Observing Wisconsin Central Sands water budget components under high groundwater demand and a changing climate

Ammara Talib

Department of Civil and Environmental Engineering, Univ. of Wisconsin-Madison

Dr. Ankur R Desai

Professor and Associate Chair Department of Atmospheric and Oceanic Sciences, Univ. of Wisconsin-Madison, <u>http://flux.aos.wisc.edu</u>, <u>desai@aos.wisc.edu</u>, @profdesai

CPEP, Jan 30th 2018

Outline

- Background
- Purpose/Objective
- Approach
- Results/Discussion
- Conclusion
- Future Research/Big Picture (Prof. Desai)

Background

High Capacity Wells

Low Capacity Wells

War Over water in a Land of Plenty

Purpose/Objectives

Efficacy of hydrologic Models to adequately simulate irrigation practices

Water budget based on crop types

Conceptual Framework for Hydrologic Model

Watershed Delineation

Hydrologic Response Units (HRUs)

Landuse	Percentage
Deciduous Forest	32
Corn	20
Alfalfa	12
Sweet Corn	7
Potato	5

Triggers for Auto-irrigation function

Plant water demand trigger

Soil water demand trigger

Results

Calibration: 2014-2015 Validation: 2016

Annual Average water Budget

Water balance Ratio

Sensitivity Analysis

Parameter	Unit	Description
SHALLST	mm H20	Initial depth of water in shallow aquifer
GWQMN	mm H20	Threshold Depth of water in shallow aquifer require for return flow
RCHRG_DP	Coefficient	Deep Aquifer Percolation
GW_Delay	Days	GW delay time (Lag time water takes to reach to aquifer)
SOL_K	mm hr ¹	Saturated Hydraulic conductivity

Conclusion

Auto irrigation function return excess irrigation water to the source rather than accounting for water balance

Crop growth stage specific Irrigation demands

Is streamflow enough to calibrate a hydrologic model in intensively irrigated watershed/farms

Sector Se

Field Measurement

Daily Evapotranspiration (ET)
Leaf Area Index (LAI)
Crop yield
Sub-Daily Climate Data
Detailed Management Records (Crop Rotation)

Field Work: Evapotranspiration and recharge measurement

References

- Abbaspour K. 2011. SWAT CUP4: SWAT Calibration and Uncertainty Program-A User Manual.
- Eawag. Anderson, M. C., Allen, R. G., Morse, A., and Kustas, W. P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sensing of Environment, 122: 50-65.
- Kraft, G. J., D. J. Mechenich, K. Clancy, and J. Haucke. 2010. Groundwater pumping effects on groundwater levels, lake levels, and streamflows in the Wisconsin Central Sands. Report to the Wisconsin Department of Natural Resources. Center for Watershed Science and Education. College of Natural Resources, University of Wisconsin-Stevens Point and UW-Extension.
- Nocco, M.A., Kraft, G.J., Loheide, S.P. II, Kucharik, C.J. 2017. Drivers of potential recharge from irrigated agroecosystems in the Wisconsin Central Sands. Vadose Zone Journal. doi: 10.2136/vzj2017.01.0008

Acknowledgment

UW CCR Climate, People, Environment Program (CPEP) Seed Grant, UW AOS Ned P Smith Professorship of Climatology, NSF DBI-1457897

Dr. Desai Dr. Nocco Desai Lab members

Moving Forward...

Hydrology: Global scale, all about the ocean

But: Regionally, terrestrial evapotranspiration (ET) is a key component to the water cycle, for example, in the Central Sands

Chapin, 2011, Principles of Terrestrial Ecosystem Ecology

LETTER

Terrestrial water fluxes dominated by transpiration

Scott Jasechko¹, Zachary D. Sharp¹, John J. Gibson^{2,3}, S. Jean Birks^{2,4}, Yi Yi^{2,3} & Peter J. Fawcett¹

The big question

How does a changing climate and water use decisions influence groundwater and plant water use in agricultural regions?

The digital global map of irrigation areas

October 2013

The map shows area equipped for irrigation in percentage of cell area. For the majority of countries the base year of statistics is in the period 2000 - 2008.

Projection: Robinson Resolution: 5 arc-minutes

http://www.fao.org/nr/water/aquastat/irrigationmap/index.stm

Stefan Siebert, Verena Henrich (Institute of Crop Science and Resource Conservation, University of Bonn, Germany) and Karen Frenken, Jacob Burke (Land and Water Division, Food and Agriculture Organization of the United Nations, Rome, Italy)

LETTE

PUBLISHED ONLINE: 5 SEPTEMBER 2016 | DOI: 10.1038/NCLIMA

Plant responses to increasing CO_2 reduce estimates of climate impacts on drought severity

The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

PUBLISHED:

Abigail L. S. Swann^{a,b,1}, Forrest M. Hoffman^{c,d}, Charles D. Koven^e, and James T. Randerson^f

Kimberly A. Novick^{1*}, Darren L. Ficklin², Paul C. Stoy³, A. Christopher Oishi⁶, Shirley A. Papuga⁷, Peter D. Bla Russell L. Scott¹¹, Lixin Wang¹² and Richard P. Phillips¹³

