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Millennium Ecosystem Assessment

EcosysTEM SERVICES PROVIDED BY OR DERIVED FROM WETLANDS

Services Comments and Examples

Provisioning

Food production of fish, wild game, fruits, and grains

Fresh water? storage and retention of water for domestic, industrial, and agricultural use
Fiber and fuel production of logs, fuelwood, peat, fodder
Biochemical extraction of medicines and other materials from biota
Genetic materials genes for resistance to plant pathogens, ornamental species, and so on
Regulating

Climate regulation source of and sink for greenhouse gases; influence local and regional temperature
plCLEpitdﬁUll, dl Id U.liICl Lﬁmatib PIOULCSSCS

Water regulation (hydrological flows) groundwater recharge/discharge
Water purification and waste treatment retention, recovery, and removal of excess nutrients and other pollutants

Erosion regulation retention of soils and sediments
Natural hazard regulation flood control, storm protection
Pollination habitat for pollinators

Cultural

Spiritual and inspirational source of inspiration; many religions attach spiritual and religious values to aspects of
wetland ecosystems

Recreational opportunities for recreational activities

Aesthetic many people find beauty or aesthetic value in aspects of wetland ecosystems
Educational opportunities for formal and informal education and training

Supporting

Soil formation sediment retention and accumulation of organic matter

Nutrient cycling storage, recycling, processing, and acquisition of nutrients

Source: Ecosystems and human well-being: Wetlands and water - Millennium Ecosystem Assessment / p2

2 While fresh water was treated as a provisioning service within the MA, it is also regarded as a regulating service by various sectors.




Dec 21, 2017 The Straits Times

Jakarta court rules in government's favour in case involving
pulp company April
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| COAL CONSUMPTION AFFECT
' ING CLIMATE.

The furnaces of the world are now
burning about 2,000,000, Q!)O tons of |
coal a wvear. When this is burned,
t.ni'in;: with oxygen, it adds about

1,000,000,000 tons of carbon dioxide
to the atmosphere yvearly. This tends
to make the air a more effective blan.
Ket for the carth and to raise its
temperature. The effect may be con. |
siderable 1n a few centuries.
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JELNRONLIIE Total global emissions by source

PROJECT

Land-use change was the dominant source of annual CO, emissions until around 1950
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JELVINLITE Total global emissions

PROJECT

Total global emissions: 40.8 = 2.7 GtCO, in 2016, 52% over 1990
Percentage land-use change: 42% in 1960, 12% averaged 2007-2016
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JEITINIIIE Land-use change emissions

PROJECT

Land-use change emissions are highly uncertain. Higher emissions in 2016 are linked to
increased fires during dry El Nifio conditions in tropical Asia

Indonesian

fires ‘\&
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ARTICLES nature

PUBLISHED ONLINE: 29 JUNE 2014 | DOI: 10.1038/NCLIMATE2277 Cllmate Cha‘nge

Primary forest cover loss in Indonesia over
2000-2012

Belinda Arunarwati Margono2*, Peter V. Potapov’, Svetlana Turubanova’, Fred Stolle
and Matthew C. Hansen'
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Atmospheric CO, records
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Trend expected
from fossil-fuel
burning
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LIS Anthropogenic perturbation of the global carbon cycle

PROJECT

Perturbation of the global carbon cycle caused by anthropogenic activities,
averaged globally for the decade 2007-2016 (GtCO,/yr)

Global carbon dioxide budget

(gigatonnes of carbon dioxide per year)
2007-2016

Fossil fuels & Atmospheric Land sink

industry growth 11.2+£3.0
Land-use

change \
A 49+30

343120 17.3+0.2

Ocean sink
87+20 |

Geological
reservoirs

S

The budget imbalance Is the ditfference between the estimated emissions and sinks.
Source: ; ; ;




IELIVRIYEIIE Global carbon budget

PROJECT

Carbon emissions are partitioned among the atmosphere and carbon sinks on land and in the ocean
The “imbalance” between total emissions and total sinks reflects the gap in our understanding

Data: CDIAC/NOAA-ESRL/GCP
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Forests in Flux

A Surface energy fluxes B Hydrology c Carbon Cycle

Precipitation
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Regional carbon fluxes from an observationally constrained dynamic
ecosystem model: Impacts of disturbance, CO, fertilization, and
heterogeneous land cover

Ankur R. Desai,'”? Paul R. Moorcroft,> Paul V. Bolstad,* and Kenneth J. Davis’
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JUSTIN M.
PAUL A. D
BINFORD,

Assessing Interactions Among
Changing Climate, Management,

Wood
products
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regulation
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Forests 2015, 6(3), 533-560; doi:10.3390/f6030533 | Article |

Cross-Sectoral Resource Management: How Forest
Management Alternatives Affect the Provision of Biomass
and Other Ecosystem Services

Susanne Frank 1:* 9, Christine Fiirst 1 & and Frank Pietzsch 2 &
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Thermistor, hygré)meter,
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Major challenges to EC

Quality control for violation of EC
assumptions (Mauder et al., 2013)

Gap-filling of quality controlled and missing
data for seasonal-annual sums (Desai ef al.,
2008)

Systematic bias from unmeasured terms
(Metzger, 2017)

Representation error (Xu et al., 2017)




