1

2

Landscape-level terrestrial methane flux observed from a very tall tower

3 Ankur R Desai^{1*}, Ke Xu¹, Hangin Tian², Peter Weishampel³, Jonathan Thom¹, Dan Baumann⁴, Arlyn E. Andrews⁵, Bruce D. Cook⁶, Jennifer Y. King⁷, Randall Kolka⁸ 4 5 6 ¹ Center for Climatic Research, University of Wisconsin-Madison, Madison, WI USA 7 ² International Center for Climate and Global Change Research, Auburn University, 8 Auburn, AL USA 9 ³ Great Lakes Domain, National Ecological Observatory Network, Inc., Land O Lakes, WI 10 USA ⁴ Wisconsin Water Science Center, U.S. Geological Survey, Rhinelander, WI USA 11 12 ⁵ Earth Systems Research Lab, National Oceanographic and Atmospheric Administration, Boulder, CO USA 13 ⁶ Goddard Space Flight Center, National Aeronautics and Space Administration, 14 Greenbelt, MD USA 15 16 ⁷ Department of Geography, University of California, Santa Barbara, CA, USA 17 ⁸ USDA Forest Service Northern Research Station, Grand Rapids, MN USA 18 19 * Corresponding author: Ankur R Desai, Dept of Atmospheric and Oceanic Sciences, UW-20 Madison, 1225 W Davton St, Madison, WI 53706 USA, desai@aos.wisc.edu, +1-608-218-21 4208 22

23 Abstract

24 Simulating the magnitude and variability of terrestrial methane sources and sinks poses a challenge to ecosystem models because the biophysical and biogeochemical processes 25 26 that lead to methane emissions from terrestrial and freshwater ecosystems are, by their nature, episodic and spatially disjunct. As a consequence, model predictions of regional 27 28 methane emissions based on field campaigns from short eddy covariance towers or 29 static chambers have large uncertainties, because measurements focused on a 30 particular known source of methane emission will be biased compared to regional 31 estimates with regards to magnitude, spatial scale, or frequency of these emissions. 32 Given the relatively large importance of predicting future terrestrial methane fluxes for 33 constraining future atmospheric methane growth rates, a clear need exists to reduce 34 spatiotemporal uncertainties. In 2010, an Ameriflux tower (US-PFa) near Park Falls, WI, 35 USA, was instrumented with closed-path methane flux measurements at 122 m above 36 ground in a mixed wetland-upland landscape representative of the Great Lakes region. 37 Two years of flux observations revealed an average annual methane (CH₄) efflux of 785 +/- 75 mg C-CH₄ m⁻² yr⁻¹, compared to a mean CO₂ sink of -80 g C-CO₂ m⁻² yr⁻¹, a ratio of 38 39 1% in magnitude on a mole basis. Interannual variability in methane flux was 30% of 40 the mean flux and driven by suppression of methane emissions during dry conditions in 41 late summer 2012. Though relatively small, the magnitude of the methane source from 42 the very tall tower measurements was mostly within the range previously measured using static chambers at nearby wetlands, but larger than a simple scaling of those 43 44 fluxes to the tower footprint. . Seasonal patterns in methane fluxes are similar to those simulated in the Dynamic Land Ecosystem Model (DLEM), but magnitude depends on 45 46 model parameterization and input data, especially regarding wetland extent. The model 47 was unable to simulate short-term (sub-weekly) variability. Temperature was found to 48 be a stronger driver of regional CH₄ flux than moisture availability or net ecosystem 49 production at the daily to monthly scale. Taken together, these results emphasize the 50 multi-timescale dependence of drivers of regional methane flux and the importance of long, continuous time series for their characterization. 51 52 53 *Keywords*: methane; eddy covariance; regional flux; land-atmosphere

55 1. Introduction

56 The contribution of microbial methane (CH₄) from wetlands remains a 57 significant source of uncertainty in closing the global methane budget (Mikaloff Fletcher et al., 2004). In particular, wetland methane emissions may contribute as much as 25-58 59 40% of global CH₄ anthropogenic emissions and are the leading source of interannual 60 variability in atmospheric CH₄ (Bousquet *et al.*, 2006; Chen and Prinn, 2006; Crill *et al.*, 61 1993). The recent increase in the growth rate of atmospheric CH₄ lends particular 62 urgency to improving global simulations and inversions of the terrestrial methane 63 source (Chen and Prinn, 2006; Collins et al., 2006). One set of hypothesized mechanisms 64 is the role of warming of high latitudes and wetting of the tropics (Dlugokencky et al., 65 2009). Because CH₄ emissions are closely linked to changes in regional hydrology and temperature, and ongoing climate changes are likely to have a significant impact on 66 67 regional water tables and wetland soil temperatures, there is a high likelihood that 68 climate change will affect wetland CH₄ emissions (Roulet et al., 1992; Sulman et al., 69 2009).

70 Model results provide motivation for long-term *in situ* observations of terrestrial 71 CH₄ sources and sinks. However, virtually all *in situ* measurements of surface to 72 atmosphere CH₄ flux have been conducted either at the plot scale, typically with 73 chamber-based measurements (e.g., Jungkunst and Fiedler, 2007), or more recently at 74 the ecosystem scale, particularly with eddy covariance flux towers (e.g., Hatala et al., 75 2012). In contrast, atmospheric tracer-transport inversions (e.g., Bergamaschi et al., 76 2010; Miller et al., 2013), global ecosystem models (e.g., Matthews and Fung, 1987; 77 Tang et al., 2010; Tian et al., 2010), and global remote sensing based estimates of CH₄ 78 sources (e.g., Bloom *et al.*, 2010) are provided at much larger spatial scales.

Consequently, a scale mismatch arises for evaluation across methods. This scale
mismatch is particularly difficult for CH₄ because of fine-scale spatial heterogeneity of
CH₄ sources and sinks and sampling biases toward known CH₄ sources (e.g. peatlands).

82 The primary objective of this study is to evaluate the first very tall tower 83 continuous eddy covariance flux measurement of CH₄ in a regional landscape. Further, 84 we compared the magnitude and variability of these observations to plot-scale wetland 85 and forest observations and model simulations. In late 2010, we instrumented a very tall tower in northern Wisconsin USA to observe CH₄ turbulent fluxes at 122 m above 86 87 the ground and CH₄ concentration at 3 heights, sampling a spatially heterogeneous mix 88 of upland forest and lowland wetland systems (Fig. 1). The site has been measuring CO₂ 89 and H_2O eddy fluxes and concentration at this height and the other two since 1996.

90 Since the pioneering studies using tunable diode laser spectroscopy-based eddy 91 covariance for CH₄ fluxes (Fowler *et al.*, 1995; Kim *et al.*, 1998; Shurpali and Verma, 92 1998; Suyker *et al.*, 1996), there have been a growing number of publications based on 93 short-term CH₄ flux observations (e.g., Friborg *et al.*, 2003; Hargreaves *et al.*, 2001; 94 Nicolini *et al.*, 2013). With the development of reliable, low-drift, closed and open path 95 methane analyzers (McDermitt et al., 2011), it is now possible to maintain long time 96 series of CH₄ fluxes (e.g., Baldocchi et al., 2012; Hatala et al., 2012; Olson et al., 2013; 97 Rinne et al., 2007; Smeets et al., 2009; Wille et al., 2008). None of these measurements have been made at the landscape scale (25-100 km²) from a very tall tower, and only a 98 99 subset of these studies report simultaneously on CH₄, CO₂, and H₂O flux measurements. 100 The value of continuous observations at landscape scales is to directly observe to 101 what extent episodic and spatially heterogeneous emissions influence the net annual

102 budget of biospheric CH₄ fluxes. Only continuous observations, for example, can

103 regularly capture (or record) pulses of CH₄ (e.g., after a rainstorm or during ebullition

104	events) (Strack and Waddington, 2008) along with non-growing season fluxes, which
105	may also be substantial (Pelletier <i>et al.,</i> 2007; Yu <i>et al.,</i> 2007).
106	We seek to understand the nature of regional or landscape-scale net ecosystem
107	exchange of CH_4 (NEE CH_4). In theory, we would expect that if wetland CH_4 production
108	(Reco_CH ₄) dominates forest CH_4 consumption and wetland CH_4 oxidation, then the
109	landscape CH_4 flux would be proportional to the wetland spatial extent and its mean
110	flux as measured by chambers. Also, some ecosystem models simulate CH_4 production
111	based on assuming a constant ratio of either ecosystem respiration (R_{eco}) to R_{eco} or NEE
112	$\rm CO_2$ to NEE CH ₄ at annual timescales (e.g., Potter et al., 1997). To investigate these
113	claims, we ask:
114	• What is the magnitude of NEE CH_4 in a mixed forest-wetland landscape and how
115	does it compare to site-level chamber-based estimates?
116	• How predictive are environmental factors such as water table and temperature
117	or other biogeochemical fluxes such as $Reco_CO_2$ or $NEE CO_2$ on daily to
118	interannual variability of NEE CH ₄ ?
119	• How well does a state-of-the-art ecosystem model simulate landscape NEE CH ₄ ?

120 **2. Methods**

121 **2.1 Site description**

Methane flux and profile measurements were made at the WLEF very tall tower US-PFa Fluxnet site (Davis *et al.*, 2003) in Wisconsin, USA (45.945° N, 90.273° W). The surrounding landscape (Figure 1) is a representative mix of forested and open wetlands (28% in entire region (~50 km), 18% within 5 km of tower) with the remainder primarily composed of mixed deciduous and evergreen forests with most stands 127 ranging from 30 to 70 years old. Most of the landscape is within the Chequamegon-128 Nicolet National Forest and forests that are actively managed for multiple purposes, 129 including recreation, wildlife habitat, and timber production. Wetlands in the region 130 include both open fens and forested bogs and a smaller proportion of open-water 131 bodies. Upland stands are generally characterized by mixed northern hardwood 132 species (Acer saccharum, Tilia americana, Fraxinus pennsylvanica, Betula papyrifera); 133 early- to mid-successional aspen-fir (Populus tremuloides, Populus grandidentata, Abies 134 balsamea); and pine-spruce (Pinus resinosa, Pinus banksiana, Picea glauca). Lowlands 135 are generally characterized by wetland shrub and sedge species in fens and along stream banks (Alnus rugosa, Salix spp., Carex spp.); deciduous hardwood species in 136 137 retired and seasonal drainageways (*Fraxinus nigra*, *Ulmus rubra*, *Acer rubrum*); 138 ericaceous shrubs and moss in open bogs (Chamaedaphne calyculata, Ledum 139 groenlandicum, Sphagnum spp.); and wetland conifers in drier peatlands and bog edges 140 (Thuja occidentalis, Larix larcina, Picea mariana, Abies balsamea). 141 The site has an interior continental climate with cold winters and warm 142 summers (Table 1). Precipitation is greatest in the spring and fall, though there is 143 regular and abundant winter snowfall. Over the two decades of flux tower CO₂ 144 measurements, the site has varied from being a small source of CO₂ to a modest sink for 145 CO₂ (Desai, 2014). Previous studies (Desai *et al.*, 2008a) have indicated that the mean 146 tower footprint samples a landscape that is representative of much of the Upper 147 Midwest U.S. forested region, and the proportions of wetland and forest sampled are 148 representative of the average wetland/forest coverage in the entire National Forest.

149 **2.2 Very tall tower measurements**

150 Flux measurements of CO₂, H₂O, heat, and momentum and associated tower 151 profile meteorology and surface micrometeorology have been made continuously at the 152 site since the middle of 1996 (Davis et al., 2003). Flux measurements except for CH₄ 153 have been made at three heights above ground, 30 m, 122 m, and 396 m. CO₂ and H₂O 154 flux measurements at each level were made with a Licor, Inc. LI-6262 infrared gas 155 analyzer and ATI Type K sonic anemometers (Table 1). Each level has a gas analyzer in a 156 trailer at the tower base with large vacuum pumps drawing air to them. For the upper 157 two levels, an additional gas analyzer was placed on tower at their respective heights to 158 minimize data loss and account for flux loss for long tube lengths. Generally, fluxes 159 between the on tower sensors and the long tube length sensors compared favorably, 160 especially after high frequency spectral loss corrections were applied (Berger *et al.*, 161 2001). All flux instruments were sampled initially at 5 Hz, but switched to 10 Hz in 2006. 162 In addition to the flux measurements, each level has measurements of temperature and 163 humidity (Vaisala, Inc. HMP45C). Measurements of incoming above-canopy 164 photosynthetically active radiation (PAR) were made at the base of the very tall tower. 165 Precipitation and soil moisture were made at a nearby stand-scale flux tower (US-WCr) 166 and compared and gap-filled with other micrometeorological stations within 30 km of 167 the tower.

