

Ankur Desai AOS, UW-Madison 907 Seminar 20 Feb 2008

From eddies to the breath of the planet

Flux towers, data assimilation, and the global carbon cycle

Atmospheric CO, at Mauna Loa Observatory

PROLOGUE

What's a meteorologist doing playing in the woods?

There's gold in dem hills...

- It's alive...
 - Living organisms are strongly influenced by the atmosphere
 - And vice versa: living organisms play a large role in regulation of atmospheric composition, surface boundary conditions, air mass modification, and climate.
- You can play too!
 - Land surface processes (AOS 532, Environmental Biophysics)
 - Boundary layers (AOS 773, Boundary layers, turbulence and micrometeorology)
 - Biogeochemistry (AOS 520, Bioclimatology)
 - Land-ocean-atmosphere interaction (AOS 425, Global Climate Processes; AOS 773, AOS 532)

Ask not what Earth system science can do for meteorologists...

- Ask: What can meteorologists do for Earth system sciences?
 - Apply/develop novel tools for observing and modeling Earth systems
 - Atmosphere as the great mixer
 - We have the best toys
 - Physics based view of ecology
 - Ecology has traditionally been about local effects
 - Universal equations, parameters, paradigms are few
 - Rigorous mathematical analysis
 - Long history of working with large datasets and model output
 - Success with data assimilation

We really do have the best toys

- Example: Atmospheric inversion
 - d Concentration / dt = Flux X Transport
 - If you know dC/dt and T, solve for F
 - A giant matrix inversion

Outline

- What is the carbon cycle?
- How do we observe it?
- How can we use these observations to make better models?
- What's next?

ACT I

Where we meet the carbon cycle and discover a breathing planet

Living planet, pt 1

• Sarmiento and Gruber, 2002, Physics Today

A global experiment

Living planet, pt 2

• Sarmiento and Gruber, 2002, Physics Today

Interannual variability

• Peylin et al., 2005, GBC

An uncertain future

• Friedlingstein et al., 2005, J. Clim

Moral

- We need a way forward...
- Can meteorology help ecology?
 - Can we go beyond local to global and universal?
- Observations and models need a unifying framework
 - Use data assimilation, parameter estimation
 - Meteorologists know how to do this
 - Try to uncover controls, feedbacks, future sources, sinks and interactions
- Counterintuitive results are likely

ACT II

Much ado about eddies: Observing the exchange of a colorless, odorless gas

My friend eddy...

- Tracers in boundary layer primarily transported by turbulence
- Ensemble average turbulent equations of motion and tracer concentration provide information about the effect of random, chaotic turbulence on the evolution of mean tracer profiles with time
- In a quasi-steady, homogenous surface layer, we can simplify this equation to infer the surface flux of a tracer

Eddy flux

• Lots of variation, some coherence

What we don't see

- Fluxes in low turbulence
- Constant "footprint"
- Components of flux
- Energy balance

What we all see

• Fluxnet database is growing!

What it means

• Example: Carbon-water interactions in wetlands

What it means

- Micrometeorological forcing (air/soil temperature, light, water) explains much of hourly and daily fluxes
- Synoptic forcing is important for understanding subweekly variability
- Larger time lags exist in seasonal forcing (snow melt, growing degree days, canopy / micromet interaction...)
- Fundamental rate reaction equations for photosynthesis, respiration, decomposition generally pan out
- Long term variation is driven by vegetation type and age since disturbance - not easily observed by EC

What it doesn't mean

- Cannot directly observe / constrain flux components (e.g., GPP)
- Parameters for many equations are not directly found from EC observations
- Large heteroscedastic noise in EC observations and high frequency of low turbulence events makes long term continuous time series from EC hard to develop
- Short term equations are non-linear, do not scale across averaging time
- Long term ecosystem evolution equations are not well understood or known
- Cannot simply scale or interpolate many flux measurements to get large region or global averages

Moral

- Observations are a good thing
- But they have no meaning without quality control
- Moreover, they have no meaning without good interpretation
- Can a model of land-atmosphere interaction help us out?

ACT III

In which we decide how to build a better model*

*Especially one that avoids Rube Goldberg syndrome

Why a model?

- Complex, non-linear interactions are not easily understood with linear theory and empirical regression
- Meteorological models are sensitive to initial conditions
 - Initial observation characterization/ensembles is key
- But ecosystem models, like climate models, are more sensitive to boundary conditions (forcing)
 - Therefore, parameter estimation and trends in forcing become more important

Why data assimilation?

- Old way:
 - Make a model
 - Guess some parameters
 - Compare to data
 - Publish the best comparisons
 - Attribute discrepancies to error
 - Be happy

Why data assimilation?

