Little lakes and large lakes: he first global inland water eddy covariance flux synthesis

Ankur R. Desai, M. Golub University of Wisconsin &
T. Vesala, G. Bohrer, P. D. Blanken, D. Franz, C. Deshmukh,
F. Guérin, J. Heiskanen, M. Jammet, A. Jonsson, J. Karlsson,
F. Koebsch, H. Liu, A. Lohila, E. Lundin, I. Mammarella, A.
Rutgersson, T. Sachs, D. Serça, C. Spence, I. B. Strachan, G.
Weyhenmeyer, Q. Xiao, and S. Glatzel

J3.2 AMS AFM32 Biogeo3 1:45 pm Arches TUE June 21, 2016

Photo Credit: Ted Bier

Why Lakes?

- Inland waterbodies comprise significant components of many landscapes
- Rarely included in estimates of energy and CO₂ fluxes
- When they are, based on measurements at low frequencies (1-2x/yr up to weekly at 1-2 points) and high uncertainty (>100%!) which prevents from studying drivers at shorter timescales
- Several dozens of fluxes towers located over inland water bodies allowing for study of short time variation of fluxes and mechanisms controlling them

Lakes and riverine systems process a lot of carbon, maybe.

Tranvik 2009

Adrian et al 2009

Globally, lakes are warming faster than the atmosphere

Schneider and Hook, 2010 GRL

• Inland water energy and carbon fluxes are highly dynamic in space and time

CO2	Irradiance , Temp. Half-hourly to	Seasonal	Annual
Sensible Heat	Wind, Net Radiation, Δ Temp. Wind,		
Latent Heat	Wind, Net Radiation, Humidity		

• Inland water energy and carbon fluxes are highly dynamic in space and time

Latent Heat	Radiation, Humidity Wind,	Humidity, Air Temp. Ice, Net	
Sensible Heat	Radiation, Δ Temp.	Heat Storage	
CO ₂	Wind, Irradiance , Temp.	Temp, Biology, Mixis	
	Half-hourly to daily	Seasonal	Annual

 Inland water energy and carbon fluxes are highly dynamic in space and time

Latent Heat	Wind, Net Radiation, Humidity	Net Radiation, Humidity, Air Temp.	Net Radiation, Ice, Air Temp.
Sensible Heat	Wind, Net Radiation, ∆ Temp.	lce, Net Radiation, Heat Storage	Net Radiation, Ice,
CO2	Wind, Irradiance , Temp.	Temp, Biology, Mixis	DOC load, Biology, Temp,
	Half-hourly to daily	Seasonal	Annual

Our goal

• THEREFORE: We conduct the world's first synthesis of eddy fluxes across lakes that vary in size, type, location

Lakes are much harder to make good flux measurements than other surfaces

Morin, Bohrer, et al., in prep

Sub-arctic lake

300

Open-Water Daytime Net Radiation

(Median)

W m-²

Open-Water Daytime Sensible Heat Flux

(Median)

Median Daily H Flux

Open-Water Daytime Latent Heat Flux

(Median)

Median Daily LE Flux

Open-Water Daytime Carbon Dioxide Flux

(Median)

umol

- Majority of water bodies are source of CO₂ to atmosphere
- Large emissions from reservoirs
- No clear latitudinal pattern (i.e. site-specific characteristics play more important role)

Median Daily CO₂ Flux

Short-term controls of heat fluxes

Wind speed and temperature gradient at airwater interface control sensible heat flux

Wind speed and temperature gradient explains >50% of variation in H flux in majority of lakes

- Fairly universal control
- Steeper slopes in midlatitudes
- No clear latitudinal gradient

Variable H response to wind speed and temperature gradient in Great Lakes

	Half-hourly TIMESCALE	
Subtropical lake (Jackson)	WSpeed * $\Delta T (r^2=.67)$ $\Delta T (r^2=.43)$ WTemp (r ² =.35)	
Temperate lake (Huron)	WSpeed * ΔT (r ² =.46) Sat. Vap. Press (r ² =.37) ShotWave Rad. (r ² =.34)	
Boreal lake (Kuivajarvi)	WSpeed * Δ T (r ² =.84) Δ T (r ² =.0.57) Ustar (r ² =.37)	
Sub-arctic lake (Toolik)	Sensible Heat Flux WSpeed * Δ T (r ² =.78) Δ T (r ² =. 0.71) Air Temp (r ² =.47)	

Wind speed and humidity gradient explain >30% of latent heat variation in majority of lakes

Sub-arctic lake

(Toolik)

Boreal lake

(Kuivajarvi)

Temperate lake

(Huron)

Subtropical lake

(Jackson)

Sensible Heat Flux WSpeed * Δ T (r²=.78) Δ T (r²=.0.71) Air Temp (r²=.47)

WSpeed *ΔT (r²=.84) ΔT (r²=. 0.57) Ustar (r²=.37)

WSpeed * ΔT (r²=.46)

Sat. Vap. Press $(r^2=.37)$

ShotWave Rad. (r²=.34)

Latent Heat Flux

WSpeed *∆ Vap. Press. (r²=.36) Relat. Humidity (r²=.33)

WSpeed * Δ Vap. Press. (r²=.46) Sat. Vap. Press (r²=.37) ShotWave Rad. (r²=.34)

WSpeed * Δ Vap. Press. (r²=.30)

WSpeed * Δ Vap. Press. (r²=.35)

Half-hourly TIMESCALE

WSpeed * ΔT (r²=.67) ΔT (r²=.43) WTemp (r²=.35)

Highly variable CO₂ flux but generally increases with wind speed

- Observations were binned into 0.5 m s⁻¹ bins
- Scatter implies influences of other factors

Variable responses of CO₂ flux to wind speed

Wavelet Analysis

Summary

- Water temperature and meteorological characteristics of overwater air masses (e.g. wind speed, air temp, humidity) control short term-variation of sensible and latent heat fluxes
- Responses of LE and H in Great Lakes vary by warming/cooling seasons
 - Time-lags
 - Poor predictors \rightarrow too short timescales presented here
- Higher wind speed promotes greater CO₂ exchange, but large variability suggests other physical and biological driving factors
- Carbon fluxes probably can not be reliably extrapolated from single point measurements given high temporal variability

Challenges

- Eddy covariance quality is highly variable and sensitive to screening, footprints, type of lake, stable boundary layers over cold surfaces
- Lack of in-water data on pCO₂ or temperature profiles in many systems limit interpretation and derivation of gas transfer coefficients
- Ice-covered lakes rarely have winter data
- Data sharing is never simple

Thank you

- Analysis plans: Gap-filling, wavelet coherence analysis, derivation of gas transfer velocity
- Manuscript in preparation (fall submission), open dataset to be placed in repository afterwards
- Contact Gosia Golub <u>mgolub@wisc.edu</u> if you want to participate or analyze data
- Funding: NSF DEB-1440297, NTL LTER, NSF DEB-0845166 + PI support for each site

