variability in water table depth and change in soil
cover and land use leading to wider planting of conifers.
However, these rates were not available. Additionally, ED
would require a more sophisticated 3-D hydrology module
to handle moisture-disturbance interaction. Consequently,
there is reason to believe the model understates total carbon
fluxes owing to change in land use (e.g., pulse respiration at
upland/wetland edges).

2.4. Model Setup

[27] As noted earlier, ED was run in the ChEAS region
centered on the Park Falls, Wisconsin, tall tower with initial
vegetation provided by pre-European witness tree land
cover statistics [Schulte et al., 2002]. Data on dominant
and codominant species were used to parameterize ED
initial land cover, under the assumption that all patches

were old-growth in 1800. Species density was based on an
uneven-age mixed species stand density index (SDI) for-
mulation [Woodall et al., 2005]. The SDI index formulation
creates an exponentially declining statistical distribution of
tree density per patch as a function of diameter at breast
height (DBH, m) under the constraint of total basal area
equal to the basal area of 24.5 m2 ha�1 (i.e., 500 individuals
ha�1 at 25 cm DBH). DBH range was calibrated against
modern observed minima and maxima from FIA and field

Figure 2. Annual (a) land use transition rates and (b) resulting land cover fraction of vegetated land by
primary (black line), secondary (dotted line), and agricultural (gray line) gap disturbance origin for the
model domain. The forest was essentially clear-cut in the late nineteenth century and a short-lived
agricultural period diminished in the second half of the twentieth century.

Figure 3. Annual assumed regional land cover fraction for
water (white), lowland/wetland (black), xeric upland (lines),
mesic upland (gray), and agriculture (slanted lines) based on
historical land use transition rates conditioned on modern-
day remotely sensed land cover. This land cover time series
allows for modeling of the upland-wetland mosaic endemic
in the region.
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observations in old forests. SDI calibration was based on
observations of stand density in an old-growth forest in the
upper Peninsula of Michigan [Desai et al., 2005].
[28] The primary abiotic gradient in the region (soil type-

vegetation association), is described as previously noted
with three submodels (Table 1), each with five plant
functional types (PFTs). The long-run model was run from
the start of settlement in 1800 until 2004. Shorter runs
(1996–2004) were performed for parameter optimization
using FIA observations in 1996 as the initial land cover.
[29] Model spinup for soil and water pools is fast (dec-

ades), so a long spinup run was not needed. Four scenarios
were run on the 1800–2004 run to test the hypotheses on
the role of past land-use change and carbon fertilization on
modern ecosystem-atmosphere fluxes. These scenarios were
(1) Full: all dynamics; (2) NO_CO2: no anthropogenic-
driven increase in CO2 with time (repeat CO2 concentration
from 1800–1905 in 1905–2004); (3) NO_For: no forest
harvest or planting; and (4) No_For/CO2: no CO2 fertiliza-
tion and no harvest. Additionally, model scenarios with
repeating climate (1997) (No_Clim), no vegetation dynam-
ics (mortality, reproduction, disturbance) (No_Dyn) or nei-
ther (NO_Dyn/Clim) were tested with the 1996–2004 runs
to test hypotheses on the roles of stochastic disturbance, and
interannual climate variability on regional ecosystem carbon
uptake.

2.5. Parameter Estimation

[30] ED requires parameters to describe many features of
each plant function type (PFT) and the general ecosystem
properties, as defined in Table 2. These parameters were
prescribed from a combination of field observations, liter-
ature, FIA averages, model optimization tests, and sensitiv-
ity analyses. Detailed description of the parameters and
equations are given by Moorcroft et al. [2001], Hurtt et al.
[2002] and Albani et al. [2007].
[31] Choice of model PFTs was determined from remotely

sensed land cover and FIA. Ecophysiological and bio-
metric regional field observations were available for
VcMax, SLA, K, b, C:N, SA:LA, and FR:LM (defined in

Table 2) for many PFTs [Bolstad et al., 2004; Burrows,
2002; Curtis et al., 2002; Kreller, 2005; Martin and
Bolstad, 2005; Scheller and Mladenoff, 2005; Tang et al.,
2006, 2007]. Density-independent mortality rates were
taken from a ratio of FIA observed mortality rates of
individual mature trees to total number of trees. Region
average disturbance rates were extracted from change of
forest structure (species number density and age structure)
with time over recent FIA measurement cycles (1983, 1996,
2004). Growth-related mortality parameters were taken
from the SORTIE model [Deutschman et al., 1997]. Pub-
lished literature and model defaults were used for soil
turnover rates [Schimel et al., 1994] and for coefficients
of the power-law allometry equations [Burrows, 2002;
Jenkins et al., 2004; Perala and Alban, 1993; Smith and
Brand, 1983; Ter-Mikaelian and Korzukhin, 1997]. A
gridded soil characteristics database provided soil percola-
tion and depth [Miller and White, 1998]. For PFTs where no
data were available, substitutes from parameterized PFTs
were taken and/or ED default parameters were applied
(Table 3).
[32] Some of these parameters with no available data or

those that strongly influenced model results were subject to
parameter tuning with manual optimization/sensitivity tests.
VcMax and b values were tuned by running ED between
two FIA cycles, 1996 and 2004. FIA population density
(ha�1) estimates were segregated by forest type association,
species, DBH, and age. FIA measurements are limited to
trees greater than 2.5 cm DBH. Values from the 1996 FIA
along with nominal values for other pools (soil carbon,
saplings, etc.) and allometric equations were used to initial-
ize ED in 1996. The model was then run to 2004. Model
results for aboveground biomass change in trees greater
than 2.5 cm DBH were compared to FIA estimates in 2004
along PFT and size gradients. VcMax values were allowed
to vary by PFT until the model reasonably matched FIA

Table 1. ED Subregions and PFT Types Used in This Study

Abbreviation PFT

Mesic Upland/N. Hardwoods
GR grass
AS aspen
BI birch
SM sugar maple/basswood
HE hemlock/spruce

Xeric Upland/Mixed Conifer
GR shrub/pine barren
JP jack pine
RP red pine
WP white pine/fir
RM red maple/oak/ash

Lowland/Wetland
GR meadow grass
AW alder/willow shrub
TM tamarack
CE cedar
BS black spruce

Table 2. Flux and Parameter Abbreviations and Definitions

Abbreviation Description

GPP gross primary production, g C m�2 yr�2

Ra autotrophic respiration, g C m�2 yr�2

Rh heterotrophic respiration, g C m�2 yr�2

NPP net primary production = GPP-Ra, g C m�2 yr�2

NEE net ecosystem exchange, g C m�2 yr�2

ER total ecosystem respiration = Ra+Rh, g C m�2 yr�2

VcMax maximum carboxylation rate at 25�C, mmol m2 s�1

SLA specific leaf area, m2 kg�1

C:N labile carbon to nitrogen ratio
L:N lignin to nitrogen ratio
K light extinction coefficient
b1 allometric equation multiplier
b2 allometric equation power coefficient
a plant decay rate, yrs�1

b respiration rate, kg kg�1 yr�1

SA:LA sapwood area to leaf area, cm2 m�2

M1 SORTIE mortality intercept
M2 SORTIE mortality decay rate
DI density-independent mortality rate
SD_MORT seedling mortality
Global Disp. global seed dispersal fraction
R_Fract fraction of GPP to reproduction
FR:LM fine root to leaf carbon mass
GR_Fract Growth respiration fraction of NPP
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results in 2004. Over longer timescales (centuries), modeled
biomass trajectory of aboveground biomass was sensitive to
fractional proportion of GPP carbon allocated to reproduc-
tion (R_fract). Since no analogous field data for R_fract
existed, ED was run from pre-European settlement vegeta-
tion in 1800 to 2004 and R_fract was tuned under two
conditions: (1) model ecosystem structure in 2004 reflected
FIA observed biomass and density in 2004 and (2) model
runs without forestry and CO2 fertilization maintained
roughly a steady state ecosystem structure after initial
spinup. More rigorous mathematical optimization/minimi-
zation methods were not used because of long model
runtime. The method described here is admittedly simplistic
and further research is warranted for parameter optimiza-
tion, as discussed in section 4.3.
[33] Estimated parameters from literature, field observa-

tions, FIA, and FIA-based model tuning revealed wide
variation of many parameters by PFT type and subregion
(Table 3). PFT GR was used in all three subregion model
runs with the same parameters as a stand-in for grass,
shrubland and meadow grasses in the mesic upland, xeric
upland, and lowland subregions runs, respectively. Leaf
turnover time of 1 implies deciduous phenology with all

leaf decay (fall) occurring during leaf drop. Leaf respiration
values are not shown since they were implicit as part of
the leaf-level assimilation formulation. Table 4 shows
ED global model parameters and parameters that are con-
stant across all PFTs in addition to soil decomposition
parameters.

