Ecological Data Assimilation

The Flux Tower Story

Ankur Desai, Atmospheric & Oceanic Sciences, University of Wisconsin-Madison Ameriflux Meeting, October 2007, Boulder, CO

The Scene

- An ecosystem or land-atmosphere model
 - With parameters, drivers, fluxes, stocks
 - Probably non-linear, might be chaotic
 - Many parameters are not well known (e.g., Q10)
- Driver data (filled?)
- Some observation you want to reproduce (e.g., CO2 flux) - data has noise/uncertainty
- How to minimize model-data difference taking noise into account and estimate "true" parameters and their uncertainty?

 Partly depends on the questions you were exploring with model

Why are we doing this?

- Prediction / State space exploration
- Spatial scaling (model calibration)
- Parameter estimation / comparison
- Estimate unobserved state variables (GPP)
- Mechanism testing / Model selection
- Observation set consistency / value
- Hypothesis testing
- Flux towers are well suited to helping models do a better job at all of these...

Desai et al., accepted, AgForMet (GPP/RE) Moffatt et al., in press, AgForMet (Gaps)

 Flux tower gap filling and GPP/RE retrieval are kinds data assimilation

Courtesy T. Hilton and K. Davis

Model-data fusion framework

Questions within this framework: 1) How should flux towers be grouped when solving for SiB3 parameters? 2) How should the resulting optimized parameters be mapped across space? 3) How should this framework be linked to the atmospheric framework. Can we solve for model parameters at that stage?

Some solutions (simple data assimilation)

- Manual (guess parameters, run, compare, try again)
 An army of students helps
- Least squares linear fits
- Maximum likelihood
- Steepest descent and gradient optimizers (e.g., Levenburg-Marquardt, Gauss-Newton)
- Better solution: let's ask Mathematicians and Meteorologists instead...

Bayes' Theorem to the rescue

[A|B] = [AB] / [B] [P|D] = ([D|P] [P]) / [D]

(parameters given data) = [(data given parameters) (parameters)] / (data)

Posterior = (Likelihood x Prior) / Normalizing Constraint

In the long run, this is least-squares and Gaussian in the basic setup (can be modified). Main things needed for implementation are Forward operator and Likelihood function

Courtesy D. Nychka, NCAR

DATA = 1.5, PRIOR $N(0, (1.5)^2)$ Likelihood, POSTERIOR

Leading to advanced data assimilation

- Direct parameter distribution exploration
- Markov Chain Monte Carlo (MCMC) Metropolis-Hastings Algorithm (Metropolis et al, 1953) and other stochastic techniques
- (Ensemble) Kalman Filters and Smoothers
 Good for expensive models, multiple datasets
- Genetic Algorithms e.g., Stochastic Evolutionary Ranking Strategy (SRES)
- Neural networks
- Variational methods* (need to know adjoint)
- Tests with REFLEX, ...

Lots of activity

Big focus on MCMC

- Big problem with MCMC is need for many iterations to sample parameter space
 - Recall [D|P]
- But others methods are gaining
- Some models with data assimilation routines developed or in development include SipNET, TREES,ORCHIDEE, BETHY, TRIFFID, ED, Biome-BGC, LoTEC, SiB3

WLEF - Desai et al., in prep

Desai et al, in prep

	Prior	Posterior	
Growth related parameters			
photosynthetic capacity (amax)	112	58.6 +/- 2.2	
growth respiration fraction	0.33	0.34 +/- 0.06	
VPD modifier slope	0.05	0.066 +/- 0.009	
Half saturation PAR	17	9.0 +/- 0.76	
Light attenuation	0.5	0.67 +/- 0.02	
WUE factor	10.9	13.4 +/- 0.46*	
Decomposition parameters			
Lloyd-Taylor E0	309	448 +/- 121	
Lloyd-Taylor T0	-46	-59.5 +/- 10.6	
Turnover rate	0.03	0.19 +/- 0.02	

Niwot Ridge - Sacks et al., 2006, GCB

Days after Nov. 1, 1998

Days after Nov. 1, 1998

Sacks et al., 2006, GCB

PAR attenuation coefficient

Soil respiration Q₁₀

Sacks et al., 2006, GCB Sacks et al., 2007, Oecologia

Days after Nov. 1, 1998

D. Moore, in prep, AgForMet

Ricciuto et al., in press, AgForMet Riccituo et al., submitted

Ricciuto et al., submitted

Parameter	Published	HV	HW	WL	MM	UM
CS	10.0	4.81	4.827	9.81	10.7	7.37
$\mathbf{Q}_{10\mathrm{H}}$	2.0	1.47	2.394	3.28	1.92	2.65
θ_{opt}	0.55	0.843	0.717	0.745	0.685	0.764
θ_{fac}	0.8	1.00	0.320	0.858	1.00	1.00
Θ_{c}	0.30	0.247	0.129	0.240	0.285	0.239
Θ_{w}	0.13	0.00	0.0498	0.0534	0.00	0.00
n _{IDBL}	0.036	0.149	0.250	0.130	0.100	0.112
n _{lonl}	0.030	0.140	0.045	0.0430	0.0500	0.0516
$lpha_{ m BL}$	0.06	0.0535	0.117	0.0314	0.0498	0.0353
$lpha_{ m NL}$	0.06	0.0274	0.021	0.483	0.249	0.340
Q _{10VM}	2.0	2.23	1.74	2.36	2.15	2.04
$T_{bw BL}$	-5.0	1.48	-40.0	-9.70	6.06	-1.83
T_{bwNL}	-15.0	3.55	3.41	-1.80	10.0	-20.0
T_{uppBL}	33.0	50.0	50.0	50.0	50.0	50.0
$T_{upp NL}$	28.0	11.66	50.0	50.0	10.0	49.1
D_c	0.09	0.0192	0.0266	0.0249	0.0371	0.0282
R_{g}	0.25	0.107	0.0500	0.122	0.0500	0.0500
R _{dc}	0.015	0.00822	0.0208	0.0183	0.001 9	0.00866
Q_{10RD}	2.0	1.49	1.61	2.00	1.100	1.33
T _{off}	0.0	11.6	0.80	9.30	14.3	11.4
β_{off}	0.90	0.678	0.850	0.672	0.172	0.517
$\gamma_{\rm P}$	14.5	18.2	13.4	16.5	20.0	38.7
-(Log L)	N/A	157209	100989	69511	68554	61217

Well-constrained parameters: leaf nitrogen quantum efficiency T_{lower} phenology (T_{off}) **Poorly constrained** parameters autotrophic respiration soil moisture parameters Difference from published Coherence across space

Moore et al., submitted

Samanta et al., 2007, WaterResourcesRes.

A Request and Future Directions

- For model optimization / data assimilation missing flux data is not necessarily a big deal
- But: Filled driver data (micromet, soil temp, radiation) are generally needed
- Note: Driving data vs assimilated data is an arbitrary choice (as long as you can build a forward operator)
- We can assimilate not just CO2/H2O flux, but also concentrations, micromet, radiation, wind, isotopes, chamber flux, inventory data, sapflux
- Assimilation of multiple towers promising, but consistent data sets needed

Thanks

 Thanks to the PSU/ UW-Madison/ NCAR/ SUNY-Buffalo/ CSU/ ORNL/ King's College / WHRC/ ChEAS flux data assimilation collective and funders, DOE, NICCR, NSF, NASA, USDA