In the middle of 2010, we installed a cavity ring-down spectrometer (Picarro Inc.,
model 1301-f) for measurement of continuous CO₂ and CH₄ concentration at the 122 m
level. This instrument is one of several new instruments with high sensitivity for
continuous high-frequency CH₄ measurements that have arisen since the development
of low-cost quantum cascade and infrared lasers (Kroon *et al.*, 2007), with limited
sensor calibration drift (Hendriks *et al.*, 2008). The instrument was housed inside a

temperature-controlled trailer and sub-sampled air diverted from the 122 m level LI6262 analyzer. A second pump was applied to draw air into the Picarro cavity. The
Picarro analyzer maintains a constant pressure and temperature in the cavity and
directly reports mole fraction of the gas species. We did not attempt to sync the LI-6262
water vapor signal to estimate 10 Hz CH₄ dry air mixing ratio, but rather applied a
Webb-Pearson-Leuning (WPL, Webb *et al.*, 1980) correction as discussed below.

180 Storage flux was derived from profile measurements of CO₂ and CH₄ made on the tower. CO₂ profile measurements were made with a Licor, Inc. LI-7000 analyzer 181 182 maintained by the National Oceanographic and Atmospheric Administration (NOAA) Earth Systems Research Lab (ESRL) (Andrews et al., 2014). These measurements have 183 184 been made since 1995 with a Licor 6251, which was replaced by the LI-7000 in May 185 2009. A separate set of intakes at the same heights as the flux tower levels provided air 186 to the analyzer, which performed 5-minute sequential sampling of each level. These air 187 samples were dried, flow controlled, and calibrated with zero and span gases multiple 188 times per day. In spring 2010, we installed a Los Gatos, Inc. LGR Fast Methane Analyzer, 189 drawing dried and conditioned air from the NOAA ESRL system and added standards 190 with known CH₄ concentration for calibration. Both profile measurements used in this 191 study were acquired from calibrated and interpolated time series of CO₂ and CH₄ 192 concentrations from the three flux heights.

Flux and meteorology measurements were acquired with Campbell Scientific, Inc.
data loggers, except for the Picarro, which has its own internal storage system. To
maintain time alignment, all loggers and computers were synced to NIST UTC internet
time on an hourly basis. Flux data processing for CO₂ and H₂O fluxes was virtually
unchanged from Berger *et al.* (2001). The observed CO₂ concentrations were calibrated
against the NOAA ESRL on tower CO₂ observations within a 24-hour window, and

199 similarly water vapor was calibrated to water vapor mixing ratio obtained from on 200 tower Vaisala HMP45C sensors and surface barometric pressure measurements. 201 Picarro CO₂ and CH₄ observations had very small drift and have not shown any need for 202 calibration beyond factory calibration. A WPL correction for dilution by water vapor is 203 needed to obtain the dry air mole fraction of CO₂ and CH₄, using the approach of Hiller 204 et al. (2012). We opted not to apply the direct correction method of Baldocchi et al. 205 (2012) and Detto *et al.* (2011) as lining up H_2O observations from the LI-6262 to the 206 Picarro at 10 Hz was not easily possible, except for limited periods, where we did 207 compare the two approaches.

Sonic anemometer data were rotated to long-term (12-month) planar fits. Air
sampling lags were identified with maximal lagged covariance, and high-frequency
empirical spectral corrections were applied (Berger *et al.*, 2001). Given the larger
eddies present at 122 m, we have previously showed that an hour-long averaging time
is more appropriate. (Berger *et al.*, 2001).

213 One particular issue with our set up was drifting clocks between the Picarro and 214 the datalogger that stores the sonic data, even with regular time syncing. Further, the 215 Picarro's raw data are not stored at regular time intervals owing to data processing and laser control sequence. We used a nearest neighbor approach for each time stamp, 216 217 essentially following the method of Eugster and Plüss (2010) to line up time stamps to 218 the sonic anemometer, with replication if needed. Lag corrections were applied after 219 this. Clock drift owing to malfunctioning computer clocks was obvious in the long-term 220 time series of lag times, requiring manual adjustment of the window of acceptable lag 221 times.

Additional quality control was applied, including range checks, spike detection,
and low turbulence filtering. We applied a 0.2 m/s u* filter for low turbulence at night.

For CO₂ and H₂O fluxes, where multiple heights and sensors were available, a preferred
intake height algorithm (Davis *et al.*, 2003) was applied to combine the independent
flux observations, preferring higher levels in daytime and the lowest level at night
during periods of negative heat flux, indicating decoupling of higher intake heights from
the surface layer, as described in Davis *et al.* (2003).

229 While systematic biases are possible from assumptions made in data filtering, 230 calibration, and flux algorithms, there is also the issue of random flux uncertainty. Given 231 the sporadic nature of CH₄ emissions against a low background flux at most sites, 232 turbulent flux uncertainty can be large relative to flux magnitude (Kroon *et al.*, 2010). To estimate flux uncertainty for CH₄, we applied the method of Salesky *et al.* (2012). 233 234 Flux uncertainty was derived from successive computation of eddy fluxes with longer 235 averaging times, estimating the standard deviation of these sub-hour fluxes and 236 extrapolating them to the hour to estimate flux uncertainty. Computationally, this 237 calculation of fluxes at all averaging times up to one hour was done in Fourier spectrum 238 to speed computation time. The method has been shown by Salesky et al. (2012) to be 239 reliable and comparable to other methods based on random flux shuffling (Billesbach, 240 2011). For daily and cumulative errors, hourly errors were summed by squares after 241 accounting for temporal autocorrelation up to a 24 hour lag.

For calculation of seasonal and annual fluxes, we also gap-filled the flux measurements of CO_2 and CH_4 and inferred Gross Primary Production (GPP) and Ecosystem Respiration (ER). CO_2 fluxes were gap-filled and partitioned by using the method described in Desai *et al.* (2005), based on a moving-window regression of quality controlled nighttime net ecosystem exchange of CO_2 (NEE CO_2) and a fit of daytime observations to incoming photosynthetically active radiation (PAR). This

248 method has compared favorably to other methods in common usage (Desai *et al.*,
249 2008b).

250 There is currently no generally-accepted method for gap-filling for CH₄ fluxes. 251 Our initial attempts at similar regression approaches as for NEE CO₂ at the hourly scale 252 did not find strong relationships, similar to what has been reported by others (e.g., 253 Dengel *et al.*, 2013). Short gaps (<4 hours) at the hourly scale were filled with linear 254 interpolation. However, at the daily scale, a stronger relationship with temperature 255 allowed us to apply a second order polynomial fit between CH₄ daily flux and air 256 temperature, accounting for random flux uncertainty as described above. While soil 257 temperature would be possible for the fetch of a stand-level tower (10-30 m), there is 258 no single estimate of regional soil temperature, and thus air temperature is the best 259 metric of regional average ecosystem temperature. Further, we modeled random flux 260 uncertainty as a linear function of mean flux to extrapolate random uncertainty of the 261 gap-filled daily fluxes, to which we summed with the one-sigma uncertainty of the 262 regression to estimate total random uncertainty. We also separately estimated gap-263 filling uncertainty by repeated calculation of annual sums of NEE CH₄ with differing 264 regression coefficients based on their uncertainty.

Finally, flux footprints were estimated for each hour to estimate source
contribution and potential footprint bias. We applied the empirical CBL model of Wang *et al.* (2006), which relies on similarity theory to derive mean Gaussian surface
influence functions as a function of boundary layer characteristics such as convective
velocity scale (w*), boundary layer depth (h), roughness height (z₀), and MoninObhukov length (z/L). These were used to confirm representative sampling of land
cover in the tower climatological footprint as shown in Fig. 1

272 2.3 Plot-level observations

273 For comparison of regional fluxes from the tower to *in situ* CH₄ fluxes, we 274 analyzed static chamber flux measurements made in four wetlands and three upland 275 forests near the very tall tower (within 20 km, though not necessarily within the flux 276 footprint). Static chamber measurements were made in the growing seasons (May-Sep) 277 of 2005 and 2006 based on syringe sampling from closed, vented PVC chambers (25 cm 278 diameter, 10 cm height). Chamber headspace samples (15 mL) were collected four 279 times during a 30-minute period, with each sample transferred to an air-tight vial for 280 transport to the laboratory. Vials were analyzed for CH₄ concentration by gas 281 chromatography using a flame ionization detector (Hewlett Packard, 5890A) with 282 calibrated standards (Scott Specialty, Inc.). Fluxes were calculated based on the increase 283 in headspace concentration over time (Weishampel and Kolka, 2008). At each site, 3 284 plots containing 4 subplots each with 3 fixed, static chamber collars were sampled 285 approximately monthly across the growing season (days of year 100 to 278). Mean soil 286 temperature and volumetric soil water content were also measured in the plots at each 287 flux sampling time point.

288 Wetland sites included an open, sphagnum-dominated bog (South Fork, SF; 289 45°55.37' N90°07.92' W)), a sedge-dominated riparian fen (Wilson Flowage, WF; 290 45°48.99' N, 90°10.29'W), an alder-dominated riparian wetland (Lost Creek, LC; 291 46°04.96' N, 89°58.72' W), and a cedar swamp (CS; 45°56.53' N 90°16.21' W). Forest 292 sites included one mature deciduous forest, Willow Creek (WC; 45° 48.47' N, 90° 04.72' 293 W), and two recent clear-cut (< 10 years at time of sampling) deciduous forests, Riley 294 Creek (RC; 45°54.53' N, 90°07.27' W) young aspen and Thunder Creek (TC; 45°40.239' 295 N 90°03.25' W). In this study, we were primarily interested in the mean and range of the 296 wetland emissions and forest soil methane consumption over the entire growing season.

In addition, for comparison purposes, we also upscaled the chamber
measurements using flux footprint-weighted estimates of wetland and forest cover
multiplied respectively by mean and standard deviation of wetland and forest chamber
fluxes over all collars, all sites, and all growing season sampling dates (assuming 179
day growing season), assuming no methane exchange in winter or for other land cover
types. Intra and inter site variability across collars was propagated via Monte Carlo
sampling to estimate sensitivity of upscaling.

304 2.4 Numerical modeling

305 The Dynamic Land Ecosystem Model (DLEM) is a comprehensive terrestrial 306 ecosystem model that couples carbon, nutrient and water cycles in terrestrial 307 ecosystems for estimating the hydrological and biogeochemical fluxes and pool sizes at 308 multiple scales from site to region/globe and with time step ranging from day to year. 309 Through carbon-nutrient-water coupling, DLEM is capable of simultaneously depicting 310 the biosphere-atmosphere exchange of CO₂, CH₄ and N₂O under multiple natural and 311 anthropogenic disturbances (Tian *et al.*, 2010). The model can simulate regional 312 hydrology including evapotranspiration, runoff and soil moisture (Liu et al., 2013). Here, 313 we ran the model in two modes over the study period: a cut-out of a previously 314 continental-scale regionally parameterized model and a single site-level model. The 315 regional model was cut-out from a spatial resolution of 5 by 5 arc-minutes (around 9.2 × 316 9.2 km grid at the equator), using default land cover for the grid cell. The site model was 317 run with local estimates of wetland and forest cover. There is large difference in the 318 percent area of three major plant functional types between regional data and site data 319 (Table 2). The site model experiment was run with gap-filled tower observed 320 meteorology, whereas the regional model was run with large-scale gridded meteorology

321 (Climate Research Unit National Center for Environmental Prediction - CRUNCEP). We
 322 ran the model in site and regional modes to assess biases in modeling of regional CH₄
 323 flux.

324 **3. Results**

325 **3.1 Fidelity of very tall tower flux**

326 Methane eddy covariance flux measurements in 2011 and 2012 were 327 successfully made over 68% of the time (Table 3). An additional 13% of all available 328 hours were filtered for low turbulence conditions ($u^* < 0.2 \text{ m s}^{-1}$). Spectral loss from 329 long tube lengths and lag times were nearly identical for NEE CO₂ and NEE CH₄ and 330 similar to earlier results published in Berger et al. (2001). Flux observations sampled a 331 footprint (Fig. 1) with an average fetch in any one direction of 1-4 km and sampled all 332 wind sectors. The relatively self-similar pattern of wetlands and forests in the fetch 333 allowed for a "homogenous" sampling of diverse upland and lowland ecosystems 334 around the tower. However, given the lower amount of wetland in the immediate 335 vicinity of the tower compared to the larger region, the 2011 footprint climatology showed an average wetland sampling of 17%, with forests at 70%, and other covers 336 337 (grass, water, roads, shrubs) at 13%. Daytime and nighttime footprints were similar, 338 except for slightly enhanced contribution of the ~ 100 m diameter grassy clearing 339 surrounding the tower during the daytime.

Flux observations of methane had turbulent behavior quite similar to CO₂. WPL correction for water vapor dilution was found to be modestly important for NEE CH₄ from closed path analyzers (Fig. 2). WPL corrected NEE CH₄ was on average 1.2% larger than uncorrected. We also tested whether a WPL correction was similar to the direct

dry air mixing ratio flux calculation. Over a one month period, H₂O mixing ratio
observations were synced in time and used to directly compute dry mole fraction CH₄ at
10 Hz. Our results showed strong correlation and low bias, but on average, the direct
dry-air NEE CH₄ were 1.6% larger than WPL-corrected flux, or overall nearly 3% larger
than uncorrected NEE CH₄ (Fig. 2).

