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A B S T R A C T

Using the eddy-covariance (EC) method to determine net surface-atmosphere exchange relies on extensive
simplifications of the mass balance concept. Among others, it is assumed that the 3-D flux field within a control
volume is divergence-free, which is shown to be violated e.g. from large-eddy simulations. To practically
evaluate the severity of these assumptions, case studies have monitored the surrounding of an EC tower, so the
control volume can be represented more explicitly. Alternatively, diagnostic tests during data processing can be
used to subset the EC data for periods that more likely fulfill the underlying assumptions. However, these ex-
isting methods are constrained either by their degree of realism, resource demand, temporal coverage, varying
spatial representativeness, or combinations thereof.

It is hypothesized that these deficiencies can be overcome by using the environmental response function
(ERF) technique: Relating flux observations at very high spatio-temporal resolution to meteorological forcings
and surface properties, and utilizing the extracted relationships to map a single, regular and stationary control
volume explicitly in 3-D space and time. Here, the novel ERF virtual control volume (VCV) concept and its
implications are derived, and Xu et al. (this issue) are presenting its first practical application.

Initial results show that even from a single EC tower, ERF-VCV reduces advective errors by at least one order
of magnitude, and incorporates net low-frequency flux contributions. In the same process tower location bias is
treated through attaining a fixed-frame, thus equitable and time-invariant representation of the net surface-
atmosphere exchange across a target domain. With regard to the frequently observed non-closure of the surface
energy balance, this offers the potential for reconciling “spatial heterogeneity” and “storage term” theories. In
extension, ERF promises a rectifying observational operator for unbiased model-data comparison, assimilation,
and process representation at model grid scale.

1. Introduction

Earth system models of surface-atmosphere interactions, including the
carbon, water, and energy cycles, provide key tools for improving our
ability to understand and forecast biosphere responses from local to con-
tinental scales. This is especially important in the context of global climate
change, already resulting in a 0.85 °C ± 0.20 °C increase in mean global
temperature (IPCC, 2013), a ∼2% increase in mean global precipitation
over land (Hulme et al., 1998), and an intensification of the hydrologic
cycle (Hayhoe et al., 2006; Huntington, 2006). The National Academy of
Sciences (2013) as well as the IPCC (2013) highlight the need for con-
fronting these models with distributed observations, such as those made by
the NEON, AmeriFlux, and ICOS flux tower networks.

However, the spatial mismatch between predictions and

observations is complicating the model improvement process (Fig. 1).
Specifically, the eddy covariance (EC) method, in which the vast ma-
jority of flux tower observations are made, relies on extensive simpli-
fications of the mass balance concept, including assumptions of surface
homogeneity and constant sample characteristics with time. As a con-
founding factor, the flux tower measurement footprint represents only a
small fraction of the model grid cell, and the location of this fraction
changes with time. As a result, EC flux observations are subject to
transient location bias (Nappo et al., 1982; Schmid and Lloyd, 1999)
and energy imbalance (Foken et al., 2011; Wilson et al., 2002). These
biases are each on the order of tens of percent, one order of magnitude
larger than typical sensor errors. The question of scale is underlying
both of these challenges, but rigorous testing of methods for scaling
land-atmosphere exchange to regular areas and periods relevant for
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atmospheric processes and models is limited, and efforts to date have
been inconclusive (e.g., Desai et al., 2010).

EC flux tower observations such as those collected by AmeriFlux,
ICOS, the forthcoming NEON and the global umbrella network
FLUXNET have become available at unprecedented temporal duration
and distributed spatial extents: Near continuous data on carbon, water,
heat and momentum fluxes and their climate and biological drivers are
collected across many eco-climatic domains. The longest running
towers are now approaching two decades of observations (Baldocchi,
2008). Significant progress has been made on quality control metrics
(Mauder et al., 2013) and addressing systematic biases (Foken et al.,
2011). As a consequence, syntheses of flux-tower data have docu-
mented age-related changes in carbon flux in forests (Luyssaert et al.,
2008), global photosynthetic potential (Beer et al., 2010), global carbon
turnover times (Carvalhais et al., 2014), controls of temperature and
dryness on latitudinal variations (Yi et al., 2010), and more. However,
fundamental challenges remain to adequately integrate EC flux ob-
servations into the earth system model improvement process. To date
virtually all model-data intercomparisons and regional to global
syntheses have neglected uncertainties in EC flux observations resulting
from location bias and energy balance non-closure.

These problems are well known, yet unified solutions remain elu-
sive. Desai et al. (2008) significantly improved the comparison between
a very tall flux tower and scaled stand-scale flux towers by “de-biasing”
the tall tower footprint. Wang et al. (2006) demonstrated retrieval of
land cover specific respiration and photosynthesis parameters by uti-
lizing hour-to-hour variations in flux footprint. Overall, location bias
diagnostics (Chen et al., 2011; Chen et al., 2012) or corrections (rec-
tification) have been applied only in limited domains.

Solutions to the energy balance closure problem are even less de-
veloped: The surface energy balance at most EC sites is not closed, the
available energy often 10–30% larger than the sum of the turbulent
fluxes (e.g., Stoy et al., 2013; Wilson et al., 2002). Numerous reasons
are proposed for the lack of energy balance closure. Recent studies
evaluating sensor uncertainty and spatial scaling have ruled out ra-
diation and ground heat measurements as the primary cause (e.g., Horst
et al., 2015; Liu et al., 2011). Flawed measurement and interpretation
of heat storage in soil, air column, and biomass below the EC mea-
surement has shown promise in reducing the bias (Leuning et al., 2012;
Lindroth et al., 2010). However, it does not apply similarly across sites:
For example, over low stature ecosystems storage in air and biomass are

typically of little relevance. Similarly, horizontal and vertical diver-
gence terms can lead to a lack of closure, but in complex terrain it is
difficult to attribute a systematic loss of energy since coupling should
occur at least periodically (e.g., Barr et al., 2013; Zitouna-Chebbi et al.,
2012). This leaves landscape heterogeneity and associated low-fre-
quency mesoscale circulations (e.g., Foken, 2008; Panin et al., 1998) as
suggested systematic source, with the bias largely attributed to sim-
plifications of the mass balance concept upon which most EC studies
depend (Finnigan et al., 2003).

To practically evaluate the severity of violated EC assumptions, case
studies have monitored the surrounding of an EC tower to more ex-
plicitly represent a control volume (incl. storage and divergence terms,
Aubinet and Feigenwinter, 2010; Foken et al., 2010; Oncley et al.,
2007). Alternatively, diagnostic tests during data processing can be
used to subset the EC data for periods that more likely fulfill the un-
derlying assumptions (Foken et al., 2004; Mauder and Foken, 2006).
However, these existing methods are constrained either by their degree
of realism, resource demand, temporal coverage, varying spatial re-
presentativeness, or combinations thereof.

