How do we scale surface-atmosphere exchange?

Ankur Desai Dept of Atmospheric & Oceanic Sciences University of Wisconsin-Madison

Apr 30 2015, U Arizona

Why is this so damn hard to model?

Forests in Flux

S. Metzger et al.: Spatio-temporal rectification of tower-based EC

Global NPP 1983 version

FUNG ET AL.: BERN CO2 SYMPOSIUM

		-180		- 1	1 50		- 1	1 20			-90		1.	-60			-30			0			30			60			90		-	20		1	50		
LAT	J	1	2	3		5	e	,	8	9	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
90.0	24																																				
82.2	23								0	0	. 0	••	0	••	••	·:	••	2	0		0	0	0						0	0							
74.3	22	0		0	0			3	• 3		• • •	•;	0	0	••	••	••	2				0	0			0	1	2	**	•;	•;	5	3	3	1	0	
66.5	21	.:	1	14	23	:8	iè	14	••7	•••	•:5	2	•:5	0	**	••	0	2	0		5	17	24	14	ie	19	17	20	24	23	27	28	22	18	22	19	12
58.7	20	0	0	••	8	7	:8	25	20	:;		2	**	2	0	0			1	5	17	14	27	28	28	29	25	20	28	29	29	30	30	17			3
50.9	19						e	28	34	30	22	22	27	15	2				4	23	32	33	34	36	28	ji	35	36	28	34	33	34	34	20		3	
43.0	18							30	32	+0	36	36	22	3					8	21	19	31	20	27	:3	10	ii	22	ii	21	33	36	27	10			
35.2	17							:4	::	39	42	31							8	14	•;	4	6	20	29	23	26	::	::	31		23	19	13			
27.4	16							0	:0	:8	e	8							:0	•:2	• 2	•**	•••	**	ii	19	15	37	48	30	71	39					
19.6	15			0					1	21	28	3	7					2	••	••	•;	•;	**		**		9	30	25	63	26	8					
11.7	14										14	20	24	10				3	;;	37	39	37	33	20	ç		2	19		23	9	12	2				
9.8	13										1	29	·**	**	24				16	20	54	74	52	26	6					34	23	35	6				
-1.9	12											**		** 64		15					29	;3	38	:5						22	35	22	16	51	13		
-11.7														12		15					7	23	22	14						6	2		13	17	7		
-19.6	10											-	23	32	++	24					3	36	31	12	20							:3	25	33	16		
-27.4													::	24	36	-					0	:5	30	0	2							:3	12	21	24		
-35.2	8										1		::	32								3	5											:4	:7		
-43.0	7	1						•					23	1																				-	6		14
																											2										
-58.7													1																								
-50.17													0	0						0	0	0	0	0	0	0	0	0	••	••	•;	0	0			0	
-74.3		0	0	0	0	0	0	0	0	0	••	••	•••	••	0	0	0	2	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	••	0
-82.2	2	••	•••			•••	•:	•••	••	•••	••	•••	•••	••	•••	••	•••	•:	•••	••	•••	•••	••	••	••	••	••	•••	••	••	••	••	••		••	••	••
-02.02	,		••	••	•••	••			••	•••	•••	•••	•••	•••	•••	•••	••	•••	•••	•••	•••	•••	••	••	•••	••	••	•••	••	••	••	••	••	••	•••		•••
-90.0		· ·			Ű	,	·							· ·		Ŭ	Ŭ	-	· ·	Ĭ								-				-		-		1	
LAT	J	1	2	3	4	5	e	7	8	9			12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
		-180		- 1	150		- 1	120			- 90			-60			- 30			0			30			60			30			20		-	50		
					Fig	z. 2	. (Glo	bal	dis	trib	utio	n o	fN	PP	(X	10 8	gm	C/m	2/yı	r) at	t the	e tra	acer	m	ode	l re	solu	ition	n.							

1285

Spatial Heterogeneity

- Amount - Frequency Distribution

Spatial Process

- Arrangement
- Location
- Distance

Microsoft^{*} Virtual Earth[™]

Why does it matter?

Atmospheric CO₂

Today 400 ppm CO₂ 2 ppm CH₄

Sources: Petit et al (1999) Nature 399:429-436 and IPCC(2000)

THE GREAT ACCELERATION

REFERENCE: Steffen, W., W. Broadgate, L. Deutsch, O. Gaffney and C. Ludwig (2015), The Trajectory of the Anthropocene: the Great Acceleration, Submitted to The Anthropocene Review. MAP & DESIGN: Félix Pharand-Deschênes / Globaïa

Fossil Fuel and Cement Emissions

CARBON

PROJECT

GLOBAL

Global fossil fuel and cement emissions: 36.1 ± 1.8 GtCO₂ in 2013, 61% over 1990

Projection for 2014 : 37.0 ± 1.9 GtCO₂, 65% over 1990

Estimates for 2011, 2012, and 2013 are preliminary Source: <u>CDIAC</u>; <u>Le Quéré et al 2014</u>; <u>Global Carbon Budget 2014</u>

The cumulative contributions to the Global Carbon Budget from 1870 Contributions are shown in parts per million (ppm)

Figure concept from <u>Shrink That Footprint</u> Source: <u>CDIAC</u>; <u>NOAA-ESRL</u>; <u>Houghton et al 2012</u>; <u>Giglio et al 2013</u>; <u>Joos et al 2013</u>; <u>Khatiwala et al 2013</u>; Le Quéré et al 2014, Global Carbon Budget 2014