2.6. Model Evaluation

[34] Modeled monthly CO2 fluxes were compared against
the Park Falls, Wisconsin, tall tower to evaluate model
performance with respect to regional flux estimation.
Monthly net ecosystem exchange (NEE) measurements on
the tall tower are available from 1997–2004 with the
exception of 2002 due to instrument failure. Ecosystem
respiration (ER) and gross primary production (GPP) were
inferred from tower observations using gap-filling and flux
partitioning techniques [Cook et al., 2004; Desai et al.,
2005]. Additionally, model fluxes by forest type and age
were evaluated against the ChEAS stand-scale flux tower
network [Desai et al., 2007] to identify potential (1) biases
in model or flux tower observations, (2) undersampled
ecosystems or processes that may have a large impact on

Table 3. Primary ED Model PFT-Specific Parameters

Parameter GRa

Mesic Upland Xeric Upland Lowland/Wetland

AS BI SM HE JP RP WP RM AL TA CE BS

Leaf
VcMax 17.5 26.2 35.8 31.6 12.2 25.4 21.0 13.0 55.9 27.1 10.2 13.9 22.1
SLA 22.5 12.1 16.9 16.6 10.2 8.2 6.8 7.4 12.7 12.0 12.2 8.3 4.5
C:N Leaf 18.7 23.6 12.5 14.3 57.9 35.8 52.0 75.4 10.7 23.0 57.2 63.2 74.6
K 2 0.5 0.511 0.511 0.625 0.4 0.4 0.5 0.511 0.5 0.5 0.3 0.3

Allometry
Leaf - b1 0.08 0.0114 0.0085 0.0401 0.0369 0.001 0.01331 0.0404 0.0436 0.0147 0.0466 0.0111 0.0179
Leaf - b2 1 2.0261 2.003 1.695 2.030 2.903 2.122 1.817 1.540 1.828 1.725 2.303 2.383
Stem - b1 1x10�5 0.04342 0.07335 0.15893 0.05529 0.1825 0.0775 0.0473 0.1987 0.0488 0.0762 0.0720 0.0687
Stem - b2 1.0 2.48392 2.5942 2.3321 2.3662 2.1584 2.3233 2.2815 2.2044 2.5090 2.3051 2.1453 2.2807
Height - b1 0.5 2.390 2.678 3.804 4.183 6.117 3.6337 3.5703 4.183 2.218 2.939 1.81 2.939
Height - b2 0.5 0.5296 0.6682 0.5026 0.5026 0.3579 0.5213 0.5749 0.4558 0.5335 0.5337 0.5847 0.5337
Max. DBH 0.4 75 75 120 150 50 75 150 100 50 50 80 50
DBH leaf cap 0.4 55.2 61.7 60.9 68.5 40 50.4 53 75.4 50 50 70 40
Max. Height 1.5 25 35 30 35 25 37 40 30 25 25 30 30

Plant Decay/Turnover
Leaf ab 1 1 1 1 0.2 0.222 0.167 0.167 1 1 0.167 0.125 0.1
Sapwood a 0 0.4 0.4 0.4 0.4 0.05 0.1 0.1 0.4 0.4 0.4 0.4 0.4
Fine Root a 0.333 0.333 0.333 0.333 0.2 0.222 0.167 0.167 0.333 0.333 0.333 0.25 0.2

Respiration
Sapwood b 0 0.08 0.03 0.10 0.04 0.04 0.04 0.04 0.25 0.03 0.04 0.04 0.04
Fine root b 1 0.9 0.4 0.9 0.8 0.2 0.2 0.2 0.9 0.9 0.2 0.2 0.2
SA:LA 2.564 1.335 1.335 1.335 0.360 0.360 0.360 0.363 1.335 1.335 0.360 0.360 0.360

Mortality
M1 0.5 0.555 0.555 0.998 0.077 0.268 0.268 0.268 0.912 0.555 0.268 0.268 0.077
M2 �5 �26.7 �26.7 �47.9 �59.7 �46.7 �46.7 �46.7 �68.8 �26.7 �46.7 �46.7 �59.7
DI 0.66 0.012 0.012 0.017 0.003 0.009 0.004 0.003 0.019 0.012 0.014 0.014 0.005
SD_MORT 0.9 0.9 0.3 0.6 0.15 0.7 0.4 0.2 0.6 0.6 0.6 0.3 0.3

Reproduction
Global Disp. 0.999 0.999 0.948 0.297 0.01 0.01 0.766 0.766 0.474 0.474 0.297 0.001 0.297
R_Fract 0.25 0.005 0.20 0.03 0.008 0.40 0.075 0.07 0.035 0.004 0.001 0.08 0.01

aPFT GR (Grass/Shrub) exists in each subregion with the same parameters.
bLeaf turnover time 1 implies deciduous phenology.
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regional flux, and (3) reasons for the mismatch between tall
tower regional fluxes and upscaling with the stand-scale
tower network. Finally, model results were also compared to
independent bottom-up regional flux estimates from the
tower networks.

3. Results

3.1. Land Cover

[35] Initial land cover in 1800 for ED by PFT, age, and
height was provided from public land surveys, assigned to the
mesic upland (Figure 4a), xeric upland (Figure 5a), and
lowland/wetland (Figure 6a) subregions and showed the
primacy of hemlock and white pine forests. Given the
described forcing, land use and parameters, ED-modeled land
cover in 2004 for the three subregions (Figures 4d, 5d, 6d)
generally reproduced the ecosystem structure observed by
FIA (Figures 4c, 5c, and 6c). Also shown is ecosystem
structure from FIA for 1996 (Figures 4b, 5b, and 6b), which
was used in ED for the leaf-level parameter estimation short
runs.
[36] When compared to FIA, the modeled ecosystem

structure in 2004 was biased toward younger aged stands
for mesic upland and toward older stands for xeric upland.
A negative height bias is also apparent for young aspen and
red pine species. The worst comparison occurred in the
lowland/wetland subregion, most likely owing a combina-
tion minimal lowland sampling in FIA and poor modeling
of wetland dynamics in ED. Overall, however, modeled
dynamics of prior land use and anthropogenic disturbance in

the region reasonably predicted current land cover in the
region.

3.2. Flux Tower Evaluation

3.2.1. Tall Tower
[37] High correlations were found in comparison of the

long-run ED to eddy covariance tall tower observations of
monthly total NEE (r2 = 0.65), GPP (r2 = 0.93) and ER (r2 =
0.91) over a 7-year period (Figure 7). Although the model
generally performed well, capturing the seasonal cycle of
NEE, GPP, and ER and including the respiration peaks at
leaf drop in fall and in early spring prior to leaf out,
predicted summer NEE was significantly larger than
observed, due primarily to underestimation of ER. Model to
observation differences in winter NEE were not significant.
[38] The model also reproduced a majority of the

observed interannual variability (IAV) (r2 = 0.53) in mean
annual NEE, including the impact of forest tent caterpillars
in 2001, a disturbance that was explicitly prescribed using
the forest pathogen disturbance submodel. Growing season
(June–Aug) IAV was also well modeled (r2 = 0.68).
Reduced late growing season NEE in 1998 was not modeled

Table 4. Model Global Parameters

Parameter Units Value

Latitude �N 45.95�N
Longitude �W 90.27�W
First year yr 1800
Final year yr 2004
L:N leaf 10
L:N root 10
L:N structural 36
C:N stem 150
C:N root 40
C:N structural 150
C:N slow C 15
C:N passive C 15
FR:LMa kg kg�1 1
GR_Fract fraction 0.533
Treefall disturbance rate fraction 0.014
Disturbance height threshold m 15
Disturbance age threshold yrs 50
Canopy disturbance survival fraction 0
Subcanopy disturbance survival fraction 0.03
Fast soil C turnover yrs�1 12
Structural soil C turnover yrs�1 4.9
Structural lignin turnover yrs�1 4.9
Slow soil C turnover yrs�1 2
Passive soil C turnover yrs�1 0.0045
Fast soil C respiration rate fraction 1.0
Structural soil C respiration rate fraction 0.6
Structural lignin respiration rate fraction 0.3
Slow soil C respiration rate fraction 0.5
Passive soil C respiration rate fraction 0.55

aValue set to 1.33 for PFT GR.

Figure 4. Mesic upland fractional PFT dominance by
basal area for 20-year stand age intervals and 10-m height
intervals of aspen (light gray), birch (lines), sugar maple/
northern hardwoods (dark gray), and eastern hemlock
(white) parameterized by land surveys in (a) 1800,
(b) 1996, and (c) 2004 and predicted by long-run ED
model in (d) 2004. Total bar height is scaled by maximum
total grid box basal area. The model generally captures the
observed forest age and height structure but with slightly
more northern hardwood, less birch, and younger aspen
than observed.
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well. Low correlations were found in IAVof GPP (r2 = 0.25)
or ER (r2 = 0.15), despite model ability to capture IAV in
NEE. Especially notable is the low modeled ER compared
to observation in 1999, in contrast to 1998. Model ER was
lower than observed in 4 of 7 years.
3.2.2. Stand-Scale Towers
[39] Comparison of the model to 13 stand-scale flux sites

in the region was possible since the model produced flux
estimates by age and subregion. Many of these towers only
ran in the growing seasons of 2002 and 2003, and as such,
this period was the focus of comparison. Detailed descrip-
tions of the 13 sites and their fluxes are given by Desai et al.
[2007]. We segregated model ensemble gaps for those two
years from June–August into 10-year patch classes and
computed mean and variance statistics for each subregion.
Since the Full run had very few old-growth patches, the
No_For patch fluxes were used for comparison to the
unlogged Sylvania old-growth site [Desai et al., 2005].
[40] Correlation of model to observed growing season

fluxes was high for NEE (r2 = 0.64) and GPP (r2 = 0.59),
but low for ER (r2 = 0.09) (Figure 8). The largest model-
observed mismatch occurred with mature hardwood sites,
where the observations showed larger NEE and GPP than
modeled. Similarly, poor overall correlation to ER was
mostly due to overestimation of ER in most of the mature
sites except the oldest site. ER in young hardwood sites was
underestimated. GPP predictions for most sites were within

range of gap variance and observational error, but the mean
was biased high.
3.2.3. Comparison of Scaled Flux
[41] Model results can also be compared to several other

observation based bottom-up scaling of NEE, ER, and GPP.
Two independent methods to scaling carbon fluxes were
applied using the network of flux towers in the region. The
first method (LEF*) decomposed tall tower observed flux
(LEF) into ecosystem parameters using a novel ABL flux
footprint model and remotely sensed landcover [Wang et al.,
2006]. These parameters were driven by regional meteorol-
ogy and ecosystem landcover information in the 40 km
radius around the tower to reaggregate the tall tower flux
into a spatially conditioned regional flux [Desai et al.,
2007]. A second method (Towers) relied on the same land
cover information, but derived parameters solely from the
stand-scale towers and also incorporated stand age statistics
from FIA to further segregate the land cover data [Desai et
al., 2007].
[42] ED model NEE was found to lie between the scaling

methods (LEF*, Towers) and the tall tower (LEF) when
compared over the June–August 2003 period (Table 5). The
ED model had higher ER than the scaling methods, more in
line with the WLEF tower observations. Model GPP was
highest among the different regional flux estimates, owing
to the high bias of mature GPP in the model. The largest
difference in NEE between LEF and LEF* is suggestive of a

Figure 5. Same as Figure 4 but for xeric upland PFTs jack
pine (light gray), red pine (lines), white pine (dark gray),
and red maple/oak/ash (white). The model overestimates
dominance of red pine and underestimates xeric hardwoods.
The model height structure is skewed toward midheight
(10–20 m) canopy members.

