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Light use efficiency (LUE) is an important variable characterizing plant eco-physiological functions and refers
to the efficiency at which absorbed solar radiation is converted into photosynthates. The estimation of LUE at
regional to global scales would be a significant advantage for global carbon cycle research. Traditional
methods for canopy level LUE determination require meteorological inputs which cannot be easily obtained
by remote sensing. Here we propose a new algorithm that incorporates the enhanced vegetation index (EVI)
and a modified form of land surface temperature (Tm) for the estimation of monthly forest LUE based on
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Results demonstrate that a model
based on EVI×Tm parameterized from ten forest sites can provide reasonable estimates of monthly LUE for
temperate and boreal forest ecosystems in North America with an R2 of 0.51 (pb0.001) for the overall
dataset. The regression coefficients (a, b) of the LUE–EVI×Tm correlation for these ten sites have been
found to be closely correlated with the average EVI (EVI_ave, R2=0.68, p=0.003) and the minimum land
surface temperature (LST_min, R2=0.81, p=0.009), providing a possible approach for model calibration.
The calibrated model shows comparably good estimates of LUE for another ten independent forest ecosystems
with an overall rootmean square error (RMSE) of 0.055 g C permol photosynthetically active radiation. These re-
sults are especially important for the evergreen species due to their limited variability in canopy greenness. The
usefulness of this new LUE algorithm is further validated for the estimation of gross primary production (GPP)
at these sites with an RMSE of 37.6 g Cm−2 month−1 for all observations, which reflects a 28% improvement
over the standardMODISGPPproducts. These analyses shouldbe helpful in the furtherdevelopment of ecosystem
remote sensing methods and improving our understanding of the responses of various ecosystems to climate
change.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Forest ecosystems play an important role in global carbon seques-
tration (Beer et al., 2010; Zhao & Running, 2010). Annual global car-
bon uptake by vegetation, also referred to as gross primary
production (GPP), is around 123±8 petagrams of carbon per year
(Beer et al., 2010). However, substantial variations in GPP are
observed among different models and ecoregions, both at plant and

stand levels, and these discrepancies illustrate the limits to our full
understanding of the global carbon cycle.

Light use efficiency (LUE), defined as the amount of carbon fixed
in photosynthesis per unit of absorbed solar radiation, is an important
variable for the estimation of GPP from satellite inputs when using
the Monteith equation (Monteith, 1972):

GPP ¼ LUE � APAR ð1Þ

where APAR is the absorbed photosynthetically active radiation
calculated as the product of an absorbed fraction (fAPAR) and the
amount of incident photosynthetically active radiation (PAR).
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Typical methods for the simulation of LUE require prior specification
of a maximum LUE (ε0) for a specific land cover type and additional
input of climate variables (e.g., temperature, water stress) representing
canopy stresses that modulate this maximum LUE (Running et al.,
2004). This method has been useful in productivity models, such as
the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP
product (Running et al., 2004) and the Vegetation Photosynthesis
Model (Xiao et al., 2004). However, the dependence on input climate
variables and biome-scale maximum LUE can cause significant
deviation from observed GPP (Heinsch et al., 2006; Mu et al., 2011;
Zhao et al., 2006).

With ongoing improvements in our ability to remotely sense the
land surface, there has been an increase in efforts to directly infer
LUE using these observations. For example, the photochemical reflec-
tance index (PRI), defined as a normalized difference index using re-
flectance at 531 and 570 nm, is suggested to have potential in
tracking LUE both at the leaf scale based on ground spectral measure-
ments (Filella et al., 2009; Gamon et al., 1997) and satellite observa-
tions (Drolet et al., 2005, 2008; Goerner et al., 2009; Hall et al.,
2008; Hall et al., 2011; Hilker et al., 2009). However, PRI shows high
sensitivity to various extraneous effects such as canopy structure
and the view observer geometry, which prevents its use at landscape
and global scales and requires the appropriate upscaling algorithms
to account for structural differences in vegetation (Hilker et al.,
2010). Hilker et al. (2008) shows that while isotropic PRI scattering
is correlated to LUE variation, geometric scattering can be attributed
to canopy level shading. Therefore, remote sensing of forest LUE from
space would be achieved by measuring PRI as a function of shadow
fraction using multi-angle observations (Hall et al., 2008), which is
further confirmed by the relationship between spaceborne PRI and
canopy shadow fractions (Hilker et al., 2009). A theoretical concept
using a canopy reflectance model proposed by Hall et al. (2011)
recently further validates that using PRI alone to predict canopy LUE is
confounded by the shadow fraction viewed by the sensor.