349 Because methane fluxes at the site were small, random turbulent uncertainty 350 could be a significant component. Our application of the Salesky et al. (2012) method 351 revealed a baseline uncertainty (level of detection) of NEE CH₄ to be 0.13 nmol CH₄ m⁻² 352 s⁻¹ at the hourly scale and 0.42 mg C-CH₄ m⁻² day⁻¹ at the daily scale. Over the two year study period, 2.2% of hours had a NEE CH₄ magnitude below that amount, though 353 354 15.2% of daily NEE CH₄ was below the daily threshold, primarily during the winter. 355 Average uncertainty was 20% for hourly fluxes and 12% for daily fluxes (Fig. 3). 356 However, at the hourly or daily scale, uncertainty only weakly scales with flux 357 magnitude. These uncertainty estimates were propagated in estimates of total annual 358 flux, as discussed below.

359 For very tall tower measurements, the contribution of below sensor height 360 storage flux can be significant for all fluxes with strong surface sources or sinks, 361 especially at night (Fig. S1). Storage flux magnitude contributed a median of 48% of the 362 total NEE CH₄ magnitude around noon, but 75% of the nighttime NEE CH₄ at the hourly 363 scale. Storage flux declines to zero as averaging timescale increases. Nonetheless, this 364 flux cannot be neglected for hourly to daily NEE CH₄ observations from very tall towers, 365 especially at night. For NEE CO₂ and NEE CH₄, storage flux is on the same order as eddy 366 flux at night, though the largest magnitude contribution of storage flux occurs shortly 367 after sunrise, when flushing of accumulated nighttime CO₂ or CH₄ near the surface leads 368 to a strong negative storage flux, which quickly declines to zero by solar noon. However,

for CH₄, this peak occurs roughly 1-2 hours later than for CO₂, and the decline to zero is more gradual and also shifted by a similar amount. Further, in the morning during the growing season, flux and storage terms for NEE CO₂ are the same sign (negative), while for NEE CH₄, they are opposite signs (positive for eddy flux, negative for storage), leading to a possibly greater source of error for diurnal fluxes of NEE CH₄, especially if storage and eddy fluxes have differing source area contribution. For daily NEE, this effect is negligible as average daily storage flux for CH₄ is < 4% of daily NEE CH₄.

376 **3.2 Comparison to plot-level chamber observation**

377 Plot level chamber methane fluxes (Fig. 4a) reveal significant within and across 378 site differences in collar-averaged daytime CH₄ fluxes across the four wetland (193 379 measurements) and three upland forest study sites (152 measurements) in the region. 380 Tower observed daytime growing-season NEE CH₄ have efflux rates that bracket the 381 static chamber observations, with most tower observations occurring in-between the 382 largest and smallest wetland flux observations. Tower maximum efflux rates do not 383 generally exceed those observed at the high CH₄ emission sedge site, where plant-384 mediated pathways and high proportion of labile carbon likely facilitated CH₄ flux. 385 Chamber CH₄ exchange from wetland or upland forest sites had significantly different 386 distributions than tower NEE CH₄ (Wilcox Rank-Sum U-Test p<0.001). The average daily efflux of CH₄ from all sampled wetlands was 5.08 +/- 15.3 nmol CH₄ m⁻² s⁻¹ and 387 average forest soil uptake was -1.8 +/- 1.1 nmol CH₄ m⁻² s⁻¹. Tower mean NEE CH4 388 389 averaged over the period corresponding to the earliest and latest sample dates (days of 390 year 100-278) was 3.9 + - 11.2 nmol CH₄ m⁻² s⁻¹. Large negative values of NEE CH₄ 391 observed by the tower were much larger than any observed at chamber sites. The 392 highest magnitude of chamber CH₄ emissions was observed from the groundwater fed

sedge dominated wetland (WF), which promoted plant-mediated transport and waswetter than the other sites.

395 While upscaling is of limited value given the amount of chamber data available, it 396 can provide some estimate of whether the chamber fluxes are representative of the 397 landscape flux. Mean chamber-based upscaled NEE CH₄ was 145 +/- 436 mg C-CH₄ m⁻² 398 s⁻¹ from wetlands and -214 +/- 131 mg C-CH₄ m⁻² s⁻¹ from forests. This amounts to a 399 total upscaled NEE CH₄ of -64 +/- 567 mg C-CH₄ m⁻² s⁻¹, as the forest CH₄ sink essentially 400 cancels out wetland emissions. Tower observations show a net source of 785 +/- 75 mg 401 C-CH₄ m⁻² s⁻¹ observed by the tower. Wetland chamber emissions alone are less than 402 20% of the tower observed source. Caution is required as the chambers were sampled 403 in different years (2005-2006) from the tower (2011-2012). Summer mean 404 temperatures for chamber observations in 2005-2006 were 0.25 °C warmer and 2% 405 wetter on average compared to tower observations in 2011-2012. These findings 406 highlight the need to better delineate wetland type and area, peat depth, edge effects, 407 and decomposability for accurate upscaling.

408 **3.3 Seasonal and interannual patterns of carbon fluxes**

409 Patterns of daily CH₄ (Fig. 5a), CO₂ (Fig. 5b) fluxes and inferred GPP (Fig. 5c) and 410 Reco (Fig. 5d) at the site showed seasonal patterns typical of temperature-limited 411 temperate mixed forest regions. NEE of CO₂ and CH₄ were generally negatively 412 correlated at a monthly scale (Table 4). Peak uptake of NEE CO₂ was in early to mid-413 summer, while NEE CH₄ showed higher daily variability and lacked a distinct early-mid 414 summer peak. Patterns of NEE for CO₂ and CH₄ were similar in both years, but 2012 415 featured both an earlier growing season start and a pronounced drought in the mid-416 summer (Jul-Sep) (Fig. 6c). While drier in the growing season, the earlier green-up led

to higher GPP in 2012 for most of the growing season (Fig. 5c), and higher R_{eco} from
mid-summer onward. The period of high ecosystem respiration was not directly related
to any reduction of CH₄ emissions, a feature only apparent at the annual scale. Both
years had growing seasons (May-Sept) that were 10-28% drier and 0.4-0.8°C warmer
than the long-term (1995-2013) average.

422 NEE CH₄ exhibited periods in both the winter and growing season of high 423 emissions relative to the average for the time period (Fig. 5a). These "bursts" were primarily generated in the turbulent flux term, were more common and prominent for 424 425 CH₄ than CO₂, were skewed in the positive direction, and were not coincident with excursions in NEE CO₂, nor were they consistently co-occurring with large pressure or 426 427 turbulence changes or any known fossil-fuel CH₄ sources. These high emission days in 428 summer also exhibited relatively high turbulent flux uncertainty and were more 429 pronounced in 2011 than 2012. NEE CH₄ hourly bursts that exceed two standard 430 deviations from a background seven-day average over the measurement period 431 occurred only 6% of the time, but they contributed nearly a quarter of the absolute flux, 432 which adds a further challenge to gap-filling, which in our current version cannot 433 capture these events. Unfortunately, during the anomalously warm early spring of 2012, 434 CH₄ flux observations were not available. Spectral analyses of the modes of variability 435 for gap-filled NEE CO₂ and NEE CH₄ from 2011-2012 show that the contribution of 436 timescale to NEE CH₄ is relatively similar to NEE CO₂, though NEE CH₄ scale has reduced 437 contribution of variation from the monthly (20-30 day) scale and greater contribution 438 at the seasonal (> 100 day) scale (Fig. 7b).

Overall, annual NEE CH₄ from the region is relatively small in magnitude, on
average 1.1% of the NEE CO₂ by mole or mass fraction (Table 3). Cumulative NEE CH₄
(Fig. 7a) in the two years averaged 785 +/- 75 mg C m⁻² yr⁻¹ while NEE of CO₂ was -157 g

C m⁻² yr⁻¹. CH₄ fluxes were lower in 2012, though just outside the uncertainty bounds
arising from both gap-filling and flux random uncertainty. In 2012, CH₄ fluxes appear to
be suppressed in the early to mid-growing season in slightly warmer, but wetter
conditions compared to the previous year, though the presence of gaps in part of this
period complicates the analysis. The remaining part of the growing season has a similar
pattern of net emissions as the prior year (Fig. 5).

The shifts in R_{eco} and CH₄ NEE in 2012 were likely related to the 1.3 °C higher annual air temperature in 2012 and lack of precipitation in late July through August in 2012 (Table 3). Warmer air temperatures in 2012 led to a very early growing season, and a quasi-stationary ridge of high pressure promoted longer periods of dry, warm conditions in summer 2012. While the reduction in precipitation is not particularly large, there was a significant change in timing of precipitation (Fig. 6c), depressing 2012 soil moisture through the late summer and fall (Fig. 6d).

455 Interannual variability of CH₄ flux between the two years is 32% of the mean flux, 456 slightly larger than variability in GPP (29%) and Reco (28%), but different than for NEE CO₂ fluxes over this time (54%), as the longer growing season (increased GPP) in 2012 457 458 more than offset the warmer, drier conditions in the same year (increased R_{eco}). The 459 consequence of the longer growing season and warmer conditions was that GPP 460 increased by 35%, while Reco increased by 32% between 2011 and 2012, whereas 461 annual CH₄ fluxes declined by 28%. Interannual variability in prior years for CO₂ NEE 462 has been larger. The range of annual CO₂ fluxes measured from 1996-2012 exceeded 296 g C m⁻² yr⁻¹ (Desai, 2014), as the site has shifted from being a net source of CO_2 to a 463 464 net sink in some years.

465 **3.4 Growing season diurnal patterns**

466 Diel patterns for methane are particularly unique showing an early to mid-467 morning negative peak in CH₄ fluxes in contrast to a late morning peak for NEE CO₂, and 468 near noon peak for GPP, and afternoon peak for Reco (Fig. 8), as the latter two follow 469 patterns of PAR and air temperature. Methane reaches a minimum between 8-10 local 470 time (LST), but the minima shifts earlier in 2012, and variability in diurnal pattern is 471 large. While the relative change in hourly NEE was small between 2011 and 2012, there are distinguishable changes in R_{eco} and GPP which were large and compensating. For 472 473 CH₄, a decrease in NEE CH₄ from 2011 to 2012 is seen in the average for all hours, but 474 variability in this mean is large. There is, however, a decrease in variability around the 475 mean in 2012 compared to 2011, perhaps reflecting the changes in areal coverage of 476 inundated areas contributing episodic methane emissions, given lower soil moisture as 477 a result of decreased late summer precipitation in 2012.

478 **3.5 Environmental controls on regional methane flux**

479 Variations in CO₂ NEE are typically well described by variations in PAR and 480 temperature at the hourly scale (Desai, 2014), but these correlations were only 481 apparent for CH₄ when averaged at daily to weekly time scales (Table 4). Correlation of 482 NEE CH₄ to NEE CO₂ is significant and negative, but weaker in effect size than for PAR 483 and T. Further, at monthly timescales, the correlation for NEE CH₄ is greatest for R_{eco} 484 and GPP. Interestingly, this relationship with Reco is positive, implying that greater Reco is associated with greater emissions of CH₄ in the region. However, this relationship 485 does not hold at the interannual scale, where increased Reco in 2012 is accompanied by 486 487 decreased NEE CH₄ (Table 3).

488 It is likely that the positive correlation of R_{eco} and NEE CH₄ at the shorter time 489 scales primarily reflects the exponential nature of these processes with respect to 490 temperature (Fig. 9). Scatterplots of NEE CH₄ versus temperature and GPP are only 491 weakly correlated at the hourly scale, partly owing to the high uncertainty of NEE CH₄. 492 For daily average NEE CH₄, a linear relationship to GPP and exponential relationship to 493 temperature are more apparent. For the exponential relationship to temperature, daily 494 NEE CH₄ is relatively insensitive for air temperature of 0-15 °C, followed by a large 495 increase in emissions with higher temperature (Fig. 9d). Regionally, it appears at short 496 timescales, that CH₄ production and its relationship to temperature dominates any 497 increase in longer-timescale changes in CH₄ oxidation that would occur with the lower 498 soil moisture that co-occurs with high temperature.

499 **3.6 Comparison to ecosystem models**

500 The DLEM model output of daily NEE CH₄ for the region (only available in 2011) 501 and site (2011-2012) reveals similar seasonal patterns to the very tall tower 502 observations, but several discrepancies exist (Fig. 10). First, the regional model, run 503 with an estimate of land-cover based on a continental gridded map, generated CH₄ 504 emissions significantly larger than observed NEE CH₄, likely owing to the larger 505 estimation of wetland area fraction in the regional model (Table 2). It also resulted in 506 CH₄ emissions earlier in the spring and later in the autumn compared to observations. 507 The site level run, using local estimates of wetland extent and local meteorology, had 508 seasonal magnitudes much more in line with the tower. The site model still 509 overestimated CH₄ emissions in the autumn. Further, the site model showed very little 510 interannual variability, while the observations clearly showed a mid to late summer 511 suppression of CH₄ emissions in 2012, likely in response to the lack of precipitation in

this time period. Finally, both models tended to have relatively modest sub-weekly
variability in CH₄ emissions, while observations showed much larger day-to-day and
monthly variation.