Figure 6. Same as Figure 4 but for lowland/wetland PFTs
alder/willow shrub deciduous wetland (light gray), tamarack
(lines), white cedar (dark gray), and black spruce (white).
The model is overdominant on alder/willow at expense of
other PFTs, but the accuracy of FIA based wetland cover
can also be called into question.
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flux footprint bias in the tall tower, but may also suggest
lack of detailed information on forest age structure and
recent disturbance when extrapolating to the entire 40-km
region.

3.3. Model Scenarios

3.3.1. Forestry and Carbon Fertilization Impacts on
CO2 Flux
[43] Differences in ecosystem structure in 2004 across the

model long-run scenarios reveal the long-term impact of
forest harvest and rising atmospheric CO2. Modeled forest
total biomass, basal area, and total leaf area index (LAI)
were 1.75–2, 1.6–1.7 and 1.5–1.7 times larger, respectively,
with increased (1.4�) CO2 than without (Table 6). Inter-
estingly, while long-term forest harvest, planting, and land
use significantly changed the mean forest stand age and
ecosystem structure compared with having only natural
disturbance, average stand biomass and basal area were the
same with or without forest harvest; however, this is likely
due to coincidence, since both forests are primarily mature
canopies, but with different species mix.
[44] The effect of forestry and CO2 on PFT dominance by

relative basal area is shown in Figure 9. Although CO2

fertilization made for a much denser forest, the composition

of the modeled forest was roughly the same. The largest
difference occurred between aspen and maple stands.
Increasing CO2 favored aspen growth relative to maple in
the model, and even led to a change in order of dominance
in the case without forestry. Without forestry, increasing
CO2 also appeared to slightly favor forested over shrub
wetlands and slightly reduced hemlocks. While forestry had
little effect on mean forest density in terms of biomass, LAI
and basal area, the effect of harvest, and preferential
planting of aspen, maple and red pine certainly affected
the ecosystem structure for the upland subregions, turning a
hemlock dominant forest into a mixed northern hardwood
forest, providing evidence for the hypothesis of land use
change determining modern ecosystem structure.
[45] Annual NEE, ER, GPP, and NPP CO2 fluxes aver-

aged over 1996–2004 showed that each scenario impacted
these fluxes differently (Table 7). The Full run with both
factors led to the largest NEE due to both the high CO2

atmosphere and fast growing younger forests, as evidenced
in the high GPP in the scenario. While ER was also highest
in this scenario, owing to the impact of logging and land
clearing on CWD, the increase in GPP over other scenarios
was larger than the increase in ER, leading to higher NEE.
TheNPPmodel estimate from the Full run (423 gCm�2 yr�1)

Figure 7. (left) Monthly time series and (right) 1:1 relationships as modeled by ED (gray) and observed
at the tall tower (black) for (a, b) NEE, (c, d) GPP, and (e, f) ER. The model captures the observed
monthly and seasonal cycle of NEE, GPP, and ER but overestimates summer peak NEE, owing to
underestimation of ER. Interannual variability is modeled moderately well by the model.
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matched closest to a regional remote sensing scaled field
observation of NPP (402–431 gC m�2 yr�1) [Ahl et al.,
2005]. Thus the Full run scenario’s overestimate of NEE,
slight overestimate of GPP, and larger underestimate of ER
compared to the tall tower and close match to biometric
NPP imply that modeled heterotrophic respiration (Rh) was
underestimated while autotrophic respiration (Ra) was
slightly overestimated.
[46] Without CO2 fertilization, annual NEE was much

smaller and closer to the annual estimates directly observed
by the tall tower. However, while annual NEE was more
like the estimate from the tall tower, the improvement was a
result of compensating errors: ER, GPP, and NPP were
significantly lower than that estimated by the tall tower or
directly scaled from field observations. Another interesting
result is the appearance that CO2 fertilization and forestry

had covarying effects on GPP and ER. While forestry and
land use change led to slightly smaller GPP and smaller ER
in the modern CO2 atmosphere, the same harvest, planting,
and clearing rates led to slightly higher GPP and higher ER
with pre-Industrial CO2. The reason for these differences
was not directly apparent from model output, though it most
likely arose from the greater dominance of aspen over
northern hardwood in the modern CO2 atmosphere versus
pre-Industrial (Figure 9). Overall, the results of the effects of
CO2 and land use on fluxes suggest that both CO2 fertil-
ization and land use had effects of similar magnitude and
sign on NEE.
3.3.2. Climate Variability, Ecosystem Dynamics, and
Biomass Accumulation
[47] Further investigation of the impacts of climate and

ecosystem dynamics on carbon fluxes can be assessed with
the short runs based on the 1996 FIA ecosystem structure.
Here we test several scenarios by removing combinations of
four ED model options: no forestry/land use scenario
(No_For), pre-Industrial CO2 scenario (No_CO2), no veg-
etation dynamics (reproduction, mortality, disturbance)
(No_Dyn), and no interannual climate variability (constant
recycling of 2004 meteorology) (No_Clim). Since the short
runs were based on only FIA vegetation information, the
comparison focused on how these scenarios altered the
8-year annual average aboveground biomass accumulation
for nonseedling trees. Recall that the short runs were used
initially to adjust assimilation and growth parameters, and
as such the model is a priori tuned to accurately predict
biomass accumulation over the 8-year period based on the
1996 and 2004 FIA estimates of total tree biomass as seen
in the ‘‘Full’’ scenario (Table 8).
[48] The alternate scenarios produced significantly differ-

ent estimate of biomass accumulation, though the rates are all
generally much smaller than total plant biomass (Table 8).
With forestry, net biomass accumulation was twice as large
owing both to lack of carbon export by harvest and planting
of seedlings. The effect was even more dramatic when also
excluding natural ecosystem dynamic processes leading to
another doubling of model to observed difference in bio-
mass accumulation. Thus, even though both germination
and mortality/disturbance were not included, the overall
effect was for the existing trees to grow.
[49] These effects were larger than the effects of not

including interannual climate variability, which led to
slightly larger estimate of biomass accumulation compared
to the Full run. Pre-Industrial CO2 corroborated the effect
seen in the long runs, namely that the density of the current

Table 5. Comparison of Tall Tower Observed (LEF) to Regional

Mean NEE, ER, and GPP Estimated By Tall Tower Footprint

Decomposition and Reaggregation (LEF*), Multitower Synthesis

Aggregation (Towers), and ED Model (Model) for Summer (June–

August) 2003a

Method NEE GPP ER

LEF �0.80 7.10 6.30
LEF* �2.70 6.64 3.93
Towers �3.04 7.32 4.28
Model �1.63 7.66 6.02

aUnit is mmol m2 s�1. LEF, tall tower observed; LEF*, tall tower
footprint decomposition and reaggregation; Towers, multitower synthesis
aggregation; Model, ED model. Summer comprises June–August.

Figure 8. Comparison of independent eddy covariance
observed to ED modeled summer (June–August) total
(a) NEE, (b) GPP, and (c) ER for mature (black),
intermediate (gray), and young (white) aged mesic upland/
hardwood (square), xeric upland/conifer (triangle), and
shrub wetland (circle) sites in 2002 and 2003. Error bars
for model are 1 standard deviation of all flux in model
patches of same age/PFT and for observations are 1 standard
deviation of Monte Carlo flux variability due to gap filling
missing data. The model is good at modeling NEE and GPP
but significantly underestimates NEE at mature hardwood
sites owing to overestimation of ER.
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forest in the model was a strong function of the available
atmospheric CO2, given the standard biogeochemical for-
mulation used in the model. Thus, with significantly lower
CO2, biomass accumulation in the short run became nega-
tive as carbon added to the biosphere from forest biomass
growth and germination of seedlings became smaller than
carbon lost owing to mortality and disturbance processes.

4. Discussion

4.1. Model Performance

[50] Model CO2 flux estimates, parameterized from field
observations and land survey data, were similar to indepen-
dent estimates from both tall and stand-scale eddy covari-

ance flux towers across the region. High correlation was
found for model to observed regional NEE at the monthly
and annual timescale and across space. These results con-
firm the importance of stand age, cover type, and land use
variability in determining regional CO2 fluxes.
[51] Prediction of ecosystem structure driven by pre-

European land cover, land use transition rates, natural
disturbance/mortality/recruitment functions, and forest har-
vest/planting estimates reasonably resembled observed FIA
ecosystem structure. Model ecosystem structure and/or
density were markedly different from modern land cover
when run without land use change or CO2 fertilization,
confirming the hypothesis of the roles of anthropogenic
change in determining modern ecosystem structure and its

Table 6. Model Regional Average Ecosystem State in 2004 for the Four Long-Run (1800–2004) Scenarios, Showing the Effect of

Forestry and CO2 Fertilization on Ecosystem State

Scenario CO2 Change Forestry Stand Age, years Basal Area, m2 ha�1 Biomass, kg m�2 LAI, m2 m�2

Full yes yes 52.1 29.5 4.7 3.6
No_CO2

a yes 52.6 17.1 2.7 2.1
No_Forb yes 81.6 31.4 4.6 4.3
No_For/CO2 82.1 19.6 2.3 2.8

aNo_CO2 denotes pre-Industrial CO2/no CO2 fertilization.
bNo_For denotes no forest harvest/land use change.

