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What is a climate extreme?

A spike or pulse?
A standardized anomaly?

Variability around a steady forcing
change?

A forcing that develops an unusual
response in a particular system?




What is the biogeochemical reponse?

“n




What drives this response?

* Terrestrial ecosystems carbon assimilation
and decomposition respond to:
— Temperature
— Light quantity and quality
— Moisture avalilability
— Nutrients (Nitrogen, CO,, Phosphorous)
— Disturbance (Fire, insects, hurricanes, ...)
— Land use (Logging, draining wetlands, ...)
— Competition, adaptation, evolution
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Coated With Algae

The satellite images show Lake Erie at two different times in 2011, when the lake suffered the worst algae bloom in decades. The first image shows the

lake before the bloom started; the second shows the bloom at its greatest extent, covering much of the lake's western basin. Related Article »
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Washburn District cluster:
Hardwood chronosequence
(Mature, Intermediate, Young)
Red Pine chronosequence
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Problem 1

* The same climate forcing does not
produce the same response across
ecosystems — even when they're right

next to each other!
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Problem 2

NEE is a combination of ecosystem
carbon cycle processes

Partitioning into GPP and Reco relies
on environmental drivers — making
causal analysis circular!

Use simple data-based metric to assess
net “drawdown” from night to day

Average across time and standarize the
anomalies
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Problem 3

* Every flux tower based correlation is
significant when you have thousands to
tens of thousands of datapoints

— Effect sizes may be small, though

» Account for autocorrelation using
“reduced degrees of freedom” metric!

Bretherton et al., 1999, J Clim
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Important points 1

* Highly significant autocorrelations at daily to
seasonal scales up to one month lag imply a
strong biological feedback that can damp
response to extremes

Weak negative autocorrelations at multi-year
scales also highlight slow press processes
and oscillations

Remotely sensed anomalies have little

correlation to carbon flux even though mean
seasonal variation correlates highly
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Important points 2

* Moisture extremes impact to regional
carbon sequestration display significant
seasonal lags and primarily influence
monthly to seasonal uptake

* Positive correlations imply mesic forest
IS In-fact moisture limited, but not in the
usual sense




What about 20127

October 9, 2012

Valid 7 a.m. EDT

Intensity.
DO Abnormally Dry
| D1 Drought - Moderate
L | D2 Drought - Severe
M D3 Drought - EXtremAe L = Long-Term, typically >6 months
I D4 Drought - Exceptional (e.0. hydrology, ecology)

DOrought Impact Types
r~ Delineates dominant impacts

S = Short-Term, typically <6 months
(e.g. agriculture, grasslands)

The Drought Monitor focuses on broad-scale conditions
Local conditions may vary. See accompanying text summary

for forecast statements. Released Thursday, October 11, 2012

http: Iid roughtmon itor.unl.edu/ Author: Matthew Rosencrans, NOAA/NWS/NCEP/CPC
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Important points 3

 Warm, dry conditions more likely
promoted a longer growing season
through phenology than reduced uptake
by stomatal closure

 Biotic disturbances and their frequency/
extremes may be more important than
climate extremes in many places




Thanks!
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