515 4. Discussion

516 4.1 Uncertainty of regional CH₄ flux

517 Our analysis confirms that current generation closed path methane analyzers 518 can reliably measure CH₄ fluxes, even in regions of small flux magnitude, as long as high-519 frequency spectral corrections were applied, confirming recent cross-comparison 520 studies (e.g., Iwata et al., 2014). WPL water vapor dilution corrections were more 521 important for CH₄ than CO₂ given the two orders of magnitude smaller concentration of 522 CH₄ than CO₂ in air. Still, even with long tube lengths, CH₄ fluxes could be measured 523 reasonably to $\sim 20\%$ accuracy at the hourly scale, similar to results shown in recently 524 published papers on methane eddy covariance (Detto *et al.*, 2011; Smeets *et al.*, 2009). 525 Both large positive and negative short-term CH₄ pulses appear to be real, but could arise 526 from either ecosystem processes or vertical flux transport.

527 A bigger challenge in quantifying net CH₄ ecosystem exchange appears to be 528 finding an adequate gap-filling strategy, as relationships of CH₄ flux at the hourly scale 529 to meteorological drivers have far greater variability than for CO₂. New approaches 530 using artificial neural networks have shown promise (Dengel et al., 2013; Hatala et al., 531 2012), but a standard community approach to gap-filling has not been identified. 532 Chamber flux measurements are also subject to measurement bias and 533 uncertainty and also from sampling bias. Static chambers and soil gradient techniques 534 have known biases and require averaging over large space and time scales to best fit

535 models (Levy et al., 2012), complicating most former and more elaborate upscaling 536 attempts in other regions (Hendriks et al., 2010; Schrier-Uijl et al., 2010). Wetland 537 measurement is particularly difficult as the placement of the chamber and soil 538 compaction during the measurement process by fieldwork can influence the flux. While 539 a recent intercomparison study showed that seasonal variations and magnitudes of 540 chamber fluxes agree well to stand-level eddy covariance observations of NEE CH₄ (Yu 541 *et al.*, 2013), upscaling these plot and stand level observations to the region is not 542 straightforward, as high spatial heterogeneity complicates sampling strategies. Further, 543 since production, consumption, and oxidation responses of CH₄ to climate are non-544 linear, extrapolating flux sensitivity from spatial variations across sites does not 545 necessarily lead to the same conclusions about CH₄ drivers as temporal variation within 546 sites (Sabrekov et al., 2014).

547 Finally, estimates of scaled fluxes are highly sensitive to estimate of wetland and 548 forest extent in the case of chambers and for temporal variation of these within the flux 549 footprint for towers. Our chamber estimates argue that the small forest CH₄ sink 550 overwhelms wetland CH₄ emission mainly because forests have a much larger spatial 551 extent. Additionally, drier conditions in 2005-2006 compared to 2011-2012 may have 552 decreased wetland CH₄ production. It could also be the case that higher CH₄ estimate 553 from the flux tower suggests that chambers did not adequately sample high sources of 554 wetland CH₄ emission or over-estimated the forest CH₄ sink. For example, upland-555 wetland edges could be particularly dynamic sources of CH₄ production, but are rarely 556 sampled.

The purpose of our upscaling was not to build a defensible NEE CH₄ from
chambers, but to estimate how well plot-scale measurements can sample landscape CH₄
flux. Our approach was necessarily simplistic due to constraints of sampling design.

Other attempts at upscaling based on vegetation maps (e.g. Reeburgh et al. 1998) point
to the importance of capturing landscape CH₄ hotspots, such as wetlands. Within site
and across site variation in CH₄ exchange among fens and bogs is large (Baldocchi *et al.*,
2012), and attempts to find optimal and efficient sampling designs for upscaling are not
at hand.

565 Our results call into question the reliability of extrapolation of CH₄ plot scale flux 566 studies for estimating global natural CH₄ emissions, which is urgently needed given that 567 recent studies have suggested, but not conclusively shown, increases in global wetland 568 CH₄ emissions in the past decade (Spahni *et al.*, 2011).

569 4.2 Magnitude of regional CH₄ flux

Average annual CH₄ efflux was a relatively small 785 +/- 75 mg C-CH₄ m⁻² yr⁻¹, compared to a mean CO₂ sink of -80 g C-CO₂ m⁻² yr⁻¹. The two years showed a 30% shift in CH₄ flux from one year to the next that was detectable outside the bounds of our uncertainty analysis. Regional CH₄ fluxes by eddy covariance also bracketed those observed by chamber fluxes in prior years in wetlands within the tower landscape.

575 Our results are similar qualitatively to the early CH₄ emission work of Shurpali *et* 576 al. (1998), which showed modest CH₄ emissions and lack of strong short-term coupling 577 between CH₄ fluxes and GPP in a Minnesota bog. Overall, our regional observations are 578 about an order of magnitude larger than recently published eddy covariance forest CH₄ 579 flux estimates (Shoemaker et al., 2014) and 1-2 orders of magnitude smaller than a 580 range of CH₄ eddy flux studies in a variety of wetlands, including deltas (Baldocchi et al., 581 2012), rice paddies (Hatala et al., 2012), grazing fields (Herbst et al., 2011), boreal fens 582 (Long et al., 2009; Rinne et al., 2007), peatlands (Pelletier et al., 2007), marshes (Chu et 583 al., 2014), and tundra (Sachs et al., 2008; Tagesson et al., 2012; Wille et al., 2008).

Areas of significant CH₄ emission do occur in the region. For example, recent eddy covariance estimates of NEE CH₄ in a Minnesota fen from 2009-2011 show emissions of 11.8-24.9 g C- CH₄ m⁻² yr⁻¹, a value that amounted to 23-39% of the NEE CO₂ sink (Olson *et al.*, 2013). Similarly, Pypker *et al.* (2013) finds a northern Michigan poor fen with May-Sept emission of 13 g C-CH₄ m⁻² yr⁻¹ and Chu *et al.* (2014) show freshwater marsh emissions of 49.7 g C-CH₄ m⁻² yr⁻¹ and cropland emissions of 2.3 g C-CH₄ m⁻² yr⁻¹ in northern Ohio.

591 Another independent approach to regional NEE CH₄ is the tall tower modified 592 Bowen ratio technique based on assuming similarity in the flux-gradient relationship in profiles of CO₂ and CH₄ concentration (Werner *et al.*, 2003). This method, when applied 593 594 to the very tall tower site, showed average emissions of 2.7 g C-CH₄ m⁻² yr⁻¹ in 1998, 595 which is more than three times the estimate here (Fig. 4b), and with a longer NEE CH₄ 596 emission season (Mar-Oct). However, those results were from 1998, a year that was 597 much warmer (average annual temperature of 7.8°C) than the 2011-2012 average 598 (5.4°C). Further, the similarity approach has known biases during periods of weak 599 vertical gradients of CH₄ or CO₂ and assumption of directly scaling of NEE CH₄ with NEE 600 CO₂, whose correlation is weak at the hourly and daily scale in our study (Table 4). The 601 authors concluded that this region emits 40% less CH₄ than other regions at the same 602 latitude.

Another regional carbon cycling upscaling study in the nearby Northern
Highland State Forest, based on the literature, found a range of 1 to 20 g C-CH₄ m⁻² yr⁻¹
for CH₄ emission, roughly 1-2% of the estimated net carbon uptake in the region, but
nearly 10% of that for wetlands and 10% of that for lake evasion (Buffam *et al.*, 2011).
This estimated range of CH₄ flux was also found to be similar to the amount of carbon
lost from the terrestrial landscape as DOC runoff. While Buffam *et al.* (2011) noted large

609 uncertainty on the CH₄ emission term, our regional observation results are consistent
610 with a value closer to the lower end of the range used.

611 **4.3 Drivers of CH₄ regional net exchange**

612 We were able to discern shifts in annual CH₄ flux arising from shifts in growing 613 season length, air temperature, and late summer drought. The late summer 2012 614 drought was primarily a consequence of shifts in precipitation timing (earlier) instead 615 of total precipitation magnitude. The early start of the growing season, which likely 616 increased transpiration demand, along with the lack of rain in late summer of 2012 617 conceivably suppressed CH₄ production from wetlands in the tower footprint, while 618 simultaneously increasing upland forest soil CH₄ uptake, though no single driver can 619 adequately explain hourly to daily NEE CH₄.

Our results are generally consistent with the numerous site-level studies that have attempted to correlate CH₄ observations to environmental parameters such as water table depth, temperature, vegetation type, CO₂ fixation and respiration rates, atmospheric O₃, and/or microbe/organic matter quality. A review paper by Jungkunst and Fiedler (2007) noted that most studies point to water table and soil temperature as strong controlling factors, and they further note that latitudinal trends suggest that anaerobic and aerobic decomposition are both important in boreal regions.

While the modified Bowen ratio study of Werner *et al.* (2003) showed
precipitation explained a greater fraction of variance in regional NEE CH₄ than
temperature in 1997-1998, our results support temperature as the primary driver at
the monthly to seasonal timescale and precipitation, which may drive the availability of
substrate suitable for anaerobic decomposition, as the most likely explanation for
variation at the interannual scale. Enzyme kinetics of CH₄ production, primarily

633 controlled by temperature, seem to drive most of the daily to seasonal scale variability, 634 with an exponential dependence consistent with a recent report by Durocher *et al.* 635 (2014), Other studies have further confirmed the strong role of temperature for short-636 term CH₄ dynamics (Blodau *et al.*, 2007; Tagesson *et al.*, 2012; Rinne *et al.*, 2007). 637 Hydrology and long-term moisture status appear to be the key controls for 638 seasonal to annual variability (of NEE CH₄, R_{eco} and GPP), consistent with a recent 639 water-table manipulation study by Ballantyne *et al.* (2013). Thus, long-term changes in 640 water table are expected to have a strong impact on wetland CH₄ and CO₂ emission 641 ratios (Davidson and Janssens, 2006). Results at other sites concur that peatlands and tundra systems are particularly sensitive to water availability within the active layer 642 643 (e.g., Hendriks et al., 2007; van Huissteden et al., 2005), and peatland drainage or 644 restoration by flooding strongly influences CH₄ production (Merbold *et al.*, 2009; 645 Turetsky et al., 2008; Waddington and Day, 2007). Long-term declines in water table 646 may lead to soil subsidence, community change, and invasion of upland species (Strack 647 and Waddington, 2007; Sulman *et al.*, 2013), significantly altering CH₄ production and 648 oxidation.

649 Our results do not support net ecosystem photosynthesis (NEE, NPP, or GPP) as 650 the primary controller on CH₄ net flux at the regional scale. The concept of a fixed ratio of GPP, NPP or NEE to CH₄ production or NEE that has been argued based on field 651 652 measurement synthesis and process-based models (Potter et al., 1997; Walter and 653 Heimann, 2000; Whiting and Chanton, 1993) is not apparent in the short term. The 654 ratios of NEE CH₄ to NEE CO₂ observed here (\sim 1%) at the annual timescale fall within 655 values measured in short term experiments (<1-3%; King and Reeburgh, 2002; King et 656 al., 2002; Megonigal et al., 1999). Whiting and Chanton (1993) call net ecosystem 657 production (equivalent to NEE CO_2) the "master variable" in controlling NEE CH_4 ,

suggesting that a fixed 3% of NEE CO₂ is emitted as NEE CH₄. Clearly, even if this holds
to be the case in general, variation around the value can be large and is timescaledependent.

661 King et al. (2002) report on input of new substrate from GPP as a source of CH₄ 662 emission, arguing that increased productivity provides greater labile substrate and 663 increased transport. In contrast, greenhouse studies have shown that CH₄ emissions 664 related to plant type tended to decrease with increasing plant biomass (Kao-Kniffin et 665 al., 2010). While GPP does correlate with NEE CH₄ at our site, much of the correlation 666 appears to be a co-varying effect of temperature on both processes at the seasonal scale. 667 Short-term variations in GPP or NEE CO₂ do not correlate highly with NEE CH₄, as the 668 primary role of production is not to directly promote methanogenesis, but provide 669 substrate, while redox conditions provide conditions favorable for CH₄ production. 670 However, plants can serve as a conduit of CH₄, and thus GPP may be a proxy for plant-671 mediated transport (King et al., 1998; Matthes et al., 2014). However, these results are 672 difficult to interpret regionally, as the primary GPP signal is coming from forests in the 673 flux footprint. Perhaps higher forest GPP implies greater export of carbon to the 674 watershed, providing greater substrate for methanogenesis, which would require 675 monitoring of aquatic and dissolved carbon.

Our results also showed a relatively high amount of short-time scale variation in
NEE CH₄, greater seasonal variation than for CO₂, and an unusual diurnal pattern to CH₄
flux, with minimum fluxes in early to mid-morning. Several studies have argued that
atmospheric pressure changes (Sachs *et al.*, 2008) or shear turbulence (Wille *et al.*,
2008) could drive episodic CH₄ emissions, and perhaps a venting effect (for the diurnal
cycle) and synoptic pressure changes (for the weekly-monthly variation) are leading to
the variation we observed. For example, storage fluxes of CH₄ act in the opposite

direction (negative) to turbulent flux (positive) during the day. It is the strong negativestorage fluxes associated with atmospheric venting that drive the minima.