Geophysical Research Letters

nature plants

RESEARCH LETTER

10.1002/2017GL072759

Key Points: • Base flow is consistently declining

along the Australian east coast

Ralph Trancoso^{1,2} , Joshua R. Larsen^{1,3}, Tim R. McVicar^{4,5}, Stuart R. Phinn¹ and Clive A. McAlpine¹

CO₂-vegetation feedbacks and other climate

changes implicated in reducing base flow

Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean

Sharon B. Gray^{1†}, Orla Dermodul Stenhanie P. Klein^{1†} Anna M. Locke^{1†} Justin M. McGrath¹ Pachel

E. Paul¹, David M. Ro A. Ainsworth^{1,2}, Carl Warm spring reduced carbon cycle impact of the 2012

US summer drought

Sebastian Wolf^{a,b,1}, Trevor F. Keenan^{c,2}, Joshua B. Fisher^d, Dennis D. Baldocchi^a, Ankur R. Desai^e, Andrew D. Richardson^f, Russell L. Scott^g, Beverly E. Law^h, Marcy E. Litvakⁱ, Nathaniel A. Brunsell^j, Wouter Peters^{k,I}, and Ingrid T. van der Laan-Luijkx^k

Global Change Biology (2016), doi: 10.1111/gcb.13428

Relationships between individual-tree mortality and water-balance variables indicate positive trends in water stress-induced tree mortality across North America

Global Change Biology (2017) 23, 1140–1151, doi: 10.1111/gcb.13439

RNER A. KURZ² and NICHOLAS C. COOPS¹

Stomatal response to humidity and CO₂ implicated in recent decline in US evaporation

ANGELA J. RIGDEN and GUIDO D. SALVUCCI Department of Earth and Environment, Boston University, 675 Commonwealth Ave., Boston, MA 02215, USA

Recent trends in U.S. evapotranspiration show a range of trends, driven by changes in surface

Rigden and Salvucci, 2017

Plant transpiration ~60% of global terrestrial water flux (Wei et al., 2017)!

https://www.emaze.com/@AWQQLQIL/Transpiration

Some evidence shows decreasing transpiration rates

- Higher CO₂ means less need to keep stomata open
 - Evidence: Increasing water use efficiency
- Increased atmospheric demand for moisture in warmer climates leads to stomatal closure
 - Evidence: Higher vapor pressure deficit
- Longer growing seasons lead to earlier depletion of plant available water

- Evidence: Soil moisture deficiency in summer

0Γ

-100

-200

-300

-400

d NEE (g C m⁻² yr⁻¹)

Wolf *et al.*, 2016

Ficklin and Novick, 2017

Novick et al., 2016

Others show the opposite

- Higher CO₂ fertilizes growth, plants trade water for carbon to maximize this, and as a result have limited change in stomatal response
 - Evidence: Increased transpiration, reduced baseflow, decreases in water use efficiency
- Longer growing seasons leads to longer actively transpiring period
 - Evidence: Plant phenology shifts, earlier use of soil moisture

Answer

- It depends
 - On plasticity of species response (isohydric/anisohydric continuum)
 - Either way, plant water use will change in response to intensifying hydrological cycles, which will influence global water budget and local land-atmosphere feedbacks
 - Implications for management of water for agriculture, forestry, drought
 - Multi-scale, long-term experiments and observations are needed (Ameriflux, NEON, LTER)

How do we solve this?

- Take continuous long-term ET observations
- Confront models with it

Conceptual Framework for Hydrologic Model

WLEF tall tower site (Park Falls, WI est. 1996)

Five days of observations

Sylvania Wilderness site in UP Michigan (Watersmeet, MI), est. 2001

Example ET from flux tower in two seasons in mm per day (Tang et al., 2006) 2.5 2002 2003 С 2.0 E_c (mm day⁻¹) 1.5 1.0 0.5 0.0 160 180 200 220 240 260 280 160 240 260 280 140 180 200 220 Day of year Day of year

Paired site studies in Nebraska show us effect of irrigation on ET

Model

Molly Aufforth

Model: **BIOCRO**

Use data to constrain sensitive parameters

Another example: Lakes

Zack Taebel

Short communication

Transpiration in the global water cycle

William H. Schlesinger^{a,*}, Scott Jasechko^b

^a Cary Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, United States

^b Department of Earth and Planetary Sciences, University of New Mexico Albuquerque, NM 87131, United States

And now we can evaluate hypotheses

* Climate effects on ecosystem carbon fluxes are shown only in qualitative terms. Individual fluxes might be affected differently by climate extremes (see text).

Sippel et al., 2016

Flux towers have pros/cons

- PRO: Easy to deploy on a tripod in a field, on solar power, no moving parts, and mostly off-the-shelf technology, nearly 500 long running sites worldwide, "gold standard"
- PRO: It is one of the only ways to directly measure ET at hourly time scale, and at the same time, we also measure the surface heat exchange, carbon dioxide flux (productivity), and climate
- CON: It is relatively expensive (total around \$40-50K to purchase), requires significant expertise (technical personnel), and regular maintenance
- CON: EC measures only upwind of the tower and when the atmosphere is "turbulent", requiring application of methods to fill in data gaps and quality control data

Thank you

Desai Ecometeorology Lab Dept of Atmospheric and Oceanic Sciences UW-Madison http://flux.aos.wisc.edu desai@aos.wisc.edu @profdesai 608-520-0305