Changes in the Budget over Time

CARBON

PROJECT

GLOBAL

The sinks have continued to grow with increasing emissions, but climate change will affect carbon cycle processes in a way that will exacerbate the increase of CO₂ in the atmosphere

Source: CDIAC; NOAA-ESRL; Houghton et al 2012; Giglio et al 2013; Le Quéré et al 2014; Global Carbon Budget 2014

Terrestrial Biosphere CO₂ Flux Dominates Carbon Cycle Prediction Uncertainty

Terrestrial carbon cycle feedback is a leading order uncertainty for climate simulation

IPCC AR5 WG1 CH6

What do I (we) do?

http://flux.aos.wisc.edu

- Probe spatial heterogeneity in biologically-mediated surfaceatmosphere exchanges from sites to regions (meters-1000s km)
 - Forests, wetlands, lakes, urban (temperate-boreal-tropical-Mediterranean-alpine, terrestrial-aquatic, management gradients)
 - Multiple greenhouse gases (methane), esp. with eddy covariance
 - Feedbacks from energy balance and a land surface variability on the atmospheric boundary layer and synoptic-PBL interactions in observations and models (LES, PBL, mesoscale, climate)
 - Up/down scaling across multiple measurements: eddy covariance, biometric, airborne budgets, inverse modeling, hyperspectral remote sensing (leaf to satellite)
 - Informing ecosystem and atmospheric models with diverse measurements across space (data assimilation, model informatics)
 <u>http://pecanproject.org</u>

Who we are

What the flux?

700 points of light?

Complex Regions: 1+1≠2

a) IKONOS.	b) WISCLAND.	c) MODIS-UMD and IGBP.
 Mixed Forest 13.3% Upland Conifer 34.8% Aspen-Birch 5.7% Upland Hardwood 12.0% Upland Opening/Shrub 0.9% Grassland 17.8% Lowland Conifer 0.7% Lowland Deciduous 10.6% Lowland Shrub 0.6% Wet Meadow 2.6% Open Water 1.0% Road 	 7.1% Mixed Forest 13.0% Upland Conifer 25.3% Aspen-Birch 14.6% Upland Hardwood 6.8% Upland Opening/Shrub 1.8% Grassland 10.7% Lowland Conifer 1.9% Lowland Deciduous 16.3% Lowland Shrub 1.0% Wet Meadow 1.6% Open Water - Road 	100% Mixed Forest

Didn't remote sensing solve the problem?

Maybe?

GPPmax vs. NDVI

Maybe not?

GPPmax vs. NDVI

GPPmax vs NDSI for all sites

It gets weirder once we put in humans

The scale and method we monitor land use matters

Does the atmosphere care?

Sensible heat flux [W m⁻²]

Flux footprint varies in space, projected fluxes varies in time

Tower represents different surfaces at different times

Temporally transient location bias ="location drift"

Mean and temporal-spatial variation of flux grids

Large eddy simulation (LES)

- A form of spatial filtering to the full turbulent conservation equations of momentum, mass, heat, and moisture resolve and subgrid fluxes
- Works because of dissipative and scale-free nature of small-scale shear turbulence in the turbulent atmospheric boundary layer
- Unlike traditional "closure" ensemble-average solutions, resolves energy carrying turbulent motions
- Requires high spatial resolution (meters), and consequently, high temporal resolution (seconds)
- But: Good for testing effect of small scale spatial boundary conditions on atmosphere!

Energy Cascade

- Big whorls have little whorls
- That feed on their velocity,
- And little whorls have lesser whorls
- And so on to viscosity
- (in the molecular sense)

– -- Lewis F. Richardson, 1922, cf. J Swift

Energy Cascade

Tower data at 30 – 122 – 396 m to evaluate the simulations

Boundary layer characteristics $L = -1.4 \cdot 10^2 \,\mathrm{m}$ $z_i = 1.3 \cdot 10^3 \,\mathrm{m}$ $u_{\star} = 8.2 \cdot 10^{-1} \,\mathrm{m/s}$ Simulation designTimestep0.5 - 1 sHorizontal grid resolution10 - 20 mGridpoints $O(10^3 \times 10^3 \times 10^2)$ Vertical grid resolution5 - 10 mHorizontal area $100 - 400 \text{ km}^2$

Frederick deRoo (KIT IMK-IFU), TERRENO

LES simulations around the tall tower show shifts in organized structures with heterogeneity of surface forcing

Red: ERF-driven LES; blue: homogeneous; dots: tower data

Eddy fluxes from the homogeneous LES correspond better to the tower data

Virtual EC fluxes as fraction of the tower measurement at 12:00-13:00, 30 m Darkgray: heterogeneous; Medium-gray: homogeneous

What are we trying to do about it?

1. Be smarter about scaling

2. Find the appropriate scale

GPPmax vs NDSI

3. Map human impacts like ecosystems

MANDIFORE Macrosystems Biology

4. Pai

Variability

describes the proce

can be better charac but doesn't decreas

Uncertainty

describes our ignor decreases asympto Pecanproject.org

Dietze, 2014, JGR-G

5. Make flux towers useful

Wavelet cross-scalogram

• ... Process attribution!

Target area versus spatio-temporally varying patch II

- ≥70 % spatial coverage
- Spatially pre-blended fluxes less erratic
- Explicit information on spatial variation

Thank you!

- I hope my examples convinced you that scale is fundamental to understanding ecosystem-atmosphere interactions
- I hope some of the innovations I presented actually solve some of our problems of scale
- None of this can be done without my lab, collaborators, funders, and the opportunity to discuss these with you!