Figure 9. Model output regional land cover in 2004 by fractional basal area for the four long-run
scenarios: (a) Full run, (b) pre-Industrial CO2 (No_CO2), (c) no forest harvest or land use change
(No_For), and (d) neither CO2 fertilization nor anthropogenic disturbance (No_For/CO2). CO2

fertilization had less effect on model land cover than forestry. The primary effect of CO2 fertilization
is to slightly favor growth of aspen and shrub wetlands. The primary effect of forestry is to remove the
primary hemlock forest with northern hardwoods.
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potential for future change. However, certain biases were
evident in the model. A large mismatch of model to FIA
land cover occurred in the lowland/wetland subregion, as
would be expected given the paucity of data on initial
wetland cover, lack of model wetland/hydrology dynamics,
and poor sampling of ecosystem structure in shrub and
forested wetlands compared to upland forests.
[52] Despite the general corroboration of the independent

flux and ecosystem structure estimates, there were several
obvious discrepancies that require further scrutiny. The
largest of these is the continued incongruity between the
large CO2 uptake observed in stand-scale mature hardwood
towers and the much smaller uptake observed at the tall
tower, due almost entirely to the larger ER observed at the
tall tower. Model ER was somewhere in between, signifi-
cantly higher than the mature hardwood observations, but
still not as large as tall tower observations. Speculation that
the source of this ER is either wetlands or recent disturbance
was not entirely resolved by model results, since the model
highlights high ER in both types of stands, in addition to
suggesting that the mature hardwood forests have higher ER
that that observed at mature hardwood eddy covariance sites
in the region. In young hardwood and conifer sites, model
ER was actually lower than observed from stand-scale eddy
covariance towers. Recent field studies with portable eddy
covariance systems in regional young aspen stands and
open wetlands suggest that high ER is more likely found
in the recently cut hardwood sites (N. Saliendra, personal
communication, 2006).
[53] Previous studies report low tower ER estimates

relative to other measurements. Upscaled field-based soil
and plant chamber respiration measurements at one site
[Bolstad et al., 2004] were shown to be significantly larger
than observed by eddy covariance, potentially owing to
improper accounting of intermittent nocturnal CO2 venting

anomalies on nighttime NEE [Cook et al., 2004]. Addition-
ally, recent plot level ecosystem structure observations in
forests around the tall tower suggested that the eddy
covariance mature hardwood site was not representative of
the region in terms of woody debris biomass and species
mix.
[54] While higher correlation was found with model to

observed GPP than for ER, there was still a slight high bias
in model GPP at most sites. The high GPP existed despite
model basal area, leaf area, and NPP being in line with
regional observations. This result suggests that leaf assim-
ilation and plant respiration parameters would benefit from
additional constraints. Alternatively, there is reason to
suspect that the leaf physiology submodel required addi-
tional improvements and parameter optimization. Sugges-
tions for model improvements are discussed in more detail
in section 4.3.
[55] Regardless of these disagreements, model regional

growing season flux estimates were in line with the alter-
native tower-based parameter estimation scaling formula-
tions. Model NEE was in between in situ tall tower
observations and the regionally scaled footprint decomposi-
tion/reaggregation methods. Model regional ER was closer
to the tall tower, suggesting that either the tall tower fluxes
were not representative of the region or that both the stand-
scale tower network and the land cover data on which
the footprint decomposition reaggregation relied lacked
sufficiently detailed specification of flux parameters over
coverage of stand age and recent disturbance. Evidence
supports both of these hypotheses.
[56] Tall tower fluxes may suffer from flux bias or error

arising from spatial ecosystem footprint sampling and
adverse micrometeorological conditions. Nighttime tall
tower fluxes were limited to the 30-m level instead of the
daytime preferred 396-m level owing to decoupling of flow
between the near-surface nocturnal stable boundary layer
and the residual layer [Davis et al., 2003]. Nocturnal ABL
depth was typically below 396 m [Yi et al., 2001]. Footprint
analyses supported sampling biases given that footprints at
30 m contain significantly larger representation of a grassy
clearing near the tower [Wang et al., 2006]. Horizontal and
vertical advection may be important contributions to flux at
night and are not typically measured [e.g., Wang et al.,
2005].
[57] Remotely sensed land cover data for the bottom-up

scaling methods may be subject to errors arising from

Table 7. Model Output Annual NEE, ER, GPP, and NPP

Averaged Over 1996–2004 for the Four Long-Run Scenariosa

Scenario NEE ER GPP NPP

Full �130 922 1052 426
No_CO2

b �70 533 603 243
No_Forc �100 906 1006 402
No_For/CO2 �50 565 615 243

aUnit is gC m�2 yr�1.
bNo_CO2 denotes pre-Industrial CO2/no CO2 fertilization.
cNo_For denotes no forest harvest/land use change.

Table 8. Annual Average Change in Aboveground Plant Biomass for Trees > 2.5 cm DBH From 1996 to 2004 as Observed by FIA or

Modeled by ED Short-Run Scenarios Using 1996 FIA Land Cover as the Initial Model Covera

Scenario CO2 Change Forestry Climate Variability Vegetation Dynamics DB, gC m�2 yr�1

Observed/FIA na na na na 55.3
Full yes yes yes yes 52.3
No_For yes yes yes 109.6
No_CO2 yes yes yes �61.0
No_For/CO2 yes yes �12.0
No_Clim yes yes 72.4
No_Clim/For yes 130.3
No_Dyn yes yes 251.0
No_Dyn/CO2 yes 243.9
No_Dyn/Clim 221.0

aNo_For, no forest harvest/land use change; No_CO2, pre-Industrial CO2/no CO2 fertilization; No_Clim, no interannual variability in climate variables
and CO2; No_Dyn, no ecosystem dynamics (mortality, reproduction, natural disturbance); na, not applicable.
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spatial resolution, time since data collection, and limited
differentiation of several cover types in spectroscopic
space. The 30-m land cover database used by Desai et al.
[2007] and Wang et al. [2006] was based on data collected
in 1992 and thus is missing disturbance events in the last
decade. Additionally, separation of forest from shrub wet-
land and hardwood from aspen cover classes has been
shown to have lower accuracy than other cover type
classifications in the data set. FIA data used in the multi-
tower aggregation was limited to forest cover only, with
limited coverage in wetlands.

4.2. Impact of Disturbance, Land Use, and CO2 on
Regional Flux

[58] Model scenarios revealed that natural disturbance
processes, land use, atmospheric CO2 concentration, and
interannual climate variability cannot be neglected for
ecosystem-atmosphere CO2 flux modeling. The short-run
scenarios revealed that model ecosystem dynamics and land
use affected average biomass accumulation even on rela-
tively short (decadal) timescales. The traditional assumption
by ecosystem models that CO2 fluxes on the short timescale
are influenced exclusively by interannual climate variability
and atmospheric CO2 concentration, which may be true for
models at the stand scale, does not capture the observed flux
spatial and temporal variability at regional and larger scales.
Prediction of flux on decadal or greater timescales requires
consideration of both climate variability and ecosystem
dynamics.
[59] Over the long timescale, the ED model had a strong

response to CO2 fertilization, similar to many ecosystem
models that use the standard Farquhar leaf-level photosyn-
thesis equations [El Maayar et al., 2006]. Whether ecosys-
tems actually respond so vigorously (e.g., a near doubling in
biomass) to a almost 40% increase in CO2 over 150 years is
unknown, and is a general area of disagreement in the
modeling community. Not all models produce such a strong
response [e.g., Thornton et al., 2002]. Other factors such as
nitrogen limitation, leaf physiological changes, changes in
biological competition, water-use limitation and tempera-
ture mediated changes in respiration could all counter
balance the enhanced growth expected by higher CO2.
The covariance of twentieth century forest regrowth and

increasing CO2 further complicates the picture for modeling
CO2 fertilization. Here, since the model was tuned to
reproduce observed forest structure in the modern CO2

atmosphere, there may some reason to doubt both the timing
of modeled forest recovery in the twentieth century post-
harvest and also the validity of results in the No_CO2

scenarios. More research is definitely warranted.
[60] A salient feature of ED is the ability to examine

multiple stand ages simultaneously within a particular grid
cell at a particular time. The effect of stand age on NEE
can be directly investigated with the ED model given
the model’s age, size and PFT structured formulation
(Figure 10a). Here NEE was segregated by 10-year patch
age intervals over the 1996–2004 timeframe. Since the Full
run did not contain patches of significant size over age 80
(to improve computation speed, the model removed gaps
and reapportioned its carbon if they fell below an area
threshold), patches for old sites were taken from the no
forestry run. The model revealed NEE that was positive
(source to atmosphere) in young sites, especially lowland
wetlands, rapidly became negative (sink to biosphere)
within 10–20 years, peaked around 40–70 years, and
declined with age afterward. This decline was stronger in
the mesic upland subregion than for wetland or xeric upland
subregions.
[61] GPP:ER ratios (Figure 10b) in all subregions peaked

early and slowly declined with age. ED also calculated that
old sites remained small carbon sinks due to the effects of
subcanopy growth, regular mortality and increasing CO2, in
agreement with modern observations of NEE in old-growth
forests [e.g., Desai et al., 2005], but in contrast to traditional
assumptions of carbon neutrality in old growth. Even
though the GPP:ER ratio declined with age, the model
GPP and ER both increased with age, but ER increased
faster than GPP, as the canopy cover closed while stems
continued to grow and CWD quantity increased.
[62] While both young and old stand age sites had high