I posit here that surface heterogeneity and changing sample char-
acteristics over time are not problems that necessarily require additional
data filtering. Instead, they are characteristics whose inherent variability
can be utilized to develop better flux data products for model evaluation,
assimilation, and improvement. This shall be achieved through transfer-
ring EC flux observations from multiple mismatching, irregular and
transient control volumes to a single matching, regular and stationary
control volume. It is accomplished by expanding the temporally resolved
but planar environmental response function (ERF) technique (Metzger
et al., 2013a; Xu et al., 2017) to a virtual control volume (VCV).

The objective of this manuscript is to derive the theoretical back-
ground and requirements for ERF-VCV, and thus to provide a means for
addressing the location and energy balance biases underlying EC flux
measurements. I will test the hypothesis that the resilience of tower
eddy-covariance measurements to advection errors can be improved by
at least one order of magnitude through combining spectral averaging
with source area modeling and spatio-temporally explicit ensembling.
In the following sections the ERF-VCV concept and its implications are
derived. Section 2 introduces the methodology, beginning from the
control volume framework (Section 2.1), and then using ERF-VCV to
formally interrelate point measurements to it (Sections. 2.2–2.4). Sec-
tion 3 presents example results, beginning with performance require-
ments (Sect. 3.1), then discussing implications of representation and
representativeness on energy imbalance (Section 3.2), as well as prac-
tical difficulties and proposed solutions (Section 3.3). Section 4 sum-
marizes my findings and provides an outlook. In extension, Xu et al.
(this issue) present the first practical application of ERF-VCV.

2. Materials and methods

The exchange of momentum, heat, water vapor, CO2 and other
scalars between the earth’s surface and the atmosphere is often domi-
nated by turbulent transport: Buoyancy as well as shear stress result in a
turbulent wind field for most of the day (e.g., Stull, 1988). The EC
technique utilizes these turbulence properties, making it a suitable
method for the direct and continuous monitoring of surface-atmosphere
interactions. However, questions arise from inherent theoretical as-
sumptions of the EC method about relevant terms to the full mass
balance, spatial scale and representativeness, and energy balance clo-
sure. All of these impact environmental inference and the efforts to
develop and test model parameterizations.

In the following I will explore the foundation of EC, the formal
control volume framework (Section 2.1). This is followed by deriving
ERF-VCV, through relating point measurements to surface patches
(Section 2.2), and subsequently surface patches to the control volume
(Section 2.3). Section 2.4 provides the minimum requirements for ap-
plying ERF-VCV to flux towers.

Fig. 1. Space-time scope diagram for a hierarchy of environmental observations in re-
lation to two principal approaches for scaling to an information continuum:
Environmental response function virtual control volume (ERF-VCV) and earth system
model (ESM).
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2.1. The control volume framework

The net exchange between surface and atmosphere (NSAE) relies on
mass conservation, and can be expressed as the Reynolds decomposi-
tion (isolation of mean and fluctuating parts) of relevant terms in the
continuity equation (e.g., Foken, 2017; Stull, 1988). Here, c is a scalar
quantity such as temperature, H2O or CO2 dry mole fractions; u, v and w
are wind components with respect to the Cartesian coordinate axes x, y,
and z; t is time, and h is the height of the EC measurement located at the
lid of the control volume and centered with respect to its length and
width 2 L (Fig. 2). The overbars indicate a time average, and primes
denote turbulent deviations from the time average:
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In Eq. (1) line I represents enrichment or depletion of the scalar within
the control volume, i.e. change in storage. Lines II and III represent the
sum of advective and turbulent fluxes between the control volume
bottom and lid, in the horizontal (line II) and vertical (line III) direc-
tions, respectively. Line III differs from Finnigan (2004); Finnigan et al.
(2003) in that it retains the vertical differential and integration op-
erators. This property principally supports the vertical partitioning of
sources at various heights, such as encountered in multistory ecosys-
tems and urban environments (Section 3.3). Line III reduces to
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exchange is of interest, i.e. the vertical differential and integration
operators cancel with →
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In order to quantify the complete mass balance, all of the terms in
Eq. (1) should be measured. However, even with a well-equipped EC
tower only few terms in Eq. (1) are actually measured, reducing Eq. (1)
to Eq. (2): In line I the local storage change is measured along the
vertical tower column, in line II horizontal fluxes are not measured at
all, and in line III only the local turbulent vertical flux is measured at
the tower top. To nevertheless permit a statement about NSAE, the
control volume is assumed to be horizontally homogeneous (i.e.,
∂/∂x = 0, ∂/∂y= 0), thus theoretically cancelling the remaining terms:
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However, real ecosystems are heterogeneous in many respects and
on many scales. Thus, what little is directly measured results in various
known complications (Finnigan et al., 2003):

(i) The local storage change measured along the vertical tower
column, Eq. (2) line I, is no longer necessarily equal to the storage
change across the control volume, Eq. (1) line I.

(ii) The horizontal flux divergence, Eq. (2) line II, is no longer ne-
cessarily zero across the control volume, Eq. (1) line II.

(iii) The local turbulent vertical flux measured at the tower top, Eq. (2)
line III, is no longer necessarily equal to the turbulent and ad-
vective vertical flux integrated across the control volume, Eq. (1)
line III.

In short: For determining NSAE over non-homogeneous landscapes,
Eq. (2) cannot represent the actual control volume mass balance. As a
practical workaround, flux observations are often filtered e.g. by sta-
tionarity, turbulent mixing and blending height tests for periods that
more likely fulfill these assumptions (e.g., Foken and Wichura, 1996;
Mahrt, 2000). In the following I will explore a fundamental solution to
this long-standing dilemma, i.e. explicitly addressing each term in Eq.
(1) through ERF-VCV with data from a single tower and remote sensing
alone.

2.2. From points to patches

Conceptually, tower EC measurements attempt to replace a spatial
ensemble of instantaneous values at multiple locations with a suffi-
ciently long temporal record at one point: The frozen turbulence simi-
larity theory (Taylor, 1938) provides a convenient approach to the
necessary transformation between Eulerian and Lagrangian flow
formalisms.

