
Models and Data
A Gentle Introduction



Why am I here?



The Big Picture

• GIVEN:

– Interannual variability in the growth rate of atmospheric greenhouse 

gases is driven by terrestrial carbon cycle
– Long-term accumulation of greenhouse gases and global energy 

balance is strongly mediated by direct and indirect feedbacks of 

biospheric (land+ocean) vegetation distribution and carbon cycling to 

future variability in climate, nutrients/water, and land use. 

• WE NEED TO CONSIDER:

– Diagnosing and predicting these responses is inherently regional given 

the covariation and long-term adaptation of species and climate 

across space.

– Complexity of feedbacks requires integration of observations and 

experiments with sufficiently complex, structurally correct, and well-

tuned models

– Questions: What is the right spatial/temporal scale? What is a 

sufficiently complex, correct, and well-tuned model?



Biology drives Physics

Ecosystem Carbon Sink

Houghton et al. (2007)



And we fail at modeling it…

UMD) simulate a sink/source transition for the land
carbon flux. The source arising in the UMD simulation
is mainly due to the fact that this model already simu-
lates a very weak land carbon uptake in the uncoupled

simulation (uptake of 0.3 GtC yr!1 for the 1990s and 1
GtC yr!1 by 2100). These two models are also the ones
that simulate the larger atmospheric CO2 concentration
by 2100, as the land is a source of CO2 at that time. This

FIG. 1. (a) Atmospheric CO2 for the coupled simulations (ppm) as simulated by the HadCM3LC (solid black),
IPSL-CM2C (solid red), IPSL-CM4-LOOP (solid yellow), CSM-1 (solid green), MPI (solid dark blue), LLNL
(solid light blue), FRCGC (solid purple), UMD (dash black), UVic-2.7 (dash red), CLIMBER (dash green), and
BERN-CC (dash blue). (b) Atmospheric CO2 difference between the coupled and uncoupled simulations (ppm).
(c) Land carbon fluxes for the coupled runs (GtC yr!1). (d) Differences between coupled and uncoupled land
carbon fluxes (GtC yr!1). (e), (f) Same as (c), (d), respectively, for the ocean carbon fluxes.
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Feedbacks are ubiquitous and unconstrained

Friedlingstein et al., J Clim, 2006



It matters…

Friedlingstein et al., 2006



Parameter uncertainty!

Booth et al., 2012, ERL



Some terms
• Model
• Parameters
• Traits
• Plant Functional Type
• States
• Initial conditions
• Fluxes
• Forcing
• Data assimilation
• Observation operator
• Bayesian
• Prior
• Posterior
• Likelihood
• Model emulation

• Validation data
• Machine learning
• Sensitivity
• Training data
• Sto(y)chastic
• Markov Chain
• Gaussian
• Uncertainty
• Error covariance matrix
• Kalman filter
• Data Fusion
• Equifinality
• Prediction
• Projection



Some topology of ecosystem models
• Heuristic models

– Penman-Montieth, Montieth/Moncrieff GPP model
• Big-leaf vs sunlit/shaded big-leaf vs canopy vs individual model

– LAI = Leaf area index, LAD = leaf area density, mechanistic photosynthesis (Farquhar) vs 
empirical (Jarvis), allocation, 

• Soil turnover vs process-based soil
– “fast” and “slow” pools vs soil structural vs nutrient cycling vs microbial loop

• Vegetation Demographic  / “Dynamic” model
– Age since disturbance, height, mortality, growth, recruitment

• Land surface model (or “offline” model)
– Energy balance

• Land-atmosphere coupled model
– Weather/climate models, “coupler”, “ESM”

• Hydrologic model
– Routing of water in rivers, groundwater, conductances

• Empirical models
– Machine learning, emulated models, big box models,  

• Ensemble models
– Sensitivity to initial conditions (chaos) vs forcing/parameters

• Lots of acronyms: Biome-BGC,  ED2, JULES, SIPNET, CLM/CESM, ACME, WRF-NOAH, LPJ-GUESS, 
LANDIS-II, FUBAR, TRIFFID, ORCHIDEE, SWAT

• Parsimony



Why models and data?