ER, the source of the ER varied (Figure 11). Recent
disturbance ER was primarily driven by heterotrophic
respiration (Rh) from coarse woody debris (CWD) and the
existing soil organic matter pool. As forests grow, autotro-
phic respiration (Ra) becomes the dominant source of
respiration, according to the model. Though the modeled

Figure 10. Modeled variation in annual (a) NEE and (b) GPP/ER with stand age for all patches over
1996–2004 in the mesic upland (black line), xeric upland (dashed line), and lowland/wetland (gray line)
subregions.
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Ra/Rh ratio in mature and old sites was higher than typical
theoretical assumptions (0.5), it was relatively similar to
chamber-based respiration observations in the region
[Martin and Bolstad, 2005; Tang et al., 2007].
[63] Moreover, the partition of ER into components

varied on presence or absence of forestry. Without forestry
(Figure 11a), most ER after disturbance was Rh, due to the
impact of respiration on CWD. However, the export of
living and salvaged trees and the planting of fast growing
commercial species in the Full run changed the mix toward
majority Ra (Figure 11b), with overall ER higher. The
different species mix and dynamics then changed the long
term buildup of CWD with age. Modeled CWD respiration
in old unlogged sites was as high as young sites, though a
smaller overall fraction since Ra was much larger. This
scenario was less the case in sites with active management.
Thus flux observations in existing old-growth sites may not
necessarily be reflective of future NEE in the region as
harvest rates decline and existing managed forest ages.

4.3. Sources of Error and Potential Model
Improvements

[64] Though this adaptation of ED for use in the upper
Midwest provided promising results, model results would
benefit from including additional observations, refining
parameter estimates, and improving model processes. Con-
tinued advances in observation platforms, parameter esti-
mation techniques and ecological theories will improve our
ability to model ecosystems; however, there are also exist-
ing observations and techniques that deserve consideration.
We consider a few here.
[65] In terms of additional observations, greater informa-

tion on forest and wetland structure, change in structure
with time and direct observation of ecosystem parameters
that can be used by ED with little modification are war-
ranted. Given that ED is an age and height structured model,
the use of spatial forest structure information (e.g., from
lidar) has been shown to improve ED initialization [Hurtt et
al., 2004]. Additionally, existing spatial information on leaf
area [Ahl et al., 2004] and aggregated component NPP
[Burrows, 2002] in the immediate area around the tall tower
deserve consideration for inclusion. Time series of remote

sensing images can also be used to obtain recent disturbance
rates [e.g., Masek and Collatz, 2006; Zheng et al., 2004].
Assimilation and transpiration parameters would also ben-
efit from incorporation of existing observations of transpi-
ration from sap flux [Mackay et al., 2002; Tang et al.,
2006], especially given the high leaf-level transpiration in
the model compared to observations.
[66] Parameter tuning and estimation techniques have

been rapidly advancing in the last decade. Raupach et al.
[2005] argue that both parameter estimates and their known
error covariances are required for proper assimilation of
observational data into model parameters. The complexity
and computational demands of ED limits full utilization of
the most involved optimization methods, but there is value
in simplifying model structure to the core parameters of
interest and using optimization techniques such as Markov
Chain Monte Carlo, as has been done for the tall tower
observations [Ricciuto et al., 2007]. Formal sensitivity
analyses and multiple model comparison can also help
reveal key parameters that require the closest tuning [e.g.,
Cramer et al., 2001].
[67] ED was recently coupled to a regional atmospheric

model (RAMS) for parameter optimization in a single forest
stand in the northeast U.S. (Harvard Forest) using eddy
covariance data and regional forest structure (D. Medvigy et
al., Mechanistic scaling of ecosystem function and dynam-
ics in space and time: The Ecosystem Demography model
version 2, submitted to Global Change Biology, 2007).
Results from that study indicated that adjustments to several
ED model default parameters values resulted in substantial
improvements in the ability of the model to predict seasonal
and long-term patterns of CO2 uptake. While some of these
new parameters were adopted in this study (for example,
increasing the fraction of GPP to growth respiration from a
default of 0.333 to 0.533), a similar optimization method
could be employed with the ChEAS data set. In this study,
the ED model was found to be especially sensitive to a few
parameters, namely VcMax, R_fract and disturbance/
mortality rates. Lack of observations of these parameters
in some or all PFTs required a hybrid tuning approach,
which was admittedly simplistic.
[68] Many model processes could be investigated for

improvement. Some of these include inclusion of CO2

downregulation in high atmospheric CO2 [El Maayar et
al., 2006], 3-D light scattering and attenuation in complex
canopies, more realistic seedling recruitment scenarios
[Matthes and Larson, 2006; Mohan et al., 2004], complex
seed dispersal functions [Scheller and Mladenoff, 2005],
changes in SLA with age/height [Niinemets, 2006], herbiv-
ory effects on sapling mortality [Kneeshaw et al., 2006],
forest edge effects and spatial interaction in patchy land-
scapes [Euskirchen et al., 2001], public/private ownership
effects on forest harvest and structure [Crow et al., 1999],
and forest product lifecycle analysis and harvest economic
optimization strategies as a replacement for the probabilistic
forest harvest functions currently in ED [Scheller and
Mladenoff, 2005; White et al., 2005]. Some of these
improvements are currently in consideration for the next
iteration of ED and related models [e.g., Albani et al., 2007;
O. Soong and P. R. Moorcroft, manuscript in preparation,
2007]. Of course, caution is always warranted when refining

Figure 11. Modeled variation in autotrophic (Ra), hetero-
trophic (Rh), and coarse woody debris (CWD) respiration
fraction of total ER with stand age over all patches from
1996–2004 (a) without (scenario No_For) anthropogenic
disturbance and (b) with (scenario Full).
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models given the typical tradeoff between model complex-
ity and number of free parameters.

5. Conclusion

[69] This study found the following.
[70] 1. The Ecosystem Demography (ED) model, a sta-

tistical, dynamic ecosystem model, when initialized with
pre-European settlement land cover, parameterized and
tuned with field observations, and forced with historical
climate and land use data, was able to reasonably reproduce
the statistical properties of species, age, and height ecosys-
tem structure in the 40-km radius around the northern
Wisconsin very tall tower. Worse comparison was found
with wetland/lowland forest owing to lack of cover infor-
mation, parameters and wetland dynamics and biogeochem-
istry in the model.
[71] 2. Without twentieth century atmospheric CO2

increase or land use change/forestry, modeled ecosystem
structure was significantly different than observed. The
effect of CO2 increase was to almost double forest density,
while forestry and land use change almost halved the
average forest stand age and significantly changed the
species composition. Minor interaction effects between
the two forcings on ecosystem structure were also observed.
[72] 3. Model NEE, GPP and ER were highly correlated

to tall eddy covariance flux tower observations on both
monthly and annual timescales over the 8-year measure-
ment record. Similar to other models, modeled growing
season NEE had a stronger sink than the tall tower due
almost entirely to lower ER in the model. However,
growing season model CO2 uptake was smaller than two
independent regional bottom-up estimates based on eddy
covariance parameter optimization and land cover aggrega-
tion, due to higher ER modeled in poorly sampled recently
disturbed forests and wetlands.
[73] 4. Model results were able to explain a majority of

the variance in NEE and GPP across the region and ER in
young and intermediate stands as observed by a network of
stand-scale eddy covariance flux towers, confirming the
hypothesis that stand age is the key factor explaining
regional flux variability. The notable exception are mature
hardwood sites, where the model predicted slightly higher
GPP and much larger ER, the latter more in line with
chamber flux observations. Model results support recent
observations that suggest the mature hardwood sites in the
network are not necessarily reflective of the region. The
model had a high GPP bias at most sites, suggesting that
additional processes controlling plant CO2 assimilation are
needed in ED.
[74] 5. Young stand age sites were sources of CO2 to the

atmosphere due to high CO2 respiration in disturbed bio-
mass CWD. Export of forest biomass by forestry reduced
the impact of respiration. Old-growth sites continued to be
carbon sinks due to overstory growth continuing to exceed
mortality rates of subcanopy individuals.
[75] 6. As a dynamic ecosystem model, ED was especially

sensitive to reproduction, recruitment, mortality, and distur-
bance parameters in addition to CO2 assimilation parame-
ters. Additional spatial observations, model improvements
and advanced data assimilation methods are required to
further constrain model fluxes.

[76] While the model was not able to fully solve the
question of the observed tall tower net annual CO2 source in
the regional landscape, it did provide strong evidence on the
role of stand age, disturbance, and wetlands on ecosystem
structure and fluxes at the regional scale. Nondynamic
ecosystem models that use constant ecosystem structure/
properties and/or constant atmospheric CO2 across time will
significantly misestimate current CO2 fluxes in managed,
patchy landscapes. Given that managed landscapes are
representative of most of the terrestrial biosphere, prediction
of future biosphere response to climate change and increas-
ing CO2 will require specification of land management and
land use change and exploration of the potential for multi-
way feedbacks between climate, land management, and
CO2 fluxes.