2.2.1. Representation error
The flux footprint concept (Leclerc and Foken, 2014; Schmid, 2002;

Vesala et al., 2008) provides a useful illustration of such transforma-
tion: The time averaged measurement at one point represents the flux of
energy or some atmospheric constituent to or from an upwind surface
patch known as the flux footprint, whose area increases with h. At a pre-
defined significance level, the ensemble trajectory of all Lagrangian
particles contributing to the measurement can be enveloped by the
horizontally footprint-weighted volume below the measurement
(Fig. 3). This volume varies over time as a function of vegetation height,
canopy roughness, wind direction, shear stress, atmospheric stability,
wind variance, and several other factors (Kljun et al., 2015).

The footprint itself can be interpreted as the surface patch to which
the mass balance computed at the tower refers (Finnigan, 2004). In
consequence, the footprint volume corresponds to the Lagrangian, ir-
regular and transient control volumes our measurements actually ob-
serve (Fig. 3). As can be seen, this is in stark contrast to the Eulerian,
regular and stationary control volume in Fig. 2, which per Eq. (1) our
measurements are formally required to represent. In the following I will
refer to this as representation error.

In a homogeneous surface layer, per definition of ∂/∂x= 0,
∂/∂y= 0, the representation error is zero, and our measurements can
be used to calculate the mass balance directly via Eq. (2). Over a non-
homogeneous landscape, however, the observed flux is subject to
random and systematic variations due to changes in the area and vo-
lume that is sampled (Fig. 3). This necessitates transforming

Fig. 2. EC measurements from an Eulerian perspective. Conceptual framework of a reg-
ular and stationary control volume, modified after Finnigan (2004).
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observations that are best described in a Lagrangian representation to
the Eulerian representation required by Eq. (1). The matter is
additionally aggravated for the storage change measured along the
vertical tower column (Eq. (2) line I), for which each measurement
level represents a different, mismatching surface area and thus control
volume (Raupach, 1988). To date even sophisticated analyses of the
storage term (e.g., Bjorkegren et al., 2015) have yet to address this
representation error.

2.2.2. Representativeness error
Representativeness of a measurement is defined as the extent to

which it reflects the actual conditions in the space-time domain of in-
terest (Nappo et al., 1982). Any transient bias that occurs from changes
in sampled characteristics with time will bias environmental inference
and model-data comparison, and thus corrupt the model improvement
process. Essentially, observations and modeling currently coexist on
two completely different spatial scales, requiring some treatment of the
observations to inform models (Fig. 4).

There are currently two basic approaches to bridge this scale gap,

data-driven and process-based. Data-driven approaches minimize as-
sumptions by inferring relationships among observations directly from
the available data. A simple example of data-driven methods is the “tile-
approach”, which expresses a measured flux as a linear composite of
contributing land surface fractions (e.g., Beyrich et al., 2006; Chen
et al., 1999; Fig. 4). This approach neglects to account for intra-class
variability; however, several studies have shown that even within the
same vegetative class different surface areas can dominate the fluxes of
different scalars (Bertoldi et al., 2013; Metzger et al., 2013a).

On the other hand, process-based approaches rely on prescribed
mechanistic relationships, which are typically valid only for steady-
state conditions. One class of algorithms focuses on remotely-sensed
properties of the land surface, allowing to determine biases introduced
through spatial aggregation (Ershadi et al., 2013; Stoy et al., 2009).
Land surface models utilize additional in-situ observations (e.g., Chen
et al., 2010; Xiao et al., 2011). A key limitation to process-based ap-
proaches is the assumption of energy and water balance closure (e.g.,
Anderson et al., 2008; Cammalleri et al., 2012), which is not typically
achieved from observations in the field.

In the following I will examine how ERF-VCV combines the
strengths of data-driven and process-based approaches to address both,
representation error and representativeness error.

2.3. From patches to control volume

One major challenge for deciphering the controls of surface-atmo-
sphere exchange lies in the observational co-variations in space (e.g.,
source attribution) and time (e.g., diel cycle in surface forcing). The
ERF-VCV procedure permits the necessary de-convolution and rectifi-
cation through the systematic and synergistic extraction and re-pro-
jection of information. In Section 2.3.1 I will first explore the founda-
tions of ERF-VCV data processing, and then apply it in Section 2.3.2 to
reconcile the multiple Lagrangian control volumes into a single Eu-
lerian volume per Eq. (1).

2.3.1. The ERF-VCV technique
ERF-VCV is a progression of the ERF technique (Metzger et al.,

2013a) from time-resolved 2-D planar to 3-D cuboid dimensionality.
This is achieved through relating flux ‘response’ observations at very
high spatio-temporal resolution to meteorological ‘drivers’ and surface
properties. The extracted relationships are then used to explicitly re-
project fluxes in 3-D space and time throughout the VCV (Fig. 5). These
steps are realized by coupling time-frequency-decomposed flux ob-
servations with flux footprint modeling and machine learning.

Based on the considerations of isotropy and ergodicity, the

Fig. 3. EC measurements from a Lagrangian perspective. The upwind flux footprint volumes are shown as semi-transparent 3-D envelopes with different colors for each level. ERF-VCV
links the tower-measured flux response to in-situ meteorological measurements and footprint-weighted biophysical surface properties.

Fig. 4. How well an in-situ measurement can represent a model grid cell depends on its
placement in a heterogeneous landscape. Modified after Mengelkamp et al. (2006).
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traditional EC approach requires averaging turbulent fluctuations at the
tower-top over a 15–60-min window depending on measurement height
(e.g., Foken, 2017). This makes it susceptible to changing turbulent
conditions and source area variations that occur on shorter time scales
(Schaller et al., 2017). By using a Wavelet-based spectral average the
flux measurement period can be reduced substantially without ne-
glecting long-wavelength flux contributions (order 5-min averages;
Charuchittipan et al., 2014). Here, the Morlet mother Wavelet is used,
which has been shown to permit clear spatial attribution when used in
combination with footprint modeling (Metzger et al., 2013a). Storage
time-rate-of-change at multiple measurement heights below the tower-
top is determined from the time-differences of 15 min block-averages
(Xu et al., this issue).

Meteorological drivers are obtained from temporally continuous in-
situ measurements, and surface properties from footprint-weighted
spatially continuous remote sensing data products. These two types of
drivers complement each other to explain the spatio-temporal variation
of the flux responses. Specifically, the utility of meteorological drivers
such as potential temperature and water vapor dry mole fraction is to
explain temporal variation. They are utilized from observations above
the blending height (Mahrt, 1996; Mason, 1988) so that the assumption
of spatial homogeneity is weak. In contrast, the utility of biophysical
land surface properties such as temperature and vegetation indices is to
explain spatial variation. Consequently, remote sensing data products
are downscaled linearly in time to daily resolution, and bi-linearly in
space to horizontal resolution equaling the EC measurement height (Xu
et al., 2017). The biophysical properties in the ‘Lagrangian’ surface area
represented by each observed turbulent flux and storage time-rate-of-
change response is determined through flux footprint modeling (Kljun
et al., 2004; Metzger et al., 2012) using the Wavelet-based turbulence
statistics as inputs (Metzger et al., 2013a; Xu et al., this issue).