685 Mastepanov et al. (2008) observed CH₄ bursts before soil freezing in a tundra 686 ecosystem. While our results also show a variety of emission spikes in winter and 687 summer, we have yet to find any particularly strong correlation to barometric pressure, 688 changes in atmospheric pressure, friction velocity magnitude (both above and below 689 the filtering threshold), or other measures of processes that could lead to "pumping" of 690 CH₄ from the soil and snow surface. Initial experimental tests involving melting snow 691 and changing suction pressure with a static chamber did not reveal any significant 692 variation in CH₄ fluxes. Fossil fuel combustion could be a source for CH₄, but the timing 693 of the bursts were not consistent with possible generator or traffic sources, which are 694 quite limited in the flux footprint.

695 Despite the predominance of upland forest in the flux footprint, the site still is a 696 net emitter of CH₄ in both years. Upland plants have not been shown to emit significant 697 quantities of CH₄ in the field (Kirschbaum and Walcroft *et al.*, 2008). Generally, upland 698 soils promote methanotrophs and thus dry soils tend to consume CH₄ (Ullah and Moore, 699 2011). This rate is controlled primarily by diffusion processes in the soil (Ridgwell et al., 700 1999). A recent synthesis of micrometeorological CH₄ emission estimates in forests 701 generally shows net CH₄ sources with an interquartile range of 1.33-5.45 nmol CH₄ m⁻² 702 s⁻¹ (Nicolini *et al.*, 2013). Another review of 120 papers on soil CH₄ consumption found 703 no universal predictive ability of soil consumption by environmental drivers, but 704 showed that coarser soils had the largest CH₄ uptake in temperate forests, with a mean 705 uptake in temperate forests of $428 + - 2360 \text{ mg C} \text{ m}^{-2} \text{ yr}^{-1}$ (Dutaur and Verchot, 2007). 706 This reported uptake is larger than the average observed in our plot-level chamber 707 measurements in upland forests.

708 Our study site did include a few lakes in the landscape, and recent studies have 709 argued that lakes and rivers may be large sources of CH₄ (Bastviken *et al.*, 2011; Buffam 710 et al., 2011; Grossart et al., 2011; Juutinen et al., 2009). Some evidence from chambers 711 also suggests particularly large CH₄ flux variability at wetland-upland edges 712 (unpublished data). Finally, winter emissions have generally been undersampled in 713 most studies (Merbold et al., 2013), given logistical difficulty in measurement and 714 assumption of small CH₄ fluxes. Our results also support limited CH₄ fluxes during 715 periods of frozen soil and inactive vegetation. However, fluxes outside the growing 716 season (May-Sept) still contributed 17% of the net annual flux, averaged over the two 717 years, and thus cannot be neglected.

718 4.4 Recommendations for simulations

719 Demand for quantification of regional CH₄ balances is increasing (Luyssaert *et al.*, 720 2012), and models are ultimately required to move from diagnosis to prediction. While 721 several wetland and CH₄ models exist (Cao et al., 1996; Melton et al. 2013; Petrescu et 722 al., 2008; Potter et al., 1997; Sonnentag et al., 2008; Walter et al., 2001; Zhang et al., 723 2002; Zhuang et al., 2004), many only weakly constrain hydrology, and only a few also 724 include upland CH₄ biogeochemistry. Walter *et al.* (2001) review the most common 725 approach, based on temperature, net primary production, substrate availability, and 726 water table depth and show the importance of hydrologic drivers for latitudinal 727 variation in CH₄ efflux.

Our analysis of the commonly used DLEM model results revealed a general agreement between model and very tall tower observations on seasonal pattern, but lack of correspondence at shorter or longer timescales. Further, the regional model significantly overestimated CH₄ emissions primarily due to differences in wetland

732 extent in the regional (based on a cut-out of a continental model of greenhouse gas 733 fluxes) versus site simulation (based on local meteorology and land cover), a common 734 source of uncertainty for regional to global modeling of NEE CH₄ (Melton *et al.*, 2013). 735 Most models tend to show a strong sensitivity to water table (Petrescu *et al.*, 2007), 736 wetland extent (Ringeval *et al.*, 2010), and vegetation decomposition rate (van 737 Huissteden et al., 2009). Over North America, DLEM shows enhanced CH₄ emissions 738 from increased climate variability, nitrogen deposition, and atmospheric CO₂, with 739 climate variability dominating interannual variability (Tian et al., 2010; Xu et al., 2010). 740 Simple models that rely on a fixed CO₂ uptake to CH₄ emission ratio for a base amount 741 and exponential temperature functions to capture seasonal or short-term variability 742 (Potter *et al.*, 2006), are likely to neglect the importance of variations in water table 743 which can cause a site to shift between CH₄ source and CH₄ sink. Similar to the results 744 here, other models have generally been unsuccessful at capturing short-term variability 745 in CH₄ emissions (Petrescu *et al.*, 2007; Zhang *et al.*, 2012). 746 Wetland extent and methane emission datasets both lead to wide variation in 747 modeled (Melton et al., 2013) and extrapolated (Petrescu et al., 2010) estimates. 748 Further, scaling methane emissions as a function of GPP or NEE, as some models do, is 749 not universal. While some sites show as much as 20% of CO₂ uptake returned as 750 methane emissions on a per mole basis (Rinne et al., 2007), the regional evaluation here

showed only a fraction of a percent.

752 **5. Conclusion**

Our results confirmed the suitability of tall towers for observation of regional
CH₄ fluxes. While mixed forest dominates the landscape and the net CO₂ exchange
budget, wetlands dominate the CH₄ emission budget. However, uncertainty on our very

tall tower flux measurement, owing to random uncertainty, lack of well-established gap
filling protocols, and flux footprint variability all need better quantification in future
studies to better constrain the components of the regional CH₄ budget.

759 The net fluxes over two years showed modest CH₄ emissions in the region, 760 representing less than 1% of NEE CO₂ in a productive mixed forest-wetland landscape. 761 While individual fens or bogs can have large emission rates, as seen in some of our 762 chamber flux observations, the region as a whole may be a minor contributor. We 763 found that the landscape-scale CH₄ fluxes positively correlate with temperature at 764 diurnal to monthly timescales, similar to ecosystem respiration. However, from one 765 year to the next, ecosystem respiration and net CH₄ flux responded in opposite 766 directions, reflecting the shifts in aerobic to anaerobic respiration that occur in 767 wetlands with changes in moisture availability, the availability of organic substrates for 768 decomposition, and the presence of living plants (e.g., sedge species) that can facilitate 769 the exchange of gases between subsoil environments and the atmosphere.

Simple models that scale CH₄ emissions with R_{eco} or NEE of CO₂ are thus both
spatial- and temporal-scale dependent. Interestingly, our results also showed higher
CH₄ fluxes from the tower than simple upscaling based on chambers but lower than flux
tower studies in nearby fens, confirming the relatively high spatial variability of CH₄
fluxes in the landscape. These results are contrary to a general assumption that
chambers and plot-level studies always overestimate CH₄ emissions due to their typical
placement in ecosystems with high CH₄ emission.

The regional flux time series was able to reveal limitations in modeling of shortterm and interannual variability in CH₄ emissions by a dynamic ecosystem model. While temperature and moisture appear to be the strongest controls of CH₄ flux in the region, they have a clear timescale dependence. Our results suggest that models built on (1)

781 temperature for short-term methane emission rate, (2) water table or moisture 782 availability for long-term base emissions amount (or interannual variability), and (3) an 783 estimate of wetland extent are most likely to successfully simulate regional methane 784 fluxes. However, similar to other studies, we find models are unable to simulate short-785 term (sub-daily) variation in CH₄ emissions (Melton *et al.*, 2013). Future work on 786 decomposing the regional fluxes by land cover will further aid in developing 787 appropriate metrics for evaluation of regional-scale simulations of CH₄ cycling. 788 While wetlands and other natural sources of CH₄ are only 15-30% of the global 789 CH₄ budget, they are the largest source of variability and a major source of uncertainty 790 for atmospheric chemistry, air quality, and climate models (Arneth et al., 2010). The 791 vast majority of observational studies of CH₄ emissions are made at the scale of a plot or 792 individual ecosystem. Regional scale studies, like the one conducted here, can provide 793 estimates of CH₄ flux at a scale relevant to model evaluation.

794 Acknowledgments

795 This work was supported by National Science Foundation (NSF) biology 796 directorate grants DEB-0845166 and DBI-1062204. We also acknowledge the 797 contributions of R. Strand and J. Avers at State of Wisconsin Educational 798 Communications Board, K. Davis at The Pennsylvania State University, and P. Bolstad at 799 the University of Minnesota. Static chamber measurements were supported by the 800 USDA Forest Service Northern Global Change program. Jonathan Kofler and Jonathan 801 Williams were funded by NOAA to provide site and CO₂ and CH₄ profile instrument 802 support. This project contributes to the North American Carbon Program. Any use of 803 trade, firm, or product names is for descriptive purposes only and does not imply 804 endorsement by the U.S. Government.

805 Works Cited

- Andrews, A.E., J.D. Kofler, M.E. Trudeau, J. C. Williams, D.H. Neff, *et al.*, 2014. CO₂, CO,
 and CH₄ measurements from tall towers in the NOAA Earth System Research
 Laboratory's Global Greenhouse Gas Reference Network: instrumentation,
 uncertainty analysis, and recommendations for future high-accuracy greenhouse
 gas monitoring efforts. *Atmos. Meas. Tech.*, 7:647-687, doi:10.5194/amt-7-6472014.
- Arneth A., S. Sitch, K. Butterbach-Bahl, A. Bondeau, N. de Noblet-Ducoudré, P. Foster, N.
 Gedney, I.C. Prentice, M. Sanderson, K. Thonicke, R. Wania, and S. Zaehle, 2010.
 From biota to chemistry and climate: Towards a comprehensive description of
 trace gas exchange between the biosphere and
- atmosphere. *Biogeosciences*, 7:121-149.
- Baldocchi, D., M. Detto, O. Sonnentag, J. Verfaillie, Y. A. Teh, W. Silver, and N. M. Kelly,
 2012. The challenges of measuring methane fluxes and concentrations over a
 peatland pasture. *Agricultural and Forest Meteorology*, *153*:177–187,
 doi:10.1016/j.agrformet.2011.04.013.
- Ballantyne, D. M., J. A. Hribljan, T. G. Pypker, and R. A. Chimner, 2013. Long-term water
 table manipulations alter peatland gaseous carbon fluxes in Northern Michigan. *Wetlands Ecol Manage*, 22(1):35–47, doi:10.1007/s11273-013-9320-8.
- Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast, 2011.
 Freshwater Methane Emissions Offset the Continental Carbon Sink. *Science*, 331(6013):50–50, doi:10.1126/science.1196808.
- Bergamaschi, P., C. Frankenberg, J.F. Meirink, M. Krol, F. Dentener, T. Wagner, U. Platt,
 J.O. Kaplan, S. Körner, M. Heimann, E.J. Dlugokencky, and A. Goede, 2007. Satellite
 chartography of atmospheric methane from SCIAMACHY onboard ENVISAT: (II)
 Evaluation based on inverse model simulations. *J. Geophys. Res.*, 112:D02304,
 doi:10.1029/2006JD007268.
- Bergamaschi, P. et al., 2010. Inverse modeling of European CH₄ emissions 2001–2006, *J. Geophys Res*, 115(D22), doi:10.1029/2010JD014180.
- Berger, B.W., K.J. Davis, C. Yi, P.S. Bakwin, and C.L. Zhao, 2001. Long-term carbon dioxide
 fluxes from a very tall tower in a northern forest: Flux measurement
 methodology. J. Atmos. Ocean. Tech., 18(4):529-542.
- Billesbach, D. P., 2011. Estimating uncertainties in individual eddy covariance flux
 measurements: A comparison of methods and a proposed new method.
 Agricultural and Forest Meteorology, 151(3):394–405,
- 840 doi:10.1016/j.agrformet.2010.12.001.
- Blodau, C., N. Roulet, T. Heitmann, H. Stewart, J. Beer, P. LaFleur, and T.R. Moore, 2007.
 Belowground carbon turnover in a temperate ombrotrophic bog. *Global Biogeochem. Cycles*, 21:GB1021, doi:10.1029/2005GB002659.
- Bloom, A. A., P. I. Palmer, A. Fraser, D. S. Reay, and C. Frankenberg, 2010. Large-Scale
 controls of methanogenesis inferred from methane and gravity spaceborne data. *Science*, 327(5963):322–325, doi:10.1126/science.1175176.
- Bousquet, P., P. Ciais, J.B. Miller, E.J. Dlugokencky, D.A. Hauglustaine, C. Prigent, G.R. Van
 der Werf, P. Peylin, E.-G. Brunke, C. Carouge, R.L. Langenfelds, J. Lathiere, F. Papa,
 M. Ramonet, M. Schmidt, L.P. Steele, S.C. Tyler, and J. White, 2006. Contribution of
 anthropogenic and natural sources to atmospheric methane variability. *Nature*,
 443(28):429-443.