Appendix A: ED Model Overview

[77] The ED model tracks the time evolution of fractional
area of ensemble-average patches of different ages since
disturbance and number density of ensemble-average plant
cohorts of different height and species in each patch.
Patches are tracked in time by fractional grid cell coverage,
p (m2 m�2), and are labeled with age since disturbance, a
(years), and disturbance type i: primary (natural distur-
bance), secondary (anthropogenic disturbance) and agricul-
tural (cleared land). Patches also track the mass (kg) of five
coarse woody debris pools (CWD), four soil organic carbon
pools (fast, slow, structural, passive), one structural lignin
pool, three soil nitrogen pools (mineralized, fast, passive),
and two soil water pools (0–5 cm, >5 cm). Cohorts are
tracked by number density (individuals m�2) and labeled
with height, h (m), living biomass, za (kg), structural
biomass, zs (kg), and a plant function type parameter vector,
x (PFT).
[78] In the partial differential equation (PDE) form, the

core ED equation for cohort number density is [Albani et
al., 2007; Hurtt et al., 2002]

@

@t
ni z; x; a; tð Þ ¼

@

@zs
gs z; x; r; tð Þni z; x; a; tð Þ½ � ið Þ

@

@za
ga z; x; r; tð Þni z; x; a; tð Þ½ � iið Þ

�m z; x; r; tð Þni z; x; a; tð Þ iiið Þ

@

@a
ni z; x; a; tð Þ ivð Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ðA1Þ

where subscript i is disturbance type, z is an ensemble-
average vector of za and zs, and x is the PFT with PFT-
specific parameters. The frame of reference coordinates for
n are time, t (years), a, za, and zs. Functions gs, ga and m
describe structural biomass growth, living (active) biomass
growth, and mortality, respectively. These functions depend
on r, the resource vector, which contains the ensemble-
average plant environment conditioned on age and size and
includes light, meteorology, water, and nutrient data.
Mortality functions are based on prescribed rates for
density-independent mortality and the SORTIE model
[Deutschman et al., 1997] for density-dependent mortality,
which is a function of average tree diameter increment

G01017 DESAI ET AL.: DYNAMIC MODEL REGIONAL CO2 FLUXES

16 of 21

G01017



over the past 2.5 years. Mortality parameters are listed in
Tables 3 and 4.
[79] Equation (A1) describes the time evolution of

ensemble-average cohort number density of size z, type x,
and age a for (i) change in structural biomass, (ii) change in
living biomass, (iii) mortality, and (iv) aging. The primary
boundary condition for Equation (A1) is recruitment of new
seedlings of size z0. Recruitment is based on allocation of
fraction of net primary production (NPP) to reproduction
(R_fract), fractional dispersal of ‘‘seeds’’ to other patches
and germination of new cohorts of prescribed initial size z0,
and number density R_fract/z0 (Table 3).
[80] The PDE describing patch age distribution evolution

[Albani et al., 2007; Hurtt et al., 2002] is

@
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� @
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pi a; tð Þ ið Þ

�li a; tð Þpi a; tð Þ iið Þ

�
X
j

lj;i a; tð Þpi a; tð Þ iiið Þ

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

Z1

0

X
i

pi a; tð Þ ¼ 1

pi 0; tð Þ ¼
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li;j a; tð Þpj a; tð Þ

ðA2Þ

where i and j subscripts are disturbance types, li is a
disturbance rate, and lj,i is a land-use transition rate from
type i to type j. Equation (A2) describes the time evolution
of fractional cover of patches of age a and disturbance type i
as a function of (i) aging, (ii) disturbance, and (iii) land-use
change. The bottom two equations in equation (A2) are the
boundary conditions, which constrains patches to cover the
entire grid cell and describes the formation of recently
disturbed patches. Equation (A2) also leads to an additional
boundary condition for Equation (A1), which is the state of
cohorts after a disturbance event. These can be specified as
natural disturbance events that lead to mortality of canopy
cohorts above specified age and height thresholds, harvest
events that lead to removal or thinning of cohorts above
minimum diameter at breast height (DBH), and clearing
events that lead to creation of agricultural patches that do
not age and contain no cohorts. Additional PDEs of similar
form are also given for the below ground soil carbon (four
pools: fast, structural, slow and passive), soil lignin, soil
nitrogen (three pools: fast, mineralized and passive), and
soil water (two pools: 0–5 cm and >5 cm). Tables 3 and 4
list related parameters.
[81] Growth functions are based on the well-established

leaf-level biogeochemical models of Farquhar et al. [1980],
Farquhar and Sharkey [1982], Ball et al. [1987], Collatz et
al. [1991], and Leuning [1995] and similar to those used in
the well-known models IBIS [Foley et al., 1996] and
HYBRID [Friend et al., 1997]. Leaf-level assimilation
and evaporation are found on an hourly time step for a
range of light levels and maximum carboxylation rates and
integrated to a monthly timescale. To solve the dynamic
PDEs, the plant available resources (light, water, nutrients)
are also conditioned on age and canopy position. As in the

work of Moorcroft et al. [2001], carbon allocation functions
maintain plant allometric relationships unless plants are in
negative carbon balance. Allometric equations (with param-
eters listed in Table 3) for leaf carbon biomass, aboveground
stem carbon biomass, and tree height were all of the power-
law form:

b1DBH
b2 : ðA3Þ

[82] By rewriting PDEs into a patch age and cohort size
moving frame of reference, the equations can be reformed
as loosely coupled stiff ordinary differential equations
(ODEs), which can then be solved with standard adaptive
time step (days-month) ODE integration techniques. By
nature of the model framework and assumption of suffi-
ciently large number of gaps, ED is essentially scale-
independent up to the spatial scale at which significant
variation in abiotic factors (climate, soil, topography) are
prescribed.

Appendix B: Snow Hydrology

[83] To better capture the impact of winter season precip-
itation on regional carbon dynamics, a snow hydrology
module was added to ED. Monthly precipitation is divided
into rain water (RAINin, mm mo�1) and snow water
equivalent (Sin, mm mo�1) on the basis of the fraction of
days per month with minimum temperature below 0�C. This
method provided a reasonable approximation of observed
snow accumulation in the region. Snowpack (Spack, mm)
and snow liquid (SL, mm) were parameterized with a simple
integrative accumulation, melting and evaporation formula-
tion based on the snow water balance formulation used in
the CENTURY model version 5 [Hilinski, 2005],

Spack tð Þ ¼ Spack t � 1ð Þ þ Sin tð Þ

Smelt tð Þ ¼

40 T þ 8ð Þ T > �8

0 T � �8

Spack tð Þ 40 T þ 8ð Þ � Spack tð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

Spack tð Þ ¼ Spack tð Þ � Smelt tð Þ; SL tð Þ ¼ SL t � 1ð Þ þ Smelt tð Þ

Eavail tð Þ ¼ min

1

Spack tð Þ þ Sliq tð Þ
0:87PET tð Þ

8><
>:

9>=
>;

Sevap tð Þ ¼ Eavail tð ÞSpack tð Þ; SLevap tð Þ ¼ Eavail tð ÞSL tð Þ

Spack tð Þ ¼ 1� Eavail tð Þð ÞSpack tð Þ; SL tð Þ ¼ 1� Eavail tð Þð ÞSL tð Þ

SLsoil tð Þ ¼ max

SL tð Þ � 0:05S

0

8<
:

9=
;

SL tð Þ ¼ SL tð Þ � SLsoil tð Þ

ðB1Þ

where t is time (months), T is air temperature (�C), Smelt is
snow melt (mm mo�1), and Eavail is an evaporation function
(%). PET is potential evapotranspiration (mm mo�1), a
function of air temperature based on work by Thornthwaite
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[1948]. The algorithm is run from the beginning to end of
the snow year, September–June. Snow liquid is added to
the soil (SLsoil) so as to keep SL no more than 5% of Spack.

Appendix C: Canopy Precipitation and
Evaporation

[84] Growing season ED model runs revealed soil volu-
metric water content higher than observed for the given
precipitation. To improve model physics, a canopy filtration
and canopy/soil evaporation schema were added on the
basis of the CENTURY model version 5 [Hilinski, 2005].
This filtration model is

Cint tð Þ ¼ RAINin tð Þ 0:82LAIð Þ

PETw tð Þ ¼ PET tð Þ � Sevap � SLevap

Cevap tð Þ ¼ min
0:2Cint tð Þ
0:65PETw tð Þ


 �

Soilevap tð Þ ¼ min
Cin tð Þ � Cevap tð Þ
� 

0:4e�2L�4B

0:4PETw tð Þ

8<
:

9=
;if Spack > 0 else 0

Win tð Þ ¼ Cint tð Þ þ SLsoil � Cevap tð Þ � Soilevap tð Þ

ðC1Þ

where Cint is canopy intercepted water (mm mo�1), RAINin

is incoming precipitation (mm mo�1), LAI is canopy total
leaf area index (m2 m�2), PETw is PET reduced for snow
evaporation (mm mo�1), Cevap is canopy evaporation (mm
mo�1), Soilevap is bare ground evaporation corrected for
canopy and litter (mm mo�1), L is litter biomass (kg), B is
plant aboveground biomass (kg), and Win is net addition of
water to the soil (mm mo�1). Runoff is not included in this
model. To account for topographic pooling of water in
lowlands, it is assumed that water percolating from the
bottom of upland soils is added to lowland soil moisture.
The simplest way to account for this topographic runoff is to
increase net precipitation for wetlands by a multiplicative
factor, which in this case was found to be 2.