The resulting large sample size and high signal-to-noise ratio en-
ables machine learning to extract key relationships between the atmo-
spheric flux responses, and land surface and meteorological drivers.
Here, the boosted regression trees technique is used (Elith et al., 2008;
Metzger et al., 2013a). In terms of driver selection, temperature and
water vapor gradients between surface and atmosphere, solar radiation
and relative measurement height within the boundary layer have
shown to be important controls on the observed fluxes, incl. vertical

flux divergence. To improve the signal/noise ratio, only observations
that pass the test sequence after Xu et al. (this issue) are used for ma-
chine learning: De-spiking of raw data, periods with excessive missing
data, fluxes approaching the detection limit, de-spiking of flux ob-
servations, integral turbulence characteristics. The importance of each
driver is then determined by how much variation of the response it
explains, which together with fundamental process understanding is
used to include or drop the driver. Total explained variation is in excess
of 95%. Once extracted, the multi-dimensional response function is
used alongside the continuously available drivers to re-project the time-
resolved flux throughout the ‘Eulerian’ VCV. The turbulent flux is di-
rectly projected to the lid of the Eulerian control volume. In contrast,
the storage time-rate-of-change is projected to multiple levels between
the control volume surface and lid, and the grid-cell storage flux is then
determined from vertical integration.

To summarize, ERF-VCV acts as a solver that catalyzes process and
artificial intelligence concepts: It employs well understood process de-
scriptions such as footprint modeling and vertical gradients in combi-
nation with non-aligned observations such as from towers, aircrafts and
satellites alike. It then mines all the information contained in the pro-
vided processes and observations. In result an answer to a complex
question is provided incl. confidence intervals, such as the Lagrangian-
to-Eulerian transformation of flux observations.

This can be formally expressed with R (x1⋯X, y1⋯Y, z1⋯Z, t1⋯T) being
comparatively expensive and sparse response observations, such as those
made by EC flux towers. In contrast, driver observations D (x1⋯X, y1⋯Y,
z1⋯Z, t1⋯T) are comparatively cheap and collectively dense, such as tem-
perature measurements made by meteorological stations, commercial
aircraft and satellite. Together with the existing process understanding P,
the ERF extraction is sparse in x, y, z, t − space through dataset R1:

=ERF f R D P( , , ).1 1 (3)

In contrast, the ERF projection acts as transfer function on dataset
D2, and the resulting R2 is dense in x, y, z, t – space:

→ERF D P R( , ) .2 2 (4)

As such, ERF yields the most complete approximation of the true R2

that is possible from the provided information. The Lagrangian-to-
Eulerian transformation of flux observations is an ERF example

Fig. 5. Essential steps of the ERF procedure, from observation over response function extraction to spatio-temporal projection and resulting spatial probability density function.
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application. The resulting ERF-VCV minimizes methodological as-
sumptions, e.g. no linearity or closure of energy or water balances are
required.

2.3.2. Reconciling continuity, representation and representativeness
Although the EC technique assumes homogeneity, real ecosystems

are heterogeneous in many respects and on many scales. Superimposing
the Lagrangian footprint concept over a Eulerian control volume, this
can be visualized as a “leaky box” (Fig. 6 top panel). That is, the tower
measures air parcels that partially originate from beyond the bound-
aries of a homogeneous surface patch. Among others, this fraction de-
pends on measurement height, i.e. the turbulent flux observation on the
tower top sources a different ratio of these surface patches compared to
the storage term profile observations below. As a practical workaround,
flux observations are often filtered e.g. by stationarity tests for periods
that more likely fulfill the necessary assumptions.

Here, I propose a solution to this long-standing dilemma, i.e. making
a single, regular, stationary and divergence-free control volume an
accurate representation for all available in-situ observations (Fig. 6
bottom panel): ERF-VCV provides the necessary 4-D operator to ex-
plicitly map all terms in Eq. (1) from tower storage and vertical flux
observations. This is achieved by decomposing the flux response into
surface forcing (e.g., heat emission, the process of interest) and its at-
mospheric transport (e.g., blending, the process that complicates in-
terpretation). This allows holding the air parcels horizontally in place
within the control volume, thus permitting to focus on the surface
forcing, i.e. the quantity of interest. Practically, this is achieved through
combining spectral averaging with source area modeling and spatio-
temporally explicit ensembling, as detailed in the following.

First, the vertical advection term w c h( ) is conveniently included in
the total vertical flux wc h( ), which is achieved through spectral aver-
aging + ′ ′w c h w c h( ) ( ) using Wavelets. The approach is similar to
Ogives in the frequency domain (Desjardins et al., 1989): Spectral
contributions are cumulated from high to low frequencies until wc h( )
trends to a stable value at the spectral gap between turbulent and
diurnal scales. Time-frequency procedures such as Wavelets have the
additional advantage that wc h( ) can be discretized at time resolutions
that are much shorter (e.g., minutes) compared to the maximum con-
sidered transport scale (e.g., hours; Barnhart et al., 2012; Xu et al., this
issue). Here, Wavelet transport scales up to several hours are

considered, with flux results discretized at a period of several minutes.
Over these transport scales atmospheric motions such as the passage of
convective eddies or mesoscale circulations can induce non-zero w , and
compensating horizontal advection and storage in any such period
(Finnigan et al., 2003; Mauder et al., 2008). At a single tower, period-
to-period variations in

−−
wc h( ) may thus greatly exceed ′ ′w c h( ):

−−
wc h( )

carries not only the net low-frequency contribution to the vertical flux,
but partially compensates the horizontal flux divergences

∫ +∂
∂

∂
∂ dz

h
uc
x

vc
y

0

which cannot be measured from a single tower. As a

result the period-to-period variations of the total vertical flux wc h( ) are
very noisy (Finnigan et al., 2003). The fundamental challenge here is
that the net low-frequency flux is masked by the time-varying com-
pensatory flux in the same frequency range but of potentially larger
magnitude.

Second, a flux footprint model (Kljun et al., 2004; Metzger et al.,
2012) is used to link the observed total flux responses to surface drivers.
The utilized footprint model provides a solution to the advection-dif-
fusion equation that assumes horizontally homogeneous turbulence and
steady-state. It thus tends to perform better at attributing high-fre-
quency flux contributions to their local sources as compared to attri-
buting compensatory fluxes incl. the net low-frequency flux to their
more distant sources. Thus, footprint-weighted land surface drivers are
derived with the surface sources of the compensatory fluxes only par-
tially attributed (Metzger et al., 2013a).