- New way:
 - Constrain model(s) with observations
 - Find where model or parameters cannot explain observations
 - Learn something about fundamental interactions
 - Publish the discrepancies and knowledge gained
 - Work harder, be slightly less happy, but generate more knowledge

The basic idea of assimilation

[A|B] = [AB] / [B]

[P|D] = ([D|P] [P]) / [D]

(parameters given data) = [(data given parameters) ×
(parameters)] / (data)

Posterior = (Likelihood x Prior) / Normalizing Constraint

The basic idea of assimilation

• Courtesy of D. Nychka, NCAR

DATA = 1.5, **PRIOR** $N(0, (1.5)^2$ **Likelihood, POSTERIOR**

Model of the day: Sipnet

- A simplified model of ecosystem carbon / water and landatmosphere interaction
 - Minimal number of parameters
 - Driven by meteorological forcing
- Braswell et al., 2005, GCB
- Sacks et al., 2006, GCB added snow

Hip-hop sensation: MC MC

- Markov Chain Monte Carlo (MCMC)
 - A quasi-random walk in parameter space (Metropolis-Hastings algorithm)
 - From a prior parameter distribution, move in parameter space to minimize model-data RMS
 - ~100,000 iterations
 - Apply posterior parameters to get posterior "best" fit dataset and confidence
 - In Sipnet, NEE and LE fluxes from eddy covariance can be used to constrain the model using MCMC
 - Sipnet runs really fast (100 ms)

Case study 1: Sipnet Niwot Ridge

• D. Moore, in review, Ag. For. Met.

Case study 1: Sipnet Niwot Ridge

• D. Moore, in review, Ag. For. Met.

- Part of ChEAS project...
- 30m I22m 396m fluxes of CO₂, H₂O, H, u*

	Prior	Posterior
Growth related parameters		
photosynthetic capacity (amax)	112	58.6 +/- 2.2
growth respiration fraction	0.33	0.34 +/- 0.06
VPD modifier slope	0.05	0.066 +/- 0.009
Half saturation PAR	17	9.0 +/- 0.76
Light attenuation	0.5	0.67 +/- 0.02
WUE factor	10.9	13.4 +/- 0.46*
Decomposition parameters		
Lloyd-Taylor E0	309	448 +/- 121
Lloyd-Taylor T0	-46	-59.5 +/- 10.6
Turnover rate	0.03	0.19 +/- 0.02

Caveat: Interannual variability

• Ricciuto et al., in prep, Ag. For Met.

A brief word on other techniques

- MCMC isn't good for slow models and for realtime forecasting
- Variational assimilation, Kalman filters, matrix inversion, etc... all have potential (mostly underutilized)
- Ensemble Kalman Filter (EKF) is particularly appealing for constraining regional scale ecosystem models with atmospheric observations

 Airborne Carbon in the Mountains Experiment

-114-113-112-111-110-109-108-107-106-105-104 + aramie(KLAF) + Hayden(KHBN Commerce) Meeker(KESE) Meeker(KESE) - Mayden(KASE) - Mayden(KA

0808forecast16Z

 CO_2

MORNING UPWIND

AFTERNOON DOWNWIND

Moral

- Data assimilation and parameter estimation help us move beyond scratching heads over errors in observations and model logic
- Formal ways to estimate fluxes and parameters are not necessarily hard to understand or implement
- Assume large spread in prior parameters in landatmosphere models
- Long-term and high density datasets can have value beyond their original purposes

ACT IV

Dénouement or Sequel: Where do we go from here?

Remember this?

What's up?

- Eddy covariance is a mature technology, but QC and fundamental physics issues do remain
- We're just at the stage with the flux tower network to get major global results on ecosystem-atmosphere interactions
 - Potential to even impact weather forecasting
- Coupled carbon-climate modeling
 - More focus on canopy radiation profiles, turbulence, albedo, feedbacks
- Moving from carbon to biogeochemistry (C:N:P:H₂O)
 - From microbes to people
- Regional analyses with model-data fusion
- Working in "hard" places

What my lab does or plans to do

- ChEAS
 - Carbon-hydrology-climate interactions in small wetlands and lakes
 - Ecosystem modeling and data assimilation with flux tower mesonets and long-term datasets
 - Scaling of regional land-atmosphere fluxes from top-down and bottom-up techniques
 - Forest management and climate change interactions
 - Beyond CO_2 : the role of CH_4 , atmospheric chemistry
- ACME Airborne tracers to constrain biogeochemistry in complex terrain
- Lake Superior carbon cycling
- Fluxnet "many tower" syntheses
- The advection problem
- Fundamental boundary layer, micromet and turbulence studies

Moral

- The grand global experiment isn't stopping anytime soon
- There's lots to do and lots of data!
- Multidisciplinary work is hard, but rewarding
- We need good students

Thanks

- Desai lab and friends: Ben Sulman, Jonathan Thom, Shelley Knuth, Bill Sacks
- Project teams: Sipnet, ChEAS, ACME07
- Funding: DOE NICCR, NSF, USDA, NSF/NCAR

- Come visit: AOSS 1549, desai@aos.wisc.edu
- More info: http://flux.aos.wisc.edu