Appendix D: Soil Temperature and Decay

[85] Given model output results that showed greater than
observed uptake during periods of soil temperature <0�C,
the leaf assimilation model was modified to force stomatal
closure during periods of soil temperature below 0�C. This
effect was important to include for early and late growing
season photosynthesis. Also, the current ED model did not
include patch level soil temperature variability. However,
observations showed moderate soil temperature variability
across sites as a function of incoming solar radiation at the
soil surface. Therefore a simple modification was made to
incorporate this effect. Soil temperature variability across
several sites with different maximum LAI and also across
time was found to roughly follow:

Ts;LAI ¼ Ts þ LAI
Ts � Ta

16

� �� �
þ Ta � Ts

2

� �
; ðD1Þ

where Ts,LAI is the canopy cover adjusted soil temperature,
Ts is soil temperature (�C), Ta is air temperature (�C), and
LAI is leaf area index (m2 m�2). This new soil temperature

was used for calculation in the moisture and temperature
respiration limitation function of ED [Albani et al., 2007].
Patch level soil moisture variability as a function of
evapotranspiration is already included in ED. The functional
forms of the decomposition temperature/moisture limitation
function are

Td ¼
Tmax � Ts;LAI

Tmax � Topt

� �Tshr

e

Tshr
Tshl

1�
Tmax�Ts;LAI
Tmax�Topt

� �Tshl

� �

Wd ¼
q� B

A� B

� �DB�A
A�C q� C

A� C

� �D

A ¼ TdWd

ðD2Þ

where Ts,LAI is canopy-cover modified soil temperature, q is
soil water mass fraction (kg kg�1), Td and Wd are the
temperature and moisture limitation factors (0–1), and A is
the combined effect of the two. Constants are Tmax = 45�C,
Topt = 35�C, Tshr = 0.2, Tshl = 2.63, A = 0.6, B = 1.27, C =
0.0012, and D = 2.84.
[86] Fast, structural, slow, and passive turnover times

and respiration rates are noted in Table 4 and are subject to
the water and temperature limitation factor, A. Structural
soil organic matter decomposition is additionally limited
by a factor based on the ratio of structural soil carbon to
lignin content. Fast and structural carbon are limited by
nitrogen immobilization and mineralization as described by
Moorcroft et al. [2001].

Appendix E: PFT Parameters

[87] Field observations allowed for modification of two
ED parameters that in the current model are considered the
same for all PFTs. The first, shortwave light extinction
coefficient, is assumed to be 0.5 in the Beer’s Law rela-
tionship. Data from Kreller [2005] and the SORTIE model
[Deutschman et al., 1997] provide PFT-specific light
extinction coefficients (Table 3). Kreller [2005] showed
that scaling estimates of GPP from leaf to the stand scale
was highly sensitive to choice of this coefficient. Field data
also allowed for PFT specific sapwood area to leaf area
(SA:LA) ratios [Tang et al., 2006; E. Carey, unpublished
data, 2003]. In ED, sapwood biomass is based on a plant
‘‘pipe’’ model and found as the product of SA:LA (m2 m�2),
specific leaf area (m2 kg�1), leaf biomass (kg), wood carbon
density (kg m�3), and tree height (m). Field data and
literature estimates were used to find PFT-specific SA:LA
ratios instead of a constant value for all species (Table 3).
Though the net effect of this was small, the PFT-varying
SA:LA did slightly modify carbon allocation in the active
biomass pool between leaf, sapwood and fine root.

Appendix F: Leaf Phenology and Pests

[88] The phenology model in ED is based on (1) clima-
tology-based growing degree day threshold computed as a
function of number of days with temperature below 0�C
prior to leaf out and (2) daylight and soil temperature
thresholds for leaf off. During leaf off, 50% of existing leaf
biomass is added to litter and the other 50% is put in a
‘‘virtual’’ leaf pool that does not photosynthesize or respire.
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The virtual leaf pool is added back to the plant during leaf
out.
[89] To incorporate phenology observations derived from

above and below canopy shortwave radiation observations,
ED was modified to allow for prescribed phenology after a
certain date. The phenology model was also modified to
simulate the effect of a forest tent caterpillar outbreak in
2001, which had a significant impact on observed carbon
flux. During May and June of 2001, 50% of existing leaf
biomass from deciduous species was ‘‘eaten’’ and sent to
the litter pool to decay. Reflush of leaves then occurs
automatically owing to the ED model ‘‘off-allometry’’
carbon allocation routines.

Appendix G: Reproduction and Seedling
Germination

[90] The original ED model allocated reproductive carbon
from NPP year round and germinated this carbon in the
same month with the same sapling mortality rate for all
PFTs. Given the long cold season in the upper midwest and
the high sensitivity of the model to reproduction and carbon
fraction allocation, modifying the reproduction/germination
module was needed to more realistically reflect the plant
reproductive lifecycle. Reproduction allocation fraction of
NPP was allowed to vary by PFT (Table 3). Allocation was
limited to trees above a minimum reproductive height and
then only from June to October, which is when most plants
produce fruit. These ‘‘seeds’’ were dropped and added to a
seedbank from August to November. A PFT specific frac-
tional seedbank decay rate was then applied. Decayed seed
biomass was added to the fast litter pool. Germination
occurred 1 month after leaf flush for deciduous species,
when soil temperature were between 7�–18�C for evergreen
species, and when temperature was greater than 20�C or
when a fire occurred for fire-adapted cones, such as jack
pine. For species with delayed germination, only a fraction
of the seedbank germinated and the remaining stayed in the
seedbank for potential germination in the next season, with
seedbank decay rates applied.

Appendix H: Harvest and Tree Planting

[91] Forest harvest in ED is treated as simple fractional
disturbances for primary and secondary type patches.
Harvest survival rates were slightly modified to reflect
regional practices. For a harvest, 3% of tree less than 3 cm
DBH survive and 0% of trees with diameter greater than
that. Since the model region is small, 90% of harvested
above ground stem is exported from the grid cell to decay
elsewhere. The remaining stem (e.g., stump), belowground
material, and leaves are added to the litter pool and decay on
site. Harvested patches are planted with one of two PFTs
per submodel. For mesic upland, a conditioned random
selection planted aspen 2 out of 3 times and sugar maple
the rest of the time. For xeric upland, red pine was planted
2 out of 3 times and red maple/ash/oak the other times.
Plantation stocking rates were set to be consistent with FIA
observations.

[92] Acknowledgments. The authors wish to acknowledge the help
of numerous field crew, technicians, engineers, and students involved in

installation, maintenance, troubleshooting, and data collection at all the
sites. Model support was provided by Dan Lippsitt, Marco Albani, and
David Medvigy of Harvard University. We appreciate the valuable dis-
cussions with Steve Wofsy, Harvard University, and George Hurtt, Univer-
sity of New Hampshire, and the comments from anonymous reviewers. We
wish to thank the land owners for allowing access to field locations,
including the cooperation of the U.S. Department of Agriculture (USDA)
U.S. Forest Service (USFS), Chequamegon-Nicolet National Forest, USDA
USFS Ottawa National Forest, the Wisconsin Educational Communications
Board, and Roger Strand, chief engineer for WLEF-TV. We also acknowl-
edge the support of field stations such as the University of Wisconsin Kemp
Natural Resources Station for housing personnel, storing equipment, and
providing lab access. These sites and this analysis were funded in part with
support from the U.S. National Science Foundation, grant 0129405, U.S.
Department of Energy (DOE), Office of Science (BER), Terrestrial Carbon
Processes program, grant DE-FG02-00ER63023, U.S. DOE BER Midwest-
ern Regional Center of the National Institute for Global Environmental
Change under Cooperative Agreement DE-FC03-90ER61010, National
Aeronautics and Space Administration (NASA) Science Mission Director-
ate, National Oceanic and Atmospheric Administration (NOAA) Climate
Monitoring and Diagnostics Lab (CMDL), USDA USFS Northern Global
Change Research Program, and the USDA USFS North Central Research
Station.

References
Adams, D. M., R. W. Haynes, and A. J. Daigneault (2006), Estimated
timber harvest by U. S. region and ownership, 1950–2002, Gen. Tech.
Rep. PNW-GTR-659, 64 pp., Pac. Northwest Res. Stn., For. Serv., U.S.
Dep. of Agric., Portland, Oreg.

Ahl, D. E., S. T. Gower, D. S. Mackay, S. N. Burrows, J. M. Norman, and
G. R. Diak (2004), Heterogeneity of light use efficiency in a northern
Wisconsin forest: Implications for modeling net primary production with
remote sensing, Remote Sens. Environ., 93, 168–178.

Ahl, D. E., S. T. Gower, D. S. Mackay, S. N. Burrows, J. M. Norman, and
G. R. Diak (2005), The effects of aggregated land cover data on estimat-
ing NPP in northern Wisconsin, Remote Sens. Environ., 97, 1–14.

Albani, M., G. C. Hurtt, and P. R. Moorcroft (2007), The contributions of
land-use change, CO2 fertilization and climate variability to the carbon
sink in the eastern United States, Global Change Biol., 12, 2370–2390,
doi:10.1111/j.1365-2486.2006.01254.x.

Baker, I., A. S. Denning, N. Hanan, L. Prihodko, M. Uliasz, P. L. Vidale,
K. Davis, and P. Bakwin (2003), Simulated and observed fluxes of sen-
sible and latent heat and CO2 at the WLEF-TV tower using SiB2.5,
Global Change Biol., 9, 1262–1277.

Bakwin, P. S., P. P. Tans, C. L. Zhao, W. Ussler, and E. Quesnell (1995),
Measurements of carbon-dioxide on a very tall tower, Tellus, Ser. B, 47,
535–549.

Ball, J. T., I. E. Woodrow, and J. A. Berry, (1987), A model predicting
stomatal conductance and its contribution to the control of photosynthesis
under different environmental conditions, in Proceedings of the Interna-
tional Congress on Photosynthesis: Progress in Photosynthesis Research,
edited by I. Biggins, pp. 221–224, Martinus Nijhoff, Zoetermeer,
Netherlands.

Birdsey, R. A., and G. M. Lewis (2003), Current and historical trends in
use, management, and disturbance of U.S. forestlands, in The Potential of
U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse
Effect, edited by J. M. Kimble et al., pp. 15–33, CRC Press, Boca Raton,
Fla.

Bolstad, P. V., K. J. Davis, J. M. Martin, B. D. Cook, and W. Wang (2004),
Component and whole-system respiration fluxes in northern deciduous
forests, Tree Physiol., 24, 493–504.

Braswell, B. H., W. J. Sacks, E. Linder, and D. S. Schimel (2005),
Estimating diurnal to annual ecosystem parameters by synthesis of a
carbon flux model with eddy covariance net ecosystem exchange
observations, Global Change Biol., 11(2), 335, doi:10.1111/j.1365-
2486.2005.00897.x.