Third, machine learning extracts the relationships between 1000s of
flux observations and the footprint-weighed land surface drivers as well
as meteorological forcings. In this process the ensemble effect over
many fragments results in a near-complete reproduction of the high-
frequency flux as well as the compensatory fluxes, which are propa-
gated into the resulting response functions.

Fourth, the compensatory fluxes are remedied during machine
projection: An ensemble can be created of multiple periods at a single
tower in homogenous terrain (Finnigan et al., 2003), or of a single
period at multiple distributed towers in heterogeneous terrain (Desai
et al., 2016; Engelmann and Bernhofer, 2016; Mauder et al., 2008;
Steinfeld et al., 2007). Here I consider the spatial case, for which the

horizontal flux divergence ∫ ∫ ∫⎡
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Fig. 6. Tower turbulent and storage flux measurements in a cuboid control volume. Top panel: Tower observations in a “leaky” control volume with air parcels from within and beyond
the control volume passing by the tower. Bottom panel: ERF-VCV mapping operator independently considering the surface forcing on an air parcel and its atmospheric mediation, while
inhibiting its lateral displacement.
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towards its ensemble value of zero with increasing domain size, thus
cancelling Eq. (5) line II. Correspondingly, residual compensatory flux

is removed from the storage term ∫ ∫ ∫⎡
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line I, and the vertical advection ∫ ∫
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the net vertical flux Eq. (5) line III trends to its net low frequency flux
contribution.
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To summarize the space and time resolved realization of Eq. (5):
ERF-VCV does not assume that the utilized storage and vertical flux
observations represent the true surface flux. Rather, it acknowledges
that the observations are a combination of the net surface flux and
atmospheric dynamics, such as quasi-stationary structures and con-
vective eddies. By means of statistical inversion, ERF-VCV acts as
transfer function on the meteorological and surface forcings: The total
storage and vertical fluxes are projected into areas with similar surface
and meteorological state-space combinations. In result, the tower sto-
rage and total vertical flux observations are transferred from their
multiple mismatching Lagrangian control volumes into the grid cells of
a single matching Eulerian control volume. The resulting flux grids
represent the spatial ensemble as it would be observed from one virtual
tower in each grid cell: The tower’s footprint continuously covers only
that cell. The resulting consistent representation along its large number
of individual grid cells permits cancellation of the compensation flux
components and thus to determine the net surface flux for ensembles of
grid cells, e.g. along cross-sections, land covers etc.

Compared to a single flux tower with a transient flux footprint, the
ERF-VCV flux field provides continuous information on flux spatial
patterning and frequency of occurrence across the entire target domain.
It thus permits to extend spatial representativeness from the flux foot-
print to a model grid-size target domain.

2.4. Minimum requirements for applying ERF-VCV to flux towers

Depending on landscape fragmentation, the VCV side length 2L can
be expected to be on the order of 50 h < 2L < 200 h, with h being the
turbulent flux measurement height. When exceeding this scale, ERF-
VCV over heterogeneous terrain has shown to project missing values
in> 10% of all cases: The number of driver combinations that are not
encountered in the training dataset typically increases with distance
from the tower. It should be noted that over homogeneous terrain one
should expect the application of ERF-VCV to be obsolete, as standard EC
assumptions are theoretically fulfilled. For a minimalistic application of
ERF-VCV to sensible and latent heat flux observations (responses), the
solar forcing, boundary layer height and vertical gradients of tem-
perature and humidity can be used (drivers). Turbulent sensible and
latent heat flux observations at the tower top should be accompanied by
profile observations of temperature and humidity to determine the
corresponding storage fluxes. Several options are available for pro-
viding driver information, incl. proxy information. For example, the
solar forcing can be expressed as observed net radiation (Metzger et al.,
2013a), but also via the solar azimuth angle (Xu et al., this issue).
Analogously, boundary layer height can be provided from Ceilometer or
similar measurements, or re-analysis data. The gradients of temperature
and humidity are easily constructed in the ERF by providing air tem-
perature and humidity observations, and corresponding land surface

proxies such as MODIS land surface temperature and vegetation indices
(Metzger et al., 2013a; Xu et al., this issue). To keep the assumption of
spatial homogeneity weak, the air temperature and humidity observa-
tions should be taken from a tower level above the blending height.
Similarly, the spatial resolution of the land surface drivers should be on
the order of h or finer to enable sufficient spatial attribution. Applying
ERF-VCV to observations that fall short of these requirements is prin-
cipally possible. However, the resulting uncertainties warrant careful
investigation.

The ERF-VCV routines were developed in GNU R version 3.1 (R Core
Team, 2016) as part of the eddy4R family of R-packages (Metzger et al.,
2017; Xu et al., this issue). Corresponding Docker compute images, R-
packages and workflow examples are being developed for a public re-
pository, and are available upon request at the time of writing.

The ERF-VCV analysis required ∼130 CPU-minutes and ∼10 GB
memory per 24 h of 20 Hz turbulence data, 1 Hz profile data with 2
observation levels and 5 projection levels, and 2 land surface drivers
over a 200 × 200 cell grid. The input data size (gzip or hdf5 com-
pressed) is ∼0.5 GB, machine learning requires ∼10 CPU-minutes and
2 GB memory, and machine projection requires∼120 CPU-minutes and
10 GB memory. The output data size is< 0.1 GB per day. For successful
application ERV-VCV requires several weeks of data. For this purpose it
is possible to parallelize ERV-VCV over multiple CPUs.

3. Results and discussion

In the following I investigate the hypothesis that ERF-VCV can im-
prove the resilience of tower EC measurements to advection errors by at
least one order of magnitude. Corresponding performance requirements
on a suitable data analysis tool are derived in Section 3.1. This is fol-
lowed by example results in Section 3.2, which are used to illustrate the
utility of ERF-VCV for addressing EC location and energy balance
biases. Lastly, Section 3.3 discusses remaining practical difficulties and
proposed solutions.

3.1. Performance requirements

ERF-VCV sets out to reduce EC advection errors through combining
spectral averaging with source area modeling and spatio-temporally
explicit ensembling. The individual utility, performance and limitations
of spectral averaging (e.g., Charuchittipan et al., 2014; Schaller et al.,
2017; Strunin and Hiyama, 2004; Thomas and Foken, 2005; van den
Kroonenberg and Bange, 2007) and source area modeling (Kljun et al.,
2015; Leclerc and Foken, 2014; Markkanen et al., 2010; Rannik et al.,
2012; Vesala et al., 2008) are well documented. In their uncertainty
budgets Xu et al. (2017) and Metzger et al. (2013a) determine their
combined effects on the ERF results to 0–4% bias and 1–5% standard
error depending on the number of aggregated grid cells.