852 Buffam, I., M.G. Turner, A.R. Desai, P. Hanson, J. Rusak, N.R. Lottig, E.H. Stanley, and S.R. 853 Carpenter, 2011. Integrating aquatic and terrestrial components to construct a 854 complete carbon budget for a north temperate lake district. *Global Change* 855 *Biology*, 17(2):1193-1211, doi:10.1111/j.1365-2486.2010.02313.x. 856 Cao, M., S. Marshall, and K. Gregson. 1996. Global carbon exchange and methane 857 emissions from natural wetlands: Application of a process-based model. J. 858 Geophys. Res., D101:14399-14414. 859 Chen, Y.-H. and R.G. Prinn, 2006. Estimation of atmospheric methane emissions between 860 1996 and 2001 using a three-dimensional global chemical transport model. *J.* 861 *Geophys. Res.*, 111:D10307, doi:10.1029/2005JD006058. 862 Chu, H., J. Chen, J. F. Gottgens, Z. Ouyang, R. John, K. Czajkowski, and R. Becker, 2014. Net 863 ecosystem methane and carbon dioxide exchanges in a Lake Erie coastal marsh 864 and a nearby cropland. J. Geophys. Res. Biogeosci., 119, 865 doi:10.1002/2013JG002520. Collins, W. D. et al., 2006. Radiative forcing by well-mixed greenhouse gases: Estimates 866 867 from climate models in the Intergovernmental Panel on Climate Change (IPCC) 868 Fourth Assessment Report (AR4). J. Geophys Res, 111:D14, 869 doi:10.1029/2005JD006713. Crill, P., K. Bartlett, and N. Roulet, 1993. Methane flux from boreal peatlands. Suo, 870 871 43:173-182. 872 Davidson, E.A. and I.A. Janssens, Temperature sensitivity of soil carbon decomposition 873 and feedbacks to climate. *Nature*, 440:165-173, doi::10.1038/nature04514. 874 Davis, K.J., P.S. Bakwin, C. Yi, B.W. Berger, C. Zhao, R.M. Teclaw, and J.G. Isebrands. 2003. 875 The annual cycles of CO_2 and H_2O exchange over a northern mixed forest as 876 observed from a very tall tower. *Global Change Biology*, 9(9):1278-1293. 877 Dengel, S., D. Zona, T. Sachs, M. Aurela, M. Jammet, F. J. W. Parmentier, W. Oechel, and T. 878 Vesala, 2013. Testing the applicability of neural networks as a gap-filling method 879 using CH₄ flux data from high latitude wetlands. *Biogeosciences*, 10(12):8185-880 8200, doi:10.5194/bg-10-8185-2013. Desai, A.R., Bolstad, P.V., Cook, B.D., Davis, K.J., and Carey, E.V. 2005. Comparing net 881 882 ecosystem exchange of carbon dioxide between an old-growth and mature forest 883 in the upper midwest, USA. Agriculture and Forest Meteorology, 128:33-55. 884 Desai, A.R., A.N. Noormets, P.V. Bolstad, J. Chen, B.D. Cook, B.D., K.J. Davis, K.J., E.S. 885 Euskirchen, C.M. Gough, J.G. Martin, D.M. Ricciuto, H.P. Schmid, J.W. Tang, and W. 886 Wang, 2008a. Influence of vegetation and seasonal forcing on carbon dioxide 887 fluxes across the Upper Midwest, USA: Implications for regional scaling. 888 Agricultural and Forest Meteorology, 148(2):288-889 308, doi:10.1016/j.agrformet.2007.08.001 890 Desai, A.R., A.D. Richardson, A.M. Moffat, J. Kattge, D.Y. Hollinger, A. Barr, E. Falge, A. 891 Noormets, D. Papale, M. Reichstein, and V.J. Stauch, 2008b. Cross site evaluation of eddy covariance GPP and RE decomposition techniques. Agricultural and 892 893 *Forest Meteorology*, 148(6-7): 821-838, doi:10.1016/j.agrformet.2007.11.012. 894 Desai, A.R., 2014. Influence and predictive capacity of climate anomalies on daily to 895 decadal extremes in canopy photosynthesis. Photosynthesis Research, 119, 31-896 47,doi:10.1007/s11120-013-9925-z. 897 Detto, M., J. Verfaillie, F. Anderson, L. Xu, and D. Baldocchi, 2011. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy 898 899 covariance method. Agricultural and Forest Meteorology, 151(10):1312–1324, 900 doi:10.1016/j.agrformet.2011.05.014.

- 901 Dlugokencky, E. J. *et al.*, 2009. Observational constraints on recent increases in the
 902 atmospheric CH₄ burden. *Geophys. Res. Lett*, 36(18):1–5,
 903 doi:10.1029/2009GL039780.
- Yvon-Durocher, G., A. P. Allen, D. Bastviken, R. Conrad, C. Gudasz, A. St-Pierre, N. ThanhDuc, and P. A. del Giorgio, 2014. Methane fluxes show consistent temperature
 dependence across microbial to ecosystem scales. *Nature*, 507:488-491,
 doi:10.1038/nature13164.
- Dutaur, L., and L. Verchot, 2007. A global inventory of the soil CH₄ sink. *Global Biogeochem. Cycles*, 21:GB4013, doi:10.1029/2006GB002734.
- Eugster, W., and P. Plüss, 2010. A fault-tolerant eddy covariance system for measuring
 CH₄ fluxes. *Agricultural and Forest Meteorology*, *150*(6):841–851,
 doi:10.1016/j.agrformet.2009.12.008.
- Fowler, D., K.J. Hargreaves, U. Sibka, R. Milne, M.S. Zahinser, J.B. Monrieff, I.J. Beverland,
 M.W. Gallagher, P. Ineson, J. Garland, and C. Johnson, 1995. Measurements of CH₄
 and N₂O fluxes at the landscape scape using micrometeorological methods. *Philosophical Transactions: Physical Sciences and Engineering*, 351(1696) 339356.
- Friborg, T., T. R. Christensen, B. U. Hansen, C. Nordstrom, and H. Sogaard, 2000. Trace
 gas exchange in a high arctic valley. 2. Landscape CH₄ fluxes measured and
 modelled using eddy correlation data. *Global Biogeochem. Cycles*, 14:715-724.
- Friborg, T., H. Soegaard, T. R. Christensen, C. R. Lloyd, and N. S. Panikov, 2003. Siberian
 wetlands: Where a sink is a source. *Geophys. Res. Lett.*, 30(21):2129,
 doi:2003GL017797.
- Grossart, H.-P., K. Frindte, C. Dziallas, W. Eckert, and K. W. Tang, 2011. Microbial
 methane production in oxygenated water column of an oligotrophic lake. *Proceedings of the National Academy of Sciences*, 108(49):19657–19661,
 doi:10.1073/pnas.1110716108.
- Hargreaves, K.J., D Fowler, C.E.R. Pitcairn, and M. Aurela, 2001. Annual methane
 emission from Finnish mires estimated from eddy covariance campaign
 measurements. *Theoretical and Applied Climatology*, 70:203-213.
- Hatala, J. A., M. Detto, O. Sonnentag, S. J. Deverel, J. Verfaillie, and D. D. Baldocchi, 2012.
 Greenhouse gas (CO₂, CH₄, H₂O) fluxes from drained and flooded agricultural
 peatlands in the Sacramento-San Joaquin Delta. *Agriculture, Ecosystems & Environment, 150*:1–18, doi:10.1016/j.agee.2012.01.009.
- Hendriks, D. M. D., J. van Huissteden, A.J. Dolman, and M.K. van der Molen, 2007. The full
 greenhouse gas balance of an abandoned peat meadow. *Biogeosciences*, 4:411424, doi:10.5194/bg-4-411-2007.
- Hendriks, D.M.D., A. J. Dolman, M. K. van der Molen, and J. van Huissteden, 2008. A
 compact and stable eddy covariance set-up for methane measurements using offaxis integrated cavity output spectroscopy. *Atmos. Chem. Phys.*, 8:431-443,
 doi:10.5194/acp-8-431-2008.
- Hendriks, D. M. D., J. V. Huissteden, and A. J. Dolman, 2010. Multi-technique assessment
 of spatial and temporal variability of methane fluxes in a peat meadow. *Agricultural and Forest Meteorology*, 150(6):757–774,
 doi:10.1016/j.agrformet.2009.06.017
- 945 doi:10.1016/j.agrformet.2009.06.017.
- Herbst, M., T. Friborg, R. Ringgaard, and H. Soegaard, 2011. Interpreting the variations
 in atmospheric methane fluxes observed above a restored wetland. *Agricultural and Forest Meteorology*, *151*(7):841–853, doi:10.1016/j.agrformet.2011.02.002.

- Hiller, R. V., C. Zellweger, A. Knohl, and W. Eugster, 2012. Flux correction for closed-path
 laser spectrometers without internal water vapor measurements. *Atmos. Meas. Tech. Discuss.*, 5(1), 351–384, doi:10.5194/amtd-5-351-2012.
- Iwata, H., Y. Kosugi, K. Ono, M. Mano, A. Sakabe, A. Miyata, and K. Takahashi, 2014.
 Cross-validation of open-path and closed-path eddy-covariance techniques for
 observing methane fluxes. *Boundary-Layer Meteorol*, 151(1):95–118,
 doi:10.1007/s10546-013-9890-2.
- Jungkunst, H.F. and S. Fiedler, 2007. Latitudinal differentiated water table control of
 carbon dioxide, methane and nitrous oxide fluxes from hydromorphic soils:
 feedbacks to climate change. *Global Change Biology*, 13:2668–2683, doi:
 10.1111/j.1365-2486.2007.01459.x.
- Juutinen, S., M. Rantakari, P. Kortelainen, J.T. Huttunen, T. Larmola, J. Alm, J. Silvola, and
 P.J. Martikainen, 2009. Methane dynamics in different boreal lake types.
 Biogeosciences, 6:209-223, doi:10.5194/bg-6-209-2009.
- Kao-Kniffin, J., D. S. Freyre, and T. C. Balser, 2010. Methane dynamics across wetland
 plant species. *Aquatic Botany*, 93:107–113, doi:10.1016/j.aquabot.2010.03.009.
- Kim, J., S.B. Verma, and D.P. Billesbach, 1998. Seasonal variation in methane emission
 from a temperate Phragmites-dominated marsh: effect of growth stage and plant
 mediated transport. *Global Change Biol.*, 5:433–440.
- King, J. Y., and W. S. Reeburgh, A pulse-labeling experiment to determine the
 contribution of recent plant photosynthates to net methane emission in arctic
 wet sedge tundra, *Soil Biol. Biochem.*, 34, 173–180, 2002
- King J. Y., Reeburgh W. S., and Regli S. K., 1998. Methane emission and tranport by
 sedges in Alaska: results of a vegetation removal experiment. J Geophys. Res. 102,
 29083 29092.
- King, J.Y., W.S. Reeburgh, K.K. Thieler, G.W. Kling, W.M. Loya, L.C. Johnson, and K.J.
 Nadelhoffer, 2002. Pulse-labeling studies of carbon cycling in Arctic tundra
 ecosystems: The contribution of photosynthates to methane emission. *Global Biogeochem. Cycles*, 16(4):1062, doi: 10.1029/2001GB001456.
- Kirschbaum, M. U. F. and A. Walcroft, A., 2008. No detectable aerobic methane efflux
 from plant material, nor from adsorption/desorption processes. *Biogeosciences*,
 5:1551-1558, doi:10.5194/bg-5-1551-2008.
- Kroon, P., A. Hensen, H. Jonker, M. Zahniser, W. Van't Veen, and A. Vermeulen (2007),
 Suitability of quantum cascade laser spectroscopy for CH₄ and N₂O eddy
 covariance flux measurements, *Biogeosciences*, 4:715-728, doi:10.5194/bg-4-715-2007.
- Kroon, P.S., A. Hensen, H.J.J. Jonker, H.G. Ouwersloot, A.T. Vermeulen, and F.C. Bosveld
 (2010), Uncertainties in eddy covariance flux measurements assessed from CH₄
 and N20 observations, *Agric. Forest Meteorol.*, 150(6):806-816,
 doi:10.1016/j.agrformet.2009.08.008
- Levy, P. E. et al., 2012. Methane emissions from soils: synthesis and analysis of a large
 UK data set. *Global Change Biol*, *18*(5):1657–1669, doi:10.1111/j.13652486.2011.02616.x.
- Liu, M., H. Tian, Q. Yang, J. Yang, X. Song, S. E. Lohrenz, and W.-J. Cai, 2013. Long-term
 trends in evapotranspiration and runoff over the drainage basins of the Gulf of
 Mexico during 1901–2008. *Water Resour. Res.*, 49:1988–2012,
 doi:10.1002/wrcr.20180.

