Observed carbon-water interactions in three north-temperate wetlands

Benjamin N. Sulman, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI, bnsulman@wisc.edu

Ankur R. Desai, Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI

B. D. Cook, Department of Forest Resources, University of Minnesota-Twin Cities, Minneapolis, MN

N. Salendria, Institute for Applied Ecosystem Studies, U. S. Forest Service Northern Research Station, Rhinelander, WI

D. S. Mackay, Department of Geography, State University of New York-Buffalo, Buffalo, NY

Introduction: Future terrestrial carbon fluxes are a major source of uncertainty in climate predictions. Temperate and boreal wetlands contain a significant proportion of the world’s carbon reserves, and are sensitive to changes in both temperature and hydrology. Future climate simulations predict a net drying of temperate and boreal regions. We present eddy-covariance measurements of carbon flux at three wetlands in northern Wisconsin, one with a long-term trend of declining water table.

Lost Creek

Shrub fen, dominated by alder and willow with an under-story dominated by sedges.

Located in the Northern Highlands State Forest in north-central Wisconsin, USA

The site was established in 2000, and seven years of eddy covariance flux data are available. The water table has declined by an average of 9 cm/yr over the record. Shrub biomass has increased significantly over the record.

Wilson Flowage

Wet meadow/marsh, dominated by sedges and wetland grasses

Located in Chequamegon-Nicolet National Forest, Medford-Park Falls District, North-Central Wisconsin

South Fork

Sphagnum bog with Labrador tea and leatherleaf, with invading black spruce around the edges

Located in Chequamegon-Nicolet National Forest, Medford-Park Falls District, North-Central Wisconsin

Methods: Turbulent fluxes were calculated as half-hourly intervals from 10 for measurements of wind and CO2. Scalar measurements were detrended and wind measurements were rotated into the direction of mean wind using a long-term fit. Fluxes were screened for low turbulence conditions using a friction velocity criterion for each site.

Figure 3: Time series of monthly total precipitation measured at the National Climate Data Center Minocqua station.