This points to the possibility of using spatio-temporally explicit

Fig. 7. Resilience of EC tower measurements and ERF-VCV net surface flux maps to ex-
ternal advection errors. Black boxes indicate the typical ranges of EC tower and ERF-VCV,
respectively. The red triangles represent the absolute resilience calculated as ratio of
explained to unexplained surfaces of an Eulerian control volume, and the blue circles
represent the resilience of ERF-VCV relative to the EC tower.
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ensembling for extracting the net low frequency flux contribution from
the compensation fluxes perceived as advection error at single tower EC
sites. The centerpiece for this functionality is for ERF-VCV to act as 4-D
mapping operator: Process understanding and observational informa-
tion are catalyzed through a combination a systematic extraction and
projection leveraging artificial intelligence.

3.1.1. Resilience to external advection errors
Consider the EC vertical flux measurement height as fundamental

distance unit, horizontal and vertical. It also intersects with the lid of
the Eulerian control volume into which ERF-VCV is projecting (Fig. 2).
Per definition of a cumulative footprint weight of unity, the standard EC
tower measurements of storage and vertical fluxes each represent a
single censused unit. Here, a censused unit represents constrained
surfaces, i.e. grid cells with fully explained storage and vertical flux. In
reality, the cumulative footprint weight does not origin only from the
tower grid cell, but also from further upwind following a 2-D dis-
tribution function. Nevertheless, the cumulative footprint weight and
corresponding information content remains unity: The tower mea-
surement represents a single fully censused unit consisting of a varying
number of fractionally censused units. For the sake of a conservative
argument I assume that over time the Lagrangian tower footprint can
represent a Eulerian control volume of 10 distance units side length.
This approximates the extent of well-constrained footprints under
daytime conditions, and results in ∼100 censused units. ERF-VCV on
the other hand acts as a transfer function, mapping within the range of
observed state-space combinations. For a single tower this permits
mapping with ≥90% coverage across an Eulerian control volume of
side length 50–200 distance units (Xu et al., 2017), resulting in
∼10,000 censused units.

Next, the non-censused units or unconstrained surfaces with regard
to advection errors are examined: Advection with external can occur
through the side walls of the control volume, for which also ERF-VCV
does not currently provide boundary conditions. 4 walls of distance unit

height result in ∼40 non-censused units and ∼400 non-censused units
for the EC tower and ERF-VCV, respectively. The resilience against
external advection can now be approximated as the ratio of censused
units to non-censused units, resulting in an absolute resilience of 2.5
and 25 for the EC tower and ERF-VCV, respectively (Fig. 7, red trian-
gles). Hence, ERF-VCV promises to be at least one order of magnitude
more resilient to external advection errors compared to an individual
EC tower. It can also be seen that the resilience increases directly
proportional to the side length of the ERF-VCV target domain (Fig. 7,
blue circles), highlighting the importance on EC tower location and
driver selection to maximize the projectable area.

3.1.2. Resilience to internal advection errors
ERF-VCV makes use of increasing the control volume so internal net

horizontal advection cancels and the compensatory fluxes in the storage
and vertical terms trend towards their ensemble value, i.e. their net low
frequency contribution (Section 2.3.2). The resilience to internal ad-
vection errors can thus be expressed as ∝ L2se

1 . Here, the standard error

∝se
N
1 represents the closeness of the ensemble mean to the true net

low frequency flux, with the number of considered grid cells N ∝ 4 L2,
and side the length of the Eulerian control volume 2L. During actual
application, ERF-VCV can encounter time-space locations that cannot
be projected into as at least one driver exceeds the range of the training
data (white spaces in Fig. 8). The extent of the control volume is chosen
so that the fraction of white cells is< 10%, thus reducing the resilience
of ERV-VCV to internal advection errors by no more than 5%. To
summarize: Even if the flux observations informing ERF-VCV are im-
perfect, the resilience to external and internal advection both increases
directly proportional to the control volume side length, by at least one
order of magnitude. This effect is further illustrated and discussed in the
following.

Fig. 8. Flux footprint variations over time at the AmeriFlux Park Falls tall tower at 122 m measurement height, modified after Metzger et al. (2013b). The footprints are superimposed
over the ERF derived grids of turbulent sensible heat flux at the lid of the Eulerian control volume.
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3.2. Representation, representativeness and energy imbalance

One fundamental challenge for model-data comparison lies in the
scale mismatch: EC tower observations represent temporally varying
and small source areas (100–101 km2) in conjunction with their
Lagrangian control volumes (Fig. 3). In contrast, model simulations
produce regular, regional-scale grids (102–103 km2), much alike the
Eulerian control volume (Fig. 6). Here, the ERF methodology provides a
promising link through unveiling the regional flux field underlying the
footprint-biased observations. Metzger et al. (2014) and Xu et al. (2014)
successfully implemented the ERF procedure for the Ameriflux WLEF
tall tower based on turbulent flux and downscaled MODIS remote
sensing data. The ERF outputs are spatio-temporally explicit projections
of the turbulent flux (Fig. 8), and the spatial coverage increases to
≥80% at 25 km2, ≥60% at 100 km2, and ≥50% at 400 km2 (Metzger
et al., 2013b; Xu et al., 2017). This demonstrates how model grid cell
heat flux can have significant differences and variability from the in-
dividual tower measurement.

To address the challenge of spatial scaling to model grid cell the
probability of point-to-area representativeness of a tower flux mea-
surement was assessed following Nappo et al. (1982). This was per-
formed not only for the average flux, but also for its variation across a
target domain (Fig. 9, left and center panels). The latter is of particular
interest, as many boundary layer processes such as mesoscale structures
are highly non-linear, and only a small fraction of the tower observa-
tions appear to represent the true spatial variability. These processes
are suspected to contribute to the observed non-closure of the energy
balance (Stoy et al., 2013), which is further addressed below. In model-
data fusion, spatial representativeness can serve as a criterion for the
selection of observations. In addition, ERF provides an unprecedented
advantage compared to existing strategies for model-data fusion: Not
only is the expected value quantified, but the entire probability density
function over a target domain.