- Long, K. D., L. B. Flanahan, and T. Cai, 2009. Diurnal and seasonal variation in methane
 emissions in a northern Canadian peatland measured by eddy covariance. *Global Change Biol*, 16:2420-2435, doi:10.1111/j.1365-2486.2009.02083.x.
- Luyssaert, S. et al., 2012. The European land and inland water CO₂, CO, CH₄ and N₂O
 balance between 2001 and 2005. *Biogeosciences*, 9(8):3357–3380,
 doi:10.5194/bg-9-3357-2012.
- Mastepanov, M., C. Sigsgaard, E. J. Dlugokencky, S. Houweling, L. Ström, M. P. Tamstorf,
 and T. R. Christensen, 2008. Large tundra methane burst during onset of freezing.
 Nature, 456(7222):628–630, doi:10.1038/nature07464.
- Matthes, J. H., C. Sturtevant, J. Verfaillie, S. Knox, and D. Baldocchi, 2014. Parsing the
 variability in CH₄ flux at a spatially heterogeneous wetland: Integrating multiple
 eddy covariance towers with high-resolution flux footprint analysis. *J. Geophys. Res. Biogeosci.*, 119:1322–1339, doi:10.1002/2014JG002642.
- Matthews, E., and I. Fung, 1987. Methane emissions from natural wetlands: Global
 distribution, area, and environmental characteristics of sources. *Global Biogeochem. Cycles*, 1:61-86, doi:10.1029/GB001i001p00061.
- McDermitt D., G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G.
 Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, 2011. A new low-power,
 open-path instrument for measuring methane flux by eddy covariance. *Appl Phys*B 102:391–405.
- Megonigal, J. P., S. C. Whalen, D. T. Tissue, B. D. Bovard, D. B. Albert, and A. S. Allen, A
 plant-soil-atmosphere microcosm for tracing radio- carbon from photosynthesis
 through methanogenesis, *Soil Sci. Soc. Am. J.*, 63, 665–671, 1999
- Melton, J.R., R. Wania, E.L. Hodson, B. Poulter, B. Ringeval, et al., 2013. Present state of
 global wetland extent and wetland methane modelling: conclusions from a
 model inter-comparison project (WETCHIMP). *Biogeosciences*, 10, 753-788,
 doi:10.5194/bg-10-753-2013.
- Merbold, L., W. L. Kutsch, C. Corradi, O. Kolle, C. Rebmann, P. C. Stoy, S. A. Zimov, and E.D. Schulze, 2009. Artificial drainage and associated carbon fluxes (CO₂/CH₄) in a
 tundra ecosystem. *Global Change Biol*, *15*(11):2599–2614, doi:10.1111/j.13652486.2009.01962.x.
- Merbold, L., C. Steinlin, and F. Hagedorn, F., 2013. Winter greenhouse gas fluxes (CO₂,
 CH₄ and N₂O) from a subalpine grassland. *Biogeosciences*, 10:3185-3203,
 doi:10.5194/bg-10-3185-2013.
- Mikaloff Fletcher, S. E., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann, 2004.
 CH₄ sources estimated from atmospheric observations of CH₄ and its 13C/12C
 isotopic ratios:2. Inverse modeling of CH₄ fluxes from geographical regions.
 Global Biogeochem. Cycles, 18(GB4005): doi:10.1029/2004GB002224.
- Miller, S.M., Wofsy, S.C., Michalak, A.M., Kort, E.A., Andrews, A.E., et al., 2013.
 Anthropogenic emissions of methane in the United States. *Proc. Nat'l Acad. Sci.*, 110:20018–20022, doi:10.1073/pnas.1314392110.
- Nicolini, G., S. Castaldi, G. Fratini, and R. Valentini, 2013. A literature overview of
 micrometeorological CH₄ and N₂O flux measurements in terrestrial ecosystems.
 Atmospheric Environment. 81:311-319.doi:10.1016/j.atmosenv.2013.09.030.

Olson, D. M., T. J. Griffis, A. Noormets, R. Kolka, and J. Chen, 2013. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. *J. Geophys. Res. Biogeosci.*, *118*(1):226–238, doi:10.1002/jgrg.20031.

1044	Pelletier, L., T. R. Moore, N.T. Roulet, M. Garneau, and V. Beaulieu-Audy, 2007. Methane
1045	fluxes from three peatlands in the La Grande Rivière watershed, James Bay
1046	lowland, Canada. <i>J. Geophys. Res.</i> , 112(G01018): doi:10.1029/2006JG000216.
1047	Petrescu, A. M. R., J. van Huissteden, M. Jackowicz-Korczynski, A. Yurova, T. R.
1048	Christensen, P. M. Crill, K. Bäckstrand, and T. C. Maximov, 2007. Modelling
1049	CH ₄ emissions from arctic wetlands: Effects of hydrological
1050	parameterization. <i>Biogeosciences</i> , 5:111–121, doi:10.5194/bg-5-111-2008.
1051	Petrescu, A.M.R., I. van Huissteden, M. Jackowicz-Korczynski, A. Yurova, T. R.
1052	Christensen, P. M. Crill, K. Backstrand, and T. C. Maximov, 2008, Modelling CH4
1053	emissions from arctic wetlands: effects of hydrological parameterization.
1054	Biogeosciences. 5: 111–121.
1055	Petrescu, A. M. R. L. P. H. van Beek, I. van Huissteden, C. Prigent, T. Sachs, C. A. R. Corradi.
1056	F. L.W. Parmentier, and A. I. Dolman. 2010. Modeling regional to global CH ₄
1057	emissions of horeal and arctic wetlands <i>Global Biogeochem Cycles</i>
1058	24(4):GB4009 doi:10.1029/2009GB003610
1059	Potter C S 1997 An ecosystem simulation model for methane production and emission
1060	from wetlands Clobal Biogeochem Cycles 11:495–506
1060	Potter CS S Klooster S Hiatt M Fladeland V Genovese and P Gross 2006 Methane
1062	emissions from natural wetlands in the United States: Satellite-derived
1062	estimation based on ecosystem carbon cycling Farth Interactions 10(22):1-11
1064	Pynker T G P A Moore I M Waddington I A Hriblian and R C Chimner 2013
1065	Shifting environmental controls on CH ₄ fluxes in a sub-horeal neatland
1065	Biogeosciences 10(12):7971_7981 doi:10.5194/bg-10-7971-2013
1067	Reeburgh W S I V King S K Regli C W Kling N A Auerbach and D A Walker 1998
1068	A CH, omission ostimato for the Kunaruk River basin Alaska I Coonhus Res 103
1060	$20\ 0.05\ 20\ 0.13$
1005	Ridgwell A L S I Marshall and K Gregson 1999 Consumption of atmospheric
1070	methane by soils: A process-based model Clobal Riogeochem Cycles 13(1):59_
1071	70 doi:10.1029/1998GB900004
1072	Ringeval B N De Noblet-Ducoudré P Ciais P Bousquet C Prigent F Pana and W B
1075	Rossow 2010 An attempt to quantify the impact of changes in wetland extent on
1075	methane emissions on the seasonal and interannual time scales <i>Global</i>
1076	Riogeochem Cycles 24(2):GB2003 doi:10.1029/2008GB003354
1070	Rinne J. T. Riutta M. Pihlatie M. Aurela S. Haananala J. Tuovinen F-S. Tuittila and T.
1077	Vesala 2007 Annual cycle of methane emission from a horeal fen measured by
1070	the eddy covariance technique $Tellus R 59(3).449-457$ doi:10.1111/i 1600-
1075	0889 2007 00261 v
1081	Roulet N.T. T. Moore, I. Rubier, and P. Lafleur, 1992. Northern fens: Methane flux and
1001	climate change Tollys R $44.100-105$
1002	Sabrakov A F B R K Runkla M V Calgolav J F Klantsova and S S Maksvutov 2014
1005	Sabrekov, A.F., D.R.R. Runkle, M.V. Galgolev, I.L. Meptsova, and 5.5. Maksyutov, 2014.
1004	flux unscaling Environ Pas Latt 9.045008 doi:10.1088/1748
1005	9226 / 9 / 4 / 0 / 5 0 0 9
1000	Sache T. C. Wille I. Boile and I. Kutzbach 2008 Environmental controls on
1007	acosystem-scale CH, emission from polygonal tundra in the Lona River Dolta
1000	Siboria L Coondus Pas. $113(C00A03)$ doi:10.1020/20071C000505
1009	Salacky S T M Chamacki and N I Dias 2012 Estimating the random error in addy
1000	covariance based fluxes and other turbulence statistics. The filtering method
1091	Roundary I guar Mataorol 144(1),112 125 doi:10.1007/s10546.012.0710.0
1092	<i>Doundary-Layer Meteorol</i> , 144(1).113–133, a01.10.1007/\$10340-012-9710-0.

1093	Schrier-Uijl, A. P., P. S. Kroon, A. Hensen, P. A. Leffelaar, F. Berendse, and E. M.				
1094	Veenendaal ,2010. Comparison of chamber and eddy covariance-based CO_2 and				
1095	CH ₄ emission estimates in a heterogeneous grass ecosystem on peat. <i>Agricultural</i>				
1096	and Forest Meteorology, 150(6):825–831, doi:10.1016/j.agrformet.2009.11.007.				
1097	Shoemaker, J. K., T. F. Keenan, D. Y. Hollinger, and A. D. Richardson, 2014. Forest				
1098	ecosystem changes from annual methane source to sink depending on late				
1099	summer water balance. <i>Geophys. Res. Lett.</i> , 41:673–679,				
1100	doi:10.1002/2013GL058691.				
1101	Shurpali, N.J. and S.B. Verma. 1998. Micrometeorological measurements of methane flux				
1102	in a Minnesota peatland during two growing seasons. <i>Biogeochem.</i> , 40:1-15.				
1103	Smeets, C., R. Holzinger, I. Vigano, A. Goldstein, and T. Röckmann, 2009. Eddy covariance				
1104	methane measurements at a Ponderosa pine plantation in California.				
1105	Atmospheric Chemistry and Physics, 9(21):8365–8375, doi:10.5194/acp-9-8365-				
1106	2009.				
1107	Sonnentag, O., J. M. Chen, N. T. Roulet, W. Ju, and A. Govind, 2008. Spatially explicit				
1108	simulation of peatland hydrology and carbon dioxide exchange: Influence of				
1109	mesoscale topography. J. Geophys. Res., 113(G02005),				
1110	doi:10.1029/2007JG000605.				
1111	Spahni, R. <i>et al.</i> , 2011, Constraining global methane emissions and uptake by				
1112	ecosystems, Biogeosciences, 8(6):1643-1665, doi:10.5194/bg-8-1643-2011.				
1113	Strack, M. and J.M. Waddington, 2007. Response of peatland carbon dioxide and				
1114	methane fluxes to a water table drawdown experiment. Global Biogeochem.				
1115	<i>Cycles</i> , 21(GB1007): doi:10.1029/2006GB002715.				
1116	Strack, M., and J. M. Waddington, 2008. Spatiotemporal variability in peatland				
1117	subsurface methane dynamics, J. Geophys. Res., 113(G02010),				
1118	doi:10.1029/2007JG000472.				
1119	Sulman, B.N., A.R. Desai, B.D. Cook, N. Saliendra, and D.S. Mackay, 2009. Contrasting				
1120	carbon dioxide fluxes between a drying shrub wetland in Northern Wisconsin,				
1121	USA, and nearby forests. <i>Biogeosciences</i> , 6:1115-1126, doi:10.5194/bg-6-1115-				
1122	2009.				
1123	Sulman, B.N., A.R. Desai, and D. Mladenoff, 2013. Modeling soil and biomass carbon				
1124	responses to declining water table in a wetland-rich landscape. <i>Ecosystems</i> ,				
1125	16:491-507, doi:10.1007/s10021-012-9624-1.				
1126	Suyker, A. E., S.B. Verma, R.J. Clement, and D.P. Billesbach, D. P., 1996. Methane flux in a				
1127	boreal fen: Season-long measurement by eddy correlation. J. Geophys. Res.				
1128	101:28637-28647.				
1129	Tagesson, T., M. Mölder, M. Mastepanov, C. Sigsgaard, M. P. Tamstorf, M. Lund, J. M. Falk,				
1130	A. Lindroth, T. R. Christensen, and L. Ström, 2012. Land-atmosphere exchange of				
1131	methane from soil thawing to soil freezing in a high-Arctic wet tundra ecosystem.				
1132	<i>Global Change Biol, 18</i> (6):1928–1940, doi:10.1111/j.1365-2486.2012.02647.x.				
1133	Tang, J., Q. Zhuang, R. D. Shannon, and J. R. White, 2010. Quantifying wetland methane				
1134	emissions with process-based models of different complexities. Biogeosciences,				
1135	7(11):3817–3837, doi:10.5194/bg-7-3817-2010.				
1136	Tian, HQ, X. Xu, M. Liu, W. Ren, C. Zhang, G. Chen, and C. Lu. 2010. Spatial and temporal				
1137	patterns of CH_4 and N_2O fluxes in terrestrial ecosystems of North America during				
1138	1979–2008: application of a global biogeochemistry model, <u>Biogeosciences</u> 7,				
1139	2673-2694.				
1140	Turetsky, M. R., C. C. Treat, M. P. Waldrop, J. M. Waddington, J. W. Harden, and A. D.				
1141	Mcguire, 2008. Short-term response of methane fluxes and methanogen activity				