Bristow, K. L., and G. S. Campbell (1984), On the relationship between
incoming solar radiation and daily maximum and minimum temperature,
Agric. For. Meteorol., 31, 159–166.

Burrows, S. N. (2002), Geostatistical estimation of leaf area index and net
primary production of five North American biomes, Ph.D. thesis, 198 pp.,
Univ. of Wis.-Madison, Madison.

Caspersen, J. P., S. W. Pacala, J. C. Jenkins, G. C. Hurtt, P. R. Moorcroft,
and R. A. Birdsey (2000), Contributions of land-use history to carbon
accumulation in US forests, Science, 290, 1148–1151.

Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry (1991), Physiological
and environmental regulation of stomatal conductance, photosynthesis
and transpiration: A model that includes a laminar boundary layer, Agric.
For. Meteorol., 53, 107–136.

G01017 DESAI ET AL.: DYNAMIC MODEL REGIONAL CO2 FLUXES

19 of 21

G01017



Cook, B. D., et al. (2004), Carbon exchange and venting anomalies in
an upland deciduous forest in northern Wisconsin, USA, Agric. For.
Meteorol., 126(3–4), 271–295, doi:10.1016/j.agrformet.2004.06.008.

Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure
and function to CO2 and climate change: Results from six dynamic global
vegetation models, Global Change Biol., 7, 357–373.

Crow, T. R., G. E. Host, and D. J. Mladenoff (1999), Ownership and
ecosystem as sources of spatial heterogeneity in a forested landscape,
Wisconsin, USA, Landscape Ecol., 14, 449–463.

Curtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. C. Randolph, H. P.
Schmid, and K. B. Wilson (2002), Biometric and eddy-covariance based
estimates of annual carbon storage in five eastern North American decid-
uous forests, Agric. For. Meteorol., 113, 3–19.

Davis, K. J., P. S. Bakwin, C. Yi, B. W. Berger, C. Zhao, R. M. Teclaw, and
J. G. Isebrands (2003), The annual cycles of CO2 and H2O exchange over
a northern mixed forest as observed from a very tall tower, Global
Change Biol., 9, 1278–1293.

Desai, A. R., P. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey (2005),
Comparing net ecosystem exchange of carbon dioxide between an old-
growth and mature forest in the upper midwest, USA, Agric. For.
Meteorol., 128(1–2), 33–55, doi:10.1016/j.agrformet.2004.09.005.

Desai, A. R., et al. (2007), Influence of vegetation and seasonal forcing on
carbon dioxide fluxes across the Upper Midwest, USA: Implications for
regional scaling, Agric. For. Meteorol., in press.

Deutschman, D. H., S. A. Levin, C. Devine, and L. A. Buttel (1997),
Scaling from trees to forests: Analysis of a complex simulation model,
Science, 277, 1688.

El Maayar, M., N. Ramankutty, and C. J. Kucharik (2006), Modeling global
and regional net primary production under elevated atmospheric CO2: On
a potential source of uncertainty, Earth Interact., 10, 1–20.

Euskirchen, E. S., J. Q. Chen, and R. C. Bi (2001), Effects of edges on plant
communities in a managed landscape in northern Wisconsin, For. Ecol.
Manage., 148(1–3), 93–108.

Farquhar, G. D., and T. D. Sharkey (1982), Stomatal conductance and
photosynthesis, Annu. Rev. Plant Physiol., 33, 317–345.

Farquhar, G. D., S. von Caemmerer, and J. A. Berry (1980), A biochemical
model of photosynthetic CO2 assimilation in leaves of C3 species, Planta,
149, 78–90.

Foley, J. A., I. C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch,
and A. Haxeltine (1996), An integrated biosphere model of land surface
processes, terrestrial carbon balance, and vegetation dynamics, Global
Biogeochem. Cycles, 10, 603–628.

Frelich, L. E. (1995), Old forest in the lake states today and before
European settlement, Nat. Areas J., 15, 157–167.

Frelich, L. E., and P. B. Reich (1995), Neighborhood effects, disturbance,
and succession in forests of the western Great-Lakes region, Ecoscience,
2, 148–158.

Friend, A. D., A. K. Stevens, R. G. Knox, and M. G. R. Cannell (1997), A
process-based terrestrial biosphere model of ecosystem dynamics, Ecol.
Modell., 95, 249–287.

Hanson, P. J., et al. (2004), Oak forest carbon and water simulations: Model
intercomparisons and evaluations against independent data, Ecol.
Monogr., 74(3), 443–489.

Heinsch, F. A., et al. (2006), Evaluation of remote sensing based terrestrial
productivity from MODIS using regional tower eddy flux network
observations, IEEE Trans. Geosci. Remote Sens., 44(7), 1908–1925,
doi:10.1109/TGRS.2005.853936.

Hilinski, T. (2005), CENTURY User’s Guide and Reference, Natl. Resour.
Ecol. Lab., Fort Collins, Colo. (Available at http://www.nrel.colostate.
edu/projects/century5/reference/index.htm)

Hughes, P. Y., E. H. Mason, T. R. Karl, and W. A. Brower (1992), United
States Historical Climatology Network Daily Temperature and Precipita-
tion Data, 140 pp., Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl.
Lab., Oak Ridge, Tenn.

Hurtt, G. C., S. W. Pacala, P. R. Moorcroft, J. Caspersen, E. Shevliakova,
R. A. Houghton, and B. Moore (2002), Projecting the future of the US
carbon sink, Proc. Natl. Acad. Sci. U. S. A., 99, 1389–1394.

Hurtt, G. C., R. Dubayah, J. Drake, P. R. Moorcroft, S. W. Pacala, J. B.
Blair, and M. G. Fearon (2004), Beyond potential vegetation: combining
lidar data and a height-structured model for carbon studies, Ecol. Appl.,
14, 873–883.

Jenkins, J. C., R. A. Birdsey, and Y. Pan (2001), Biomass and NPP estima-
tion for the mid-Atlantic region (USA) using plot-level forest inventory
data, Ecol. Appl., 11, 1174–1193.

Jenkins, J. C., D. C. Chojnacky, L. S. Heath, and R. A. Birdsey (2004),
Comprehensive database of diameter-based biomass regressions for
North American tree species, Gen. Tech. Rep. NE-319, 45 pp., Northeast.
Res. Stn., For. Serv., U.S. Dep. of Agric., Newtown Square, Pa.

Keeling, C. D., and T. P. Whorf (2005), Atmospheric CO2 records from
sites in the SIO air sampling network, in Trends: A Compendium of Data

on Global Change, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl.
Lab., Oak Ridge, Tenn.

Kimball, J. S., S. W. Running, and R. Nemani (1997), An improved method
for estimating surface humidity from daily minimum temperature, Agric.
For. Meteorol., 85, 87–98.

Kneeshaw, D. D., R. K. Kobe, K. D. Coates, and C. Messier (2006), Sapling
size influences shade tolerance ranking among southern boreal tree spe-
cies, J. Ecol., 94(2), 471–480, doi:10.1111/j.1365-2745.2005.01070.x.

Knorr, W., and J. Kattge (2005), Inversion of terrestrial ecosystem model
parameter values against eddy covariance measurements by Monte Carlo
sampling, Global Change Biol., 11, 1333–1351.

Kreller, L. J. (2005), Gross primary production (GPP) of an old-growth
forest in Michigan’s upper peninsula: Variation in leaf physiology and
simple scaling, M.S. thesis, 87 pp., Univ. of Minn., St. Paul.

Law, B. E., D. Turner, J. Campbell, O. J. Sun, S. Van Tuyl, W. D. Ritts, and
W. B. Cohen (2004), Disturbance and climate effects on carbon stocks
and fluxes across western Oregon USA, Global Change Biol., 10, 1429–
1444.

Leuning, R. (1995), A critical appraisal of a combined stomatal-
photosynthesis model for C3 plants, Plant Cell Environ., 18, 339–355.

MacKay, D. S., D. E. Ahl, B. E. Ewers, S. T. Gower, S. N. Burrows,
S. Samanta, and K. J. Davis (2002), Effects of aggregated classifications
of forest composition on estimates of evapotranspiration in a northern
Wisconsin forest, Global Change Biol., 8, 1253–1265.

Martin, J. G., and P. V. Bolstad (2005), Annual soil respiration in broad-
leaf forests of northern Wisconsin: Influence of moisture and site
biological, chemical, and physical characteristics, Biogeochemistry,
73, 149–182.

Masek, J. G., and G. J. Collatz (2006), Estimating forest carbon fluxes in a
disturbed southeastern landscape: Integration of remote sensing, forest
inventory, and biogeochemical modeling, J. Geophys. Res., 111, G01006,
doi:10.1029/2005JG000062.

Matthes, U., and L. W. Larson (2006), Microsite and climatic controls of
tree population dynamics: An 18-year study on cliffs, J. Ecol., 94(2),
402–414, doi:10.1111/j.1365-2745.2005.01083.x.

Miller, D. A., and R. A. White (1998), A conterminous United States
multilayer soil characteristics dataset for regional climate and hydrology
modeling, Earth Interact., 2, 1–26.

Mohan, J. E., J. S. Clark, and W. H. Schlesinger (2004), Genetic variation
in germination, growth, and survivorship of red maple in response to
subambient through elevated atmospheric CO2, Global Change Biol.,
10, 233–247.

Moorcroft, P. R. (2003), Recent advances in ecosystem-atmosphere inter-
actions: An ecological perspective, Proc. R. Soc., Ser. B, 270, 1215–
1227.

Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala (2001), A method for
scaling vegetation dynamics: The ecosystem demography model (ED),
Ecol. Monogr., 71, 557–585.
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