In this way ERF-VCV also overcomes the drawbacks that hetero-
geneity within the flux footprint imposes on the interpretation of sea-
sonal, annual, and inter-annual NSAE: The flux tower footprint can be
quite variable between years, and one surface type is likely observed
more frequently in one year than in another. Hence, any observed dy-
namics or potential seasonal trends, as well as any constructed budgets
may be quite different only because of sampling a different source area
each year (e.g., Griebel et al., 2016; Montaldo and Oren, 2016; Morin
et al., 2017). The ERF-VCV’s fixed-frame representation across a time-

invariant target domain accounts for such variable footprint coverage:
Each surface type is now contributing in equitable proportions to the
NSAE. This allows deciphering true dynamics within each target do-
main that is unbiased by the fragmented footprint coverage of the flux
tower.

ERF-VCV further permits reconciling two principal sources in the
problem of energy balance non-closure: “Storage flux” (Leuning et al.,
2012) and “spatial heterogeneity” (Foken et al., 2011; Mauder et al.,
2007; Stoy et al., 2013). This is achieved through explicitly addressing
all terms in the continuity Eq. (5), and by spatially integrating over a
temporally consistent target domain.

Storage flux has been shown to contribute to some of this closure
due to a lack of suitable observations below the vertical flux mea-
surement height (Leuning et al., 2012). Specifically in the case of tall
towers, storage can comprise a substantial amount of the actual surface-
atmosphere exchange. This is directly addressed by the ERF-VCV sto-
rage flux projection, and the results are 3-D storage time-sequences
(Fig. 5 in Xu et al., this issue). Through superposition with the ERF-
projected turbulent flux maps at the lid of the Eulerian control volume,
the accuracy of surface-atmosphere exchange mapping in representing
Eq. (1) is substantially improved (Fig. 10). When aggregated for August
2011 over 400 km2 centered around the WLEF tower, the storage flux of
sensible heat differed in both sign and magnitude by +2.7 W/m2 be-
tween ERF-VCV (2.4 W/m2) and direct observations (−0.3 W/m2). The
difference was even larger for the corresponding vertical flux (+4.7 W/
m2 or +24%) and the net surface flux (+7.3 W/m2 or +40%), re-
spectively.

The systematic and significant increase in net sensible heat flux
implies improved energy balance closure, and can be explained by the
cancellation of advective errors and inclusion of the net low-frequency
flux: In the presence of daytime mesoscale structures, strong convection
of warmer/wetter air occurs in spatially confined updraft zones. This is
accompanied by a slight subsidence of cooler/dryer air across the ma-
jority of the target domain, and horizontal compensatory flows between
convection and subsidence zones (Kanda et al., 2004). Standard EC
from a single tower is not capable of capturing the net low-frequency
flux contributions of these boundary layer features, and thus likely
cannot represent the areal average surface flux. This is particularly
evident from Fig. 9 (left and center panels), where ERF-VCV reproduces
the long-tailed spatial distribution of large sensible heat fluxes, which is
absent from the corresponding tower observation.

In contrast to a single flux tower with transient Lagrangian

Fig. 9. Left and center panels: Probability density functions of tower observed and ERF projected turbulent sensible heat flux at the WLEF AmeriFlux Park Falls tall tower at 122 m
measurement height modified after Xu et al. (2014). ERF projection at the lid of the Eulerian control volume covers a 30 × 30 km target domain. The grey areas indicate, respectively, the
probability of the tower-observed flux being representative of the areal mean flux (left panel, 94%), and of the flux variation across the area (center panel, 69%), at a 5% significance
level. The right panel shows a summary of these probabilities for July and August 2011.
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footprints and control volumes, ERF-VCV continuously provides the
spatial patterning of the total flux across a consistent Eulerian control
volume. Spatial ensembling then permits to cancel transient compen-
sation fluxes related to advection. A systematic increase of the target
domain heat flux is expected, resulting from the inclusion of the re-
maining net low-frequency flux. Specifically, Fig. 8 in Xu et al. (this
issue) demonstrates for the WLEF AmeriFlux Park Falls tall tower how
the net surface fluxes of sensible and latent heat converge to their area-
average mean value for a control volume side length of 10 km and
15 km, respectively. This is accompanied by initially erratic behavior at
smaller side lengths, as expected from aggregating over an increasing
number of mesoscale structures, ultimately leading to a flux increase of
21% and 3%, respectively. The finding is in line with the analytical
considerations regarding external and internal resilience to advection
errors (Sections 3.1.1 and 3.1.2), which, given a measurement height of
122 m, predict a 10–15-fold improvement.

Spatial heterogeneity is associated with mesoscale variation in net
radiation, canopy development, variation in standing water for wet-
lands, and presence or absence of mesoscale turbulent structures in the
atmosphere. The ERF-VCV net surface flux maps can be further ana-
lyzed e.g. for variability in surface energy partitioning of sensible and
latent heat across space and time.

Observing a spatial phenomenon such as the net surface flux in a
fixed location over time assumes ergodicity, and thus homogeneity and
stationarity. Field experiments frequently invalidate these assumptions,
e.g. through scale analysis (Higgins et al., 2012; Sayde et al., 2015) and
spatial statistics (Engelmann and Bernhofer, 2016; Mauder et al., 2008).
Here, ERF-VCV comes to the aid and effectively enables spatial EC from
a single tower. This is not only easier to routinely operate and cheaper
compared to a tower array, but ERF-VCV in addition considers storage
flux and thus also removes the assumption of strict stationarity.

3.3. Practical difficulties and proposed solutions

The standard EC technique from a single tower employs strong as-
sumptions on horizontal homogeneity and stationarity in order to re-
flect the net surface flux. While ERF-VCV does not completely eradicate
these assumptions, as shown in Section 2.3.2 it permits to relax them to
a large extent. In fact, the resilience to advection errors increases di-
rectly proportional to the target domain size, as is shown in Section 3.1.

3.3.1. Assumptions
Nevertheless, ERF-VCV is not free of assumptions. First of all, in

order to determine the true surface flux it needs to be assumed that the
observations are free of instrument biases (Frank et al., 2013; Fratini
et al., 2014; Horst et al., 2015; Kochendorfer et al., 2013; Mauder,
2013). This includes correction of sensor representation errors, such as
e.g. when measuring on a slope (Metzger et al., 2015; Serrano-Ortiz
et al., 2016).

ERF-VCV then requires the assimilated observations to be domi-
nated by surface flux and not entrainment. This is achieved by filtering
both, storage and vertical flux observations for connectivity with the
surface using turbulent mixing tests, such as integral turbulence char-
acteristics (Foken, 2017). In result, typically a larger number of
nighttime than of daytime observations is discarded, which can result in
problematic nighttime data coverage.