1142	to water table and soil warming manipulations in an Alaskan peatland. J. Geophys
1143	<i>Res, 113</i> :G00A10, doi:10.1029/2007JG000496.
1144	Ullah, S., and T. R. Moore, 2011. Biogeochemical controls on methane, nitrous oxide, and
1145	carbon dioxide fluxes from deciduous forest soils in eastern Canada. J. Geophys
1146	<i>Res, 116</i> :G3010, doi:10.1029/2010JG001525.
1147	van Huissteden, J., T. C. Maximov, and A. J. Dolman, 2005. High methane flux from an
1148	arctic floodplain (Indigirka lowlands, eastern Siberia). <i>J. Geophys.</i>
1149	<i>Res.</i> , 110:G02002, doi:10.1029/2005JG000010.
1150	van Huissteden, J, A.M.R. Petrescu, D.M.D. Hendriks, and K.T. Rebel, 2009. Sensitivity
1151	analysis of a wetland methane emission model based on temperate and arctic
1152	wetland sites. <i>Biogeosciences</i> 6:3035-3051, doi:10.5194/bg-6-3035-2009.
1153	Waddington, J., and S. Day, 2007. Methane emissions from a peatland following
1154	restoration. <i>J. Geophys Res</i> ., 112:G03018, doi:10.1029/2007JG000400.
1155	Walter B.P. and M. Heimann M., 2000. A process-based, climate- sensitive model to
1156	derive methane emissions from natural wetlands: application to five wetland
1157	sites, sensitivity to model parameters, and climate. <i>Global Biogeochem. Cycles</i>
1158	14:745–765.
1159	Walter, B.P., M. Heimann, and E. Matthews, 2001. Modeling modern methane emissions
1160	from natural wetlands: 2. Interannual variations 1982-1993. J. Geophys. Res.,
1161	106:34207-34219, doi:10.1029/2001JD900164.
1162	Wang, W., K.J. Davis, D.M. Ricciuto, and M.P. Butler, 2006. An approximate footprint
1163	model for flux measurements in the convective boundary layer. <i>Journal of</i>
1164	Atmospheric and Oceanic Technology, 23:1384-1394.
1165	Webb, E.K., G.I. Pearman, and R. Leuning, 1980. Correction of flux measurements for
1166	density effects due to heat and water vapor transfer. Quart. J. Roy. Meteorol. Soc.,
116/	106, 85-100.
1168	Weisnampel, P. and R. K. Kolka, 2008. Measurement of methane fluxes from terrestrial
1169	landscapes using static, non-steady state enclosures. In C. M. Hoover (editor)
11/0	Field Medsurements for Forest Carbon Monitoring: A Lanascape Scale Approacn.
11/1	Springer, New York, NY. Warner C. K.I. Davia D. Baluvin C. Vi. D. Hurst and L. Lack 2002. Designal asola
11/2	werner, C., K.J. Davis, P. Bakwin, C. Yi, D. Hurst, and L. Lock, 2003. Regional-scale
11/3	lowland and watland forest. Clahal Change Diology, 0:1251, 1261
11/4 1175	Whiting C L and Chapter I D 1002 Drimary production control of methane omission
1175	from wotlanda, Nature 264, 704 – 705
1170	Willo C. I. Kutzbach T. Sachs D. Wagner and F. M. Dfoiffer 2008 Mothano emission
1177	from Siborian arctic polygonal tundra: oddy covariance measurements and
1170	modeling Clobal Change Biology 14: 1395-1405 doi: 10.1111/j.1365-
1180	2486 2008 01586 v
1100	Yu X F. H.O. Tian C. Zhang M.L. Liu W. Ren C.S. Chen C.O. Lu and L. Bruhwiler 2010
1182	Attribution of snatial and temporal variations in terrestrial methane flux over
1183	North America <i>Biogeosciences</i> 7:3637–55 doi:10.5194/bg-7-3637-2010
1184	Yu I W Sun I Liu I Wang I Yang and F X Meixner 2007 Enhanced net formations of
1185	nitrous oxide and methane underneath the frozen soil in Sanijang wetland
1186	northeastern China, <i>I. Geophys. Res.</i> , 112(D07111), doi:10.1029/2006ID008025
1187	Yu, L., H. Wang, G. Wang, W. Song, Y. Huang, SG. Li, N. Liang, Y. Tang, and IS. He. 2013
1188	A comparison of methane emission measurements using eddy covariance and
1189	manual and automated chamber-based techniques in Tibetan Plateau alnine
1190	wetland, Environmental Pollution, 181:81–90, doi:10.1016/i.envnol.2013.06.018

- 1191 Zhang, Y., C. Li, C.C. Trettin, H. Li, and G. Sun, 2002. An integrated model of soil,
 1192 hydrology, and vegetation for carbon dynamics in wetland ecosystems. *Global*1193 *Biogeochem. Cycles*, 16(4, 1061), doi:10.1029/2001GB001838.
- 1194 Zhang, Y., Sachs, T., Li, C. and Boike, J., 2012. Upscaling methane fluxes from closed
 1195 chambers to eddy covariance based on a permafrost biogeochemistry integrated
 1196 model. *Global Change Biology*, 18:1428–1440, doi: 10.1111/j.13651197 2486.2011.02587.x.
- Zhuang Q., A.D. McGuire, P.A. Steudler, B.S. Felzer, S. Hu, J.M. Melillo, D.W. Kicklighter,
 and R.G. Prinn, 2004. Methane fluxes between terrestrial ecosystems and the
 atmosphere at northern high latitudes during the past century: A retrospective
 analysis with a process-based biogeochemistry model. *Global Biogeochem. Cycles*,
 18(GB3010):1-23.

Tables

Table 1. Very tall tower site and instrument characteristics

Coordinates	45.945° N, 90.273° W		
Land cover (general region)	28% wetland, 67% upland mixed		
	forest, 5% grass or other		
Mean annual temperature (1995-2013)	5.7 C		
Annual precipitation (1995-2013)	586 mm		
Summer temperature (JJA, 1995-2013)	18.4 C		
Summer precipitation (JJA, 1995-2013)	243 mm		
Measurement height	122 m above ground for CH ₄ ; 30, 122		
	and 396 m for CO_2 , H_2O , heat and		
	momentum		
Instruments			
Flux gas analyzer (CH ₄)	Picarro, Inc. 1301-f		
Flux gas analyzer (CO ₂ /H ₂ O)	Licor, Inc. LI-6262		
Storage profile (CH ₄)	Los Gatos, Inc. LGR Fast Methane		
	Analyzer		
Storage profile (CO ₂)	Licor, Inc. LI-7000		
Sonic anemometer	ATI, Inc. Type K		
u* cutoff	0.2 m s ⁻¹		

Table. 2 DLEM model gridcell cover fractions

Plant functional type	DLEM Regional (%)	DLEM Site (%)
Wetland	44	28
Forest	43	67
Grass and other	13	5

Table 3. Observed annual fluxes and meteorology during study period

	2011	2012
Annual mean temperature (degrees C)	5.7	7.0
Annual precipitation (mm)	458	568
Summer (JJA) temperature (degrees C)	19.1	19.4
Summer (JJA) precipitation (mm)	207	188
NEE CO_2 (gC- CO_2 m ⁻² yr ⁻¹)	-58.0	-101.4
GPP (gC-CO ₂ m^{-2} yr ⁻¹)	858.1	1160.7
$R_{eco} (gC-CO_2 m^{-2} yr^{-1})$	799.7	1059.3
NEE CH4 (mgC $-$ CH ₄ m ⁻² yr ⁻¹)	911 +/- 84	659 +/- 64
Ratio NEE CH4:NEE CO2 (%)	-1.57	-0.65
Ratio NEE CH ₄ :R _{eco} (%)	0.0011	0.00062
Missing NEE CH ₄ (%)	29	36
Screened NEE CH ₄ (%)	12	13

- 1213 **Table 4.** Pearson linear correlation coefficient (r) between NEE CH₄ and other
- 1214 observations at hourly to monthly averaging scales. Only significant correlations
- 1215 (p<0.1) are shown after correcting for time series auto-correlation. NEE CH₄ is not
- 1216 strongly correlated to soil moisture, but instead most positively correlated to
- 1217 temperature and GPP and R_{eco} at these time scales.

Averaging	Temperature	Photo-	Volumetric	Net	Gross	Ecosystem
Time	_	syn-	surface	ecosystem	primary	respiration
		thetic-	soil	exchange	production	(R _{eco})
		ally	moisture	CO ₂ (NEE	(GPP)	
		active		CO ₂)		
		rad-				
		iation				
		(PAR)				
Hour				0.09		
Day	0.49	0.43			0.49	0.53
Week	0.71	0.66		-0.49	0.72	0.74
Month				-0.68	0.80	0.79

1218

1220 Figures

- 1221 Figure 1. Generalized land cover surrounding the WLEF Park Falls very tall tower
- 1222 (center cross) in a 10 km radius derived from manual classification of 30 m spatial
- 1223 resolution 2004 Quickbird imagery (B.D. Cook, unpublished data). "Other" category
- 1224 primarily includes grassy areas, lakes, and streams. Wetlands are patchy and equally
- 1225 distributed in all directions from tower. Footprint climatology overlaid as a mask,
- 1226 where lighter areas show > 0.5% contribution to the May-Sept 2011 total hourly surface
- 1227 flux influence, revealing a typical footprint diameter of 5 km.

Figure 2. Comparison of in-line water vapor correction and post-WPL correction for
water vapor dilution applied to CH₄ eddy fluxes. a) Comparison of "wet" mole fraction
CH₄ flux to "wet" mole fraction CH₄ flux with WPL applied, showing the effect of water
vapor dilution is to underestimate fluxes by ~1%. b) A direct dry mole fraction
estimated flux shows high correlation and low bias with WPL-corrected CH₄ flux, but
the direct computed fluxes are on average 1.6% larger.

Figure 3. Estimate of flux random turbulent uncertainty (y-axis) versus absolute
magnitude of NEE CH₄ for a) hourly and b) daily scale. The blue line shows bin-averaged
NEE CH₄ for intervals of a) 10 nmol CH₄ m⁻² s⁻¹ or b) 4 mg C-CH₄ m⁻² day⁻¹, while the red
line shows the result of linear regression. In general, uncertainty scales linearly with
flux. The intercept is an estimate of minimal detectable flux.

1243 Figure 4. a) Box plot comparing the range of NEE CH₄ observed from soil chamber 1244 observations made at four wetlands (first four from left) and three uplands forests from 1245 April-October 2005-2006 compared to the eddy flux tower hourly observations in 1246 2011-2012. Number of observations for each measurement is listed below the site 1247 abbreviation on the x-axis. b) The comparison of monthly NEE CH₄ from the tower 1248 averaged over 2011-2012 (black bars) and the profile-based Modified Bowen ratio 1249 approach of Werner et al. (2003) for 1998 (red bars). Site to site variability in chamber 1250 wetland fluxes was high but was bracketed by the tower based regional flux estimates. 1251 Regional flux estimates from the Bowen ratio approach were in general much larger 1252 than those estimated from tower, despite similar climates in 1998 and 2011-2012..

1254

Figure 5. Time series of daily a) NEE of CH₄, b) NEE of CO₂, c) GPP and d) R_{eco} for a twoyear period at the tower site. Red crosses are gap-filled, and gray bars show turbulent
flux uncertainty. Blue line shows a 10 day smoothed average. CH₄ fluxes show a decline
from 2011 to 2012 in contrast to increases seen in GPP and R_{eco} and no change in NEE.

Figure 6. Similar to Figure 5 but for meteorological forcing of gap-filled a) daily mean
temperature, b) daily cumulative photosynthetically active radiation, c) cumulative
precipitation, and d) near surface soil moisture from an upland, mixed forest in the flux
tower footprint. Both years had similar temperature and cloudiness, but differing
patterns of growing season precipitation leading to lower soil moisture available in
2012.

1267 Figure 7. a) Cumulative NEE of CH₄ for 2011 (blue) and 2012 (red) and estimate of 1268 cumulative flux uncertainty. NEE from the two years diverges at the start of the growing 1269 season, but cannot be differentiated against flux uncertainty until the end of the 1270 growing season. b) Normalized Hilbert-Huang transformed (HHT) power spectra of 1271 NEE CH₄ (red) and NEE CO₂ (black) show that modes of variability in cumulative flux are similar for the two, though CO₂ has a clearer spectral gap between diurnal/synoptic 1272 1273 and seasonal/annual variations, while CH₄ has stronger monthly variations and weaker 1274 seasonal contributions.

Figure 9. Scatterplot relationships of NEE CH₄ (black dots) at hourly (left) and daily
(right) scales to GPP (top) and air temperature (bottom) including accounting for
uncertainty (gray bars). A linear model best reflects relationship to GPP, while an
exponential model is used for temperature. Fluxes shown with uncertainty, and fit (red
line) shown with random propagation of 2-σ uncertainty in parameters of fit.

Figure 10. Comparison of daily (cross) NEE CH₄ and uncertainty (gray bars) to simulations of the DLEM model from a cut-out from a larger regional model (blue line, only for 2012) and a locally forced model with accounting of sub-grid land cover (red line, both years). Pink crosses reflect gap-filled observations. Both models were able to capture the seasonal cycle of CH₄ flux, but the site model more faithfully reproduced mean flux at expense of underestimating large positive excursions of flux and not capturing reduction of flux in 2012.

- 1298 **Figure S1.** Profiles of CH₄ (left) and CO₂ (right) concentration (top) at 30 (black), 122
- 1299 (blue), and 396 m (red) level and CH₄ and CO₂ net ecosystem exchange (black),
- 1300 turbulent flux (red), and storage flux (blue) at 122 m (bottom).