• Old way: 
– Make one model
– Guess some parameters
– Make up some drivers
– Compare to your favorite data source
– Publish the best comparisons
– Attribute discrepancies to error
– Be happy



Why models and data?
• New way: 

– Quantify likelihood or probability of multiple 
model(s) being consistent with multiple 
observations and instrument + sampling 
uncertainty

– Find how various models or parameters (working 
hypotheses) cannot explain observations 
accounting for both model and data confidence

– Learn something about fundamental interactions
– Publish the discrepancies and knowledge gained
– Work harder, be slightly less happy, but generate 

more knowledge



Basis of data assimilation

• Goal: Find the collection of model process, state and/or 
parameter sets that are consistent with data 

• Bayes’ rule: P(model | data) = 
– P(model) * P(data  | model) / P(data)

• Implementations typically rely on estimating model 
sensitivity through ensemble runs and calculating 
likelihood using a set of training data observations
– Least squares regression, Stratified random sampling, 

Markov Chain Monte Carlo (MCMC), Ensemble Kalman 
Filter (EKF)



What might DA be good for?
• Turn diverse jumbled mess of data into useful 

tests of hypotheses and improve diagnosis and 
prediction of regional carbon/water 
cycling/vegetation dynamics and climate and land 
use impacts!

• Testbed: Chequamegon Heterogenous Ecosystem 
Energy-Balance Study Enabled by a High-Density 
Array of Detectors 2019
– #CHEESEHEAD19

• Observing system simulation experiment (OSSE)







Why Regional?

• Spatial interpolation/extrapolation
• Evaluation across scales
• Landscape level controls on biogeochem.
• Understand drivers of spatial variability
• Emergent properties of landscapes



Park Falls/Chequamegon-Nicolet National Forest region, Wisconsin
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Park Falls WLEF tower (US-PFa) 
EC fluxes at 30, 122, 396 m
NOAA tall tower greenhouse 
gas site
COSMOS soil moisture
TCCON column GHG
Credit: Matt Rydzik (U Wisconsin) 2

Desai et al., 2015, AFM



Park Falls/Chequamegon-Nicolet National Forest region, Wisconsin
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Park Falls WLEF tower (US-PFa) 
EC fluxes at 30, 122, 396 m
NOAA tall tower greenhouse 
gas site
COSMOS soil moisture
TCCON column GHG
Credit: Matt Rydzik (U Wisconsin) 2

Desai et al., 2015, AFM



Adopted from a version by HaPE Schmid (KIT)

Flux towers see the trees for the forest…



Paul Stoy is almost always right

Stoy et al., 2013, AFM

EBC=
H+Le
-------

Rnet-G

Greenness spatial variance



Environmental Response Function (ERF) scaling method

Extracted relationships
Domain-projected turbulent

flux at measurement level
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High frequency time series of flux response and drivers
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Metzger et al., 2013, Biogeosci , Xu et al., 2017, AFM, Metzger, 2018, AFM, Xu et al., 2018, AFM



Does rectified surface atmosphere exchange help EBC
and location bias?

volume-rectified

tower-observed
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Volume: 2.4 W/m2 Volume: 24.1 W/m2Tower: -0.3 W/m2 Tower: 19.4 W/m2
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Volume: 25.8 W/m2Tower: 18.5 W/m2 Volume-rectified: + 7.3 W/m2

potentially help close energy
balance!

Location bias!









The Future
• 1-6 degree C warming in next 100 years, concentrated in high 

latitude, wet areas get wetter, dry areas get drier in frequency and 
intensity

• Atmospheric CO2 at 550-950 by 2100, maybe even double or triple 
by 2200?

• Population grows at least 30% more, food demand increases faster 
as diets change - plants will always need to provide food, fiber, 
lumber, medicine

• Meteorites, alien invasions, nuclear winter…
• Urgent need for ecosystem science to be able to make credible 

predictions about complex interactions and thresholds of rapid 
change in ecosystem dynamics and nutrient cycling

• Model-data assimilation has to be a tool in your workbench



Thanks!
• Ankur Desai, University of Wisconsin-Madison

– desai@aos.wisc.edu, @profdesai
– http://flux.aos.wisc.edu 
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