Next, ERF-VCV assumes that the relevant combinations of atmo-
spheric dynamics and surface states across the target domain have been
sampled by the tower at some point during the observation period. In
very complex terrain a single tower might not be sufficient to fulfill this
assumption. Fortunately, ERF-VCV permits using driver and response
observations from multiple horizontally and vertically distributed
platforms together. In fact, e.g. the addition of sub-canopy towers al-
lows investigating the asynchronicity between processes in different
ecosystem stories and potentially their partitioning, or high-resolution
LIDAR can be utilized to explain topography-induced katabatic flows.

ERF-VCV further assumes that the footprint model is capable of at
least partially relating low-frequency fluxes to their surface sources. For
this purpose it is principally possible but computationally expensive to
explicitly consider non-homogeneous turbulence (Stein et al., 2015;
Stohl et al., 2005). However, Xu et al. (2017) and Metzger et al. (2013a)
determined that the use of a simple footprint parameterization is not
currently limiting ERF-VCV performance.

Lastly, like any inverse technique, ERF-VCV assumes that suitable
optimality and performance criteria are being used. The spatio-tem-
poral coverage of the projections provides a first line of defense in-
dicating whether atmospheric dynamics and surface states have been
adequately sampled: ERF-VCV can only project into areas with state-
space combination that have been experienced by the tower. Next,
stratified cross-validation, regression analysis and a bottom-up un-
certainty budget quantify how well ERF-VCV can reproduce dependent
and independent subsets of tower flux observations. Lastly, inter-site
comparison in combination with a top-down uncertainty budget (Xu
et al., 2017) provides the ultimate assessment tool. Uncertainty pro-
pagation, bootstrapping as well as cross-site validation agree on the ERF
methods’ accuracy on the order of 10%, i.e. smaller or equal to the EC
measurement technique itself (Xu et al., 2017). This represents the bias
resulting from ERF’s overall analytical sequence, which is compensated
via site-specific calibration prior to use of the results. On the other
hand, precision (ensemble random error; Mahrt, 1998) rapidly im-
proves with the number of grid cells considered, to order 1% over a
10 × 10 km target domain.

3.3.2. Verification and validation
Initial verification and validation of the ERF vertical flux component

has been successful (Metzger et al., 2013a; Xu et al., 2017). However, to
warrant general application a thorough validation across ecosystems,
climates and tower setups is required, in particular for the ERF-VCV

Fig. 10. Projected sensible heat flux grids of storage term (left panel), turbulent (center panel) and net surface-atmosphere exchange (right panel) after Xu et al. (2015). Display is for
August 13th, 2011, 13:00–14:00 CST with a tower-centered 20 × 20 km2 target region. White areas are gaps that cannot be reproduced by ERF because their biophysical properties
exceed the range of the training dataset.
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storage flux component (Xu et al., this issue). To be fully independent
such validation should be performed against true spatial flux datasets,
which only recently become available with the required density of
observations (e.g., Li et al., 2013).

Initially, the theoretical soundness and statistical significance of
ERF-VCV can also be tested against synthetic reference datasets from
large eddy simulations. Next, the practical applicability of the ERF-VCV
spatial rectification can be determined as function of a minimum
standard set of drivers for EC sites spanning various eco-climates. ERF-
VCV can then be cross-validated at sites with multiple proximate but
independent EC towers, including energy balance considerations.
Particularly suitable for such validation are proximate EC towers and
tower matrices in combination with a hierarchy of observations (tower,
flux and remote sensing aircraft, satellite). This more than likely would
require the design of a suitable energy balance closure experiment.

Even in the presence of such experiment, spatio-temporally explicit
information on net radiation and soil heat flux will be challenging to get
by. Here it can be explored to expand the ERF methodology to net ra-
diation and soil heat flux, in order to evaluate energy balance closure
with consistent spatial representation of all contributing terms.

4. Summary and conclusions

Even from a single eddy-covariance tower, the environmental re-
sponse function virtual control volume (ERF-VCV) methodology re-
duces the reliance on crucial mass balance simplifications by at least
one order of magnitude. In the same process tower location bias is ef-
fectively removed. A systematic increase in heat net surface flux was
observed and related to the ability of ERF-VCV to include low frequency
flux contributions while being resilient to advective errors. This pro-
mises improved energy balance closure, which may also have im-
plications for other trace gas fluxes such as CO2 (Foken, 2008).

This is achieved through a combination of spectral averaging,
source area modeling and spatio-temporally explicit ensembling using
machine learning: ERF-VCV effectively acts as a 4-D spatio-temporal
data assimilation system which explicitly addresses each term in the
continuity equation. In this way ERF-VCV is extensible and can in-
corporate additional observational and mechanistic constraints, neither
of which requiring spatio-temporal regularity or continuity. Examples
are multiple eddy-covariance towers and aircraft, distributed tem-
perature sensing, LIDAR and satellite remote sensing or even meteor-
ological re-analysis. Through maximizing data use efficiency ERF-VCV
can guide efficient and effective experiment design, and thus maximize
return on investment. It should be noted that ERF-VCV does not depend
on a given set of measurements, but rather acts as a flexible catalyst on
however much information is available. This makes it generally ap-
plicable across a broader range of disciplines, such as “machine
learning for Geosciences”.

The results of ERF-VCV are high-dimensional response functions
and net surface flux fields that can be used for the assessment and study
of environmental relationships and their spatio-temporal patterning
and aggregation. Application examples are the regionalization of en-
ergy and carbon fluxes from aircraft and tower (Metzger et al., 2013a;
Xu et al., 2017), spatially explicit mapping of biogenic and geogenic
CH4 sources in the Arctic (Kohnert et al., 2017; Sachs et al., 2014), or
the attribution of anthropogenic NOx and VOC emissions (Vaughan
et al., 2016; Vaughan et al., 2017).

ERF-VCV provides a rectifying observational operator for unbiased
model-data fusion, and process representation at the model grid scale:
In-situ co-varying processes are extracted on the field/landscape-scale
and can be used to systematically inform model structure, in addition to
parameterizing, initializing, constraining and validating models and
inventories with the net surface flux fields. This permits the identifi-
cation of key drivers, responses and the governing in situ processes, and
substantially improves our ability to study scale-dependent questions
such as microclimate adaptation, water use efficiency or impact of land-

use and land cover.
Ultimately, ERF-VCV attains a fixed-frame, thus equitable and time-

invariant representation of the net surface-atmosphere exchange across
a target domain. This permits adequately capturing true environmental
behavior, as well as the unbiased utilization of e.g. energy, water and
carbon cycle observations in model-data comparison, assimilation, and
process representation at model grid scale.
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