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Purpose/Objectives

¢ Efficacy of hydrologic Models to
adequately simulate irrigation practices

** Water budget based on crop types



Conceptual Framework for

Hydrologic Model

Irrigation

+ Auto (Plant Based) Shallow

Plant Growth| * Auto (Soil Based) Shallow

Root Zone
(Soil Water)

Vadose Zone
(Unsaturated)
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Watershed Delineation
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Hydrologic Response Units (HRUs)

Deciduous Forest 32
Corn 20
Alfalfa 12
Sweet Corn 7
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Triggers for Auto-irrigation function

Plant water demand trigger
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Average Monthly Streamflow
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Annual Average water Budget

Water balance Ratio
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Annual Crop Water Balance
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Sensitivity Analysis

Parameter Unit Description

SHALLST mm H20 Initial depth of water in shallow aquifer

GWQMN mmH20 Threshold Depth of water in shallow aquifer require for return flow
RCHRG_DP | Coefficient Deep Aquifer Percolation

GW_Delay Days GW delay time (Lag time water takes to reach to aquifer)

SOL K mm hr' Saturated Hydraulic conductivity




Conclusion

¢ Auto irrigation function return excess irrigation water
to the source rather than accounting for water
balance
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** Crop growth stage specific Irrigation demands
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Is streamflow enough to calibrate a
hydrologic model in intensively
irrigated watershed/farms
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Field Measurement

Daily Evapotranspiration (ET)

JLeaf Area Index (LAI)

ACrop yield

JSub-Daily Climate Data

JdDetailed Management Records (Crop
Rotation)




Field Work: Evapotranspiration and recharge

measurement
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Hydrology: Global scale, all about the ocean

Atmospheric Moisture

13,000 km?3
(25 mm)

Global Precipitation Global Evaporation
496,100 km3yr! 496,100 km3yr!
(973 mm-yr") (973 mm-yr?)

P

Precipitation v
111,100 km3yr" Ice
Precipitation Evaporation 27.820,000 km?
385,000 kmPyr-! 424,700 km®yr" &

Oceans Runoff Land

1,348,000,000 km? 39,700 km*yr' g 587 000 km?

Evaporation
71,400 km3yr’

Precipitation - Evaporation =
-39,700 km>yr’
Units are cubic km of water or, in parentheses, mm of water
spread over 510 million square kilometers surface area




But: Regionally, terrestrial evapotranspiration (ET)
is a key component to the water cycle,
for example, in the Central Sands
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LETTER

Terrestrial water fluxes dominated by transpiration
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doi:10.1038/nature11983

Transpiration relative to evapotranspiration




The big question

How does
a changing climate and
water use decisions
influence
groundwater and plant water use
in agricultural regions?




The digital global map of irrigation areas
October 2013

Global water withdrawal
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Recent trends in U.S. evapotranspiration
show a range of trends,

driven by changes in surface

| (@)  Climatological JUAS ET (mm day™) : (b)  ETtrend, 1961-2014, (mm day™" yr')
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=0.01

i -0.02

Rigden and Salvucci, 2017

Plant transpiration ~60% of global terrestrial water flux (Wei et al., 2017)!
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Some evidence shows
decreasing transpiration rates

« Higher CO, means less need to keep
stomata open

— Evidence: Increasing water use efficiency
* Increased atmospheric demand for

moisture in warmer climates leads 1o
stomatal closure

— Evidence: Higher vapor pressure deficit

« Longer growing seasons lead o earlier
depletion of plant available water

— Evidence: Soil moisture deficiency in summer
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Others show the opposite

« Higher CO, fertilizes growth, plants trade
water for carbon 1o maximize this, and as

a result have limited change in stomatal
response

— Evidence: Increased transpiration, reduced
baseflow, decreases in water use efficiency

« Longer growing seasons leads to longer
actively franspiring period

— Evidence: Plant phenology shifts, earlier use
of soil moisture
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Answer

It depends

— On plasticity of species response
(isohydric/anisohydric continuum)

— Either way, plant water use will change In
response to intfensifying hydrological cycles,
which will influence global water budget and
local land-atmosphere feedbacks

— Implications for management of water for
agriculture, forestry, drought

— Multi-scale, long-term experiments and
observations are needed (Ameriflux, NEON,
LTER)




How do we solve this?

» Take continuous long-term ET
observations

« Confront models with it




Conceptual Framework for
Hydrologic Model

Irrigation

Auto (Plant Based) Shallow
« Auto (Soil Based) Shallow
+ Manual Shallow

« Auto (Deep Aquifer)

Root Zone
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WLEF tall tower site (Park Falls, WI est. 1996)

Thermistor, hygrometer,
barometer u‘
I
|

Sonic anemometer
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m '\

W (rotatad) Wind Spead

Infrared gas
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Five days of observations

Net radiation =
Net solar + net Longwave
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Sylvania Wilderness site in UP Michigan (Watersmeet, Ml), est. 2001

Example ET from flux tower in two seasons in mm per day
(Tang et al., 2006)
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Paired site studies in Nebraska

show us effect of irrigation on ET

Ne2 (Irrigated)
Ne3 (Rain Fed)
I Rain
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Use data to constrain sensitive parameters

Specific Leaf Area Stomatal Slope BB

(FAA

B s~ = 17 (m? kg™") & leaf width = 0.04 (m)
[ IsLA =25 (m?kg™") & leaf width = 0.08 (m) | |

Observation




Another example: Lakes

Bin Average Latent Heat Flux vs Surface Air Temperature
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100 T T T T I

Transpiration as a proportion of evapotranspiration (%)

Short commmunication

Transpiration in the global water cycle

William H. Schlesinger®:*, Scott JasechkoP

a Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, United States

b Department of Earth and Planetary Sciences, University of New Mexico Albuquerque, NM 87131, United States
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we can evaluate hypotheses

Warm & early Meteorological Heat wave
spring drought
Soil erosion /
degradation
+ vy & %
(H + LE) T (H+LE) = +
Sensible heat flux Soil + Sensible heat flux Plant mortality
t Evapotranspiration -4 mo/s'tu'r © Evapotranspiration
deficit =)
F - = Plant health
* * + Plant growth
Plant activity & growth Plant activity & growth t =) A
Net carbon uptake Net carbon uptake
Gross primary production Gross primary production Pest & pathogen
Ecosystem respiration Ecosystem respiration outbreaks
Spring Summer Longer term effects

* Climate effects on ecosystem carbon fluxes are shown only in qualitative terms. Individual fluxes might be affected differently by climate extremes (see text).

Sippel et al., 2016




Flux towers have pros/cons

PRO: Easy to deploy on a tripod in a field, on solar
power, N0 moving parts, and mostly off-the-shelf
technology, nearly 500 long running sites worldwide,
“gold standard”

PRO: It is one of the only ways to directly measure ET aft
hourly time scale, and at the same fime, we also
measure the surface heat exchange, carbon dioxide
flux (productivity), and climate

CON: It is relatively expensive (total around $40-50K to
purchase), requires significant expertise (technical
personnel), and regular maintenance

CON: EC measures only upwind of the tfower and when
the atmosphere is “turbulent”, requiring application of
methods to fill in data gaps and quality control data




Thank you

Desai Ecometeorology Lab

Dept of Atmospheric and Oceanic Sciences
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