Full net surface-atmosphere exchange_in a box
Eddy Covariance !
w'T" (%0, Yo, h)

dT (xo, Yo, (21 - Zm))
T >

= S

modified after Finnigan (2004)

storage change fh%dz f [ f“ f“ oc ~ dux dy] dz

horizontal transport 0 <. f LLZ f+L f“ {5“ ag;c' n ‘36’;5 ag ¢ }dx dy] dz

vertical transport 'c'(h) -. f [4L2 f“ f“ {awc C'} dx dy] dz

Coutesy S. Metzger, NEON
1



® 20+ yr

® 16-20 yr
11-15yr
6-10 yr
1-5yr

(Data accessed in May, 2015)
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Land cover and age influences NEE
Summer 2003 Observed Fluxes

NEP (=-NEE)
13 flux towers
One summer

Stand age matters

Ecosystem type
matters

Desai et al, 2008,
Ag For Met
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Scaling (Buffam et al., 2010)

Flux rates in Gg-Cyr-1
Pool sizes in Gg-C
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Biogeochemistry

https://doi.org/10.1007/s10533-017-0414-x

BIOGEOCHEMISTRY LETTERS

Wetland flux controls: how does interacting water

table levels and temperature influence carbon dioxide
and methane fluxes in northern Wisconsin?
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Impact of hydrological variations on modeling of peatland CO,
fluxes: Results from the North American Carbon Program
site synthesis

Benjamin N. Sulman,' Ankur R. Desai,' Nicole M. Schroeder,’ Dan Ricciuto,” Alan Barr,>
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Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2016-36, 2016
Manuscript under review for journal Earth Syst. Sci. Data
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Figure 4. Network representativeness for all of the FLUXNET201S5 sites (164 sites).



Global Change Biology (2011) 17, 798-818, doi: 10.1111/j.1365-2486.2010.02279.x

Global and regional importance of the tropical peatland
carbon pool

SUSAN E. PAGE* JOHN O. RIELEYf and CHRISTOPHER J. BANKS*
*Department of Geography, University of Leicester, University Road, Leicester LE1 7RH, UK, tSchool of Geography, The University
of Nottingham, University Park, Nottingham NG7 2RD, UK

» Best estimate of 88.6 Gt (range 81.7—
91.9 Gt) equal to 15-19% of the global
peat carbon pool. Of this, 68.5 Gt (77%)

is in Southeast Asia, equal to 11-14%
of global peat carbon. A single country,
Indonesia, has the largest share of
tropical peat carbon (57.4 Gt, 65%),
followed by Malaysia (9.1 Gt, 10%).




Global Change Biology (2012) 18, 3410-3422, doi: 10.1111/j.1365-2486.2012.02793.x

Effects of disturbances on the carbon balance of tropical

peat swamp forests

TAKASHI HIRANO*, HENDRIK SEGAHY, KITSO KUSINi, SUWIDO LIMIN, HIDENORI

TAKAHASHI§ and MITSURU OSAKI*
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Global Change Biology (2010) 16, 1715-1732, doi: 10.1111/j.1365-2486.2009.02016.x

Greenhouse gas fluxes from tropical peatlands in
south-east Asia

JOHN COUWENBERG, RENE DOMMAIN and HANS JOOSTEN
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Physical controls on CH4 emissions from a newly flooded subtropical
freshwater hydroelectric reservoir: Nam Theun 2

C.Deshmukh!2*, D. Serg;a1 , C. Delon!, R. Tardif?, M. Demarty4 ,C. Jarnot!,Y. Meyerfeld1 , V. Chanudet’,
P. Guédant?, W. Rode?, S. Descloux’, and F. Guérin®’
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Land use of drained peatlands: greenhouse gas fluxes, plant production, and economics

Kasimir et al 2017, GCB

CO, (Mg CO, ey )

1 = Norway spruce
2 = Willow

3= Reed canary

4 = Peatland

Saving peat and avoiding methane
release using fairly wet conditions can
significantly reduce GHG emissions,
and this strategy should be considered
for land use planning and policy-
making.

N0 (Mg CO9eq ha! yr'1)

CHy (Mg COgeq b yr')

WTD (meter)
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(100.0%) (18.7%)

5042
(58.7%)

1287
(15.0%)

241-615
(2.8-7.2%)

Non-concession, non-protected area
m Other protected area

National park

m Logging concession
Timber concession
» Oil palm concession

We estimate that on average granting a concession for oil palm,
timber, or logging in Indonesia increased site-level deforestation rates

by 17-127%, 44—-129%, or 3.1-11.1%, respectively
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TRYIVRIVELI Carbon quota for a 66% chance to keep below 2° C

PROJECT

The total remaining emissions from 2017 to keep global average temperature below 2° C
(800GtCO,) will be used in around 20 years at current emission rates

Total 2°C Budget
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The remaining quotas are indicative and vary depending on definition and methodology
Source: ;




What do you need?

« Making a flux measurement is one thing

« Getting useful science out of it is another
— Quality control / representation / gap-filling

— Ancillary data: water table, peat depth, C export,
microclimate, vegetation biomass, management
history of site, remotely sensed phsyiology

— Testable hypotheses, relying on space for time
substitution, evaluated with ecosystem models

« Qur lab has a track record in much of the
above, and students/post-docs in my lab have
potential to advance this work




Questions?

Ankur Desai, desai@aos.wisc.edu, @profdedsi
+1-608-520-03095, hitp://flux.aos.wisc.edu
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