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1. The climate change-weather nexus

2. Climate dynamics of the “snow-eater” / “hair-dryer”

3. Local effects of regional circulation

4. Simulations with Föhn and conclusions
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- Regional carbon cycle responses to climate 
warming are not straightforward
- In the Northern Alps, high resolution climate 
models (right) project increasing precipitation in 
winter and decline in summer by 2070-2100
- How do mountain local climate, weather, and 
ecosystems respond to this?  

- Valley and mountain winter (Nov-Mar) 
temperatures (left) increasing in N Alps
- No clear trend in winter precipitation, 
except decline in snowfall
- But interannual variability is quite 
large. What explains this?

- Föhn southerly downslope flow (right) promotes 
drying and warming in Northern and Central Alps
- Frequency objectively determined w/mountain 
& valley wind velocity and temperature gradients
- Föhn is increasing in frequency and follows 
Arctic Oscillation (AO) negative pressure anomaly, 
though AO- frequency has not increased

- Arctic oscillation negative pattern promotes 
southerly flow pattern 
- AO negative day frequency determines mean 
winter air temperature (left panel)
- It also partly explains Föhn frequency (right 
panel),except in highest Föhn years 
- Global circulation drives local meteorology

- Top 25% of Föhn years’ 500 hPa 
geopotential height anomaly (left) shows 
significant differences (ANOVA F-test 99%) 
to low Föhn years in North Atlantic
- A Western Europe / N. Greenland dipole 
enhances the Föhn flow
- Recent research has related this pattern 
to shifts in N Atlantic gulf stream front or 
Arctic sea ice anomalies
- Climate projections show changes in this 
blocking pattern with future warming

- Frequency of Föhn flow does not explain winter 
temperature, since Arctic Oscillation determines 
synoptic conditions that influence air mass origin
- However, snowfall is inversely related to Föhn 
conditions, as Föhn promotes drying and inhibits 
precipitation (right panel)
- How do these responses influence grassland and 
forest gross primary productivity (GPP)?

- Multi-year flux tower observations at 11 sites (bottom left) show positive response of spring 
(Mar-May) GPP anomalies to modest Föhn frequency relative anomalies in winter (Nov-Mar), 
especially in northern (red) and central (blue) Alps. GPP response muted in strong Föhn years
- One mechanism of spring GPP response is phenology (bottom right), exemplified by decrease 
in spring flowering day with warmer winters at Austrian Alpine flower monitoring plots

- SOLVEG multi-layer land surface model deployed for multi-year 
simulation at a grassland flux tower site in German Alps
- Föhn conditions promote snow melt (right). For a short period, 
carbon emissions increase with snow melt, but long term effect is 
net uptake
- By spring, snow melt events trigger growth

- In model, southerly flow conditions drive 
snowmelt that occurs under presence of 
strong negative heat flux (left)
- Vegetation dynamics could be considered in 
model to understand snowmelt frequency 
and grassland mortality relationships

For many ecosystems, shifts in regional circulation may be just as important as general 
climate trends for driving key responses of ecosystem carbon fluxes to global warming
- For N Alps, winter Föhn flows, triggered by negative Arctic Oscillation and N Atlantic 
dipole, promote snow melt, early green-up, enhanced spring GPP, and other impacts
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