A thorough analysis of PRI is shown in Garbulsky et al. (2011),
indicating that calibration of the PRI-LUE relation across biomes and
a careful attention to potentially confounding factors are both needed
for future improvement. Apart from PRI, Inoue et al. (2008)
demonstrate that a number of bands centered at the red edge and
near-infrared ranges also have potential in deriving indicators of
LUE for a wheat canopy. Correlations are reported between LUE and
a number of vegetation indices, including the normalized difference
vegetation index (NDVI, Rouse et al., 1974) and the enhance vegeta-
tion index (EVI, Huete et al., 2002) in crop (Wu et al., 2010, 2009)
and peatland ecosystems (Schubert et al., 2010). However, the
potential of a certain vegetation index as a proxy of LUE across biomes
and the underlying mechanism are still unknown (Huemmrich et al.,
2010; Zhang et al., 2009), probably due to a number of influencing
factors, including temperature, soil moisture, vapor pressure deficit
(VPD) and light quality (Coops et al., 2010).

Two specific aspects of knownvariations in LUEneed to be considered
for use in operational algorithms related to the use of vegetation indices.
First, environmental effects of temperature andwater stress considerably
modify LUE and cannot be interpreted by a single vegetation index. These
environmental controls likely limit the competency of productivity
models that incorporate vegetation indices under drought conditions
(Mu et al., 2011; Sims et al., 2008, 2006). A second uncertainty is the
application of only a single vegetation index in evergreen biomes that
show low dynamic ranges in greenness but potentially large variations
in LUE (Garbulsky et al., 2008; Nakaji et al., 2008). Hence, environmental
variables are potentially helpful in resolving these present limitations in
remotely sensed LUE. A possible candidate among those climate variables
is air temperature (Ta) because of its importance in influencing the
magnitude and timing of plant growth (Chen et al., 2003), ecosystem
respiration (Tang et al., 2008), LUE (Schwalm et al., 2006), and its corre-
lation with other environmental variables, such as vapor pressure deficit

(VPD) and PAR (Sims et al., 2008). This potential has been demonstrated
in previous studies, such as the MODIS GPP product which uses temper-
ature and VPD to reduce LUE under unfavorable conditions (Running et
al., 2004; Zhao et al., 2006). However, the dependence on the require-
ments of meteorological inputs at desired temporal and spatial scales
generally limits its global application (Mu et al., 2011).

With the availability of global carbon flux data that can be used to
calculate canopy level LUE for multiple ecosystems (Baldocchi, 2008),
it is possible to validate and compare the candidate LUE models and
their impacts on GPP for a broad array of forest types. Here we
present a methodology for estimating monthly LUE using MODIS
observations and compare simulated values against LUE derived
from flux measurements obtained from multiple temperate and boreal
forest sites within North America. MODIS-derived EVI and land surface
temperature (LST) are examined for their potential in estimating
monthly LUE across biomes. The objectives of this study are: (1) to
analyze the potential of EVI in evaluatingmonthly LUE for both decidu-
ous forests and evergreen forests, (2) to derive a new model that can
provide better estimates of monthly LUE using the MODIS EVI and LST
observations, and (3) to show the usefulness of the new LUE algorithm
in the estimation of forest GPP. This effort could result in an improved
algorithm for remote sensing of GPP and aid in understanding of terres-
trial carbon cycle-climate feedbacks in forested ecosystems.

2. Materials and methods

2.1. Study sites

We focused on twenty forest sites in the North American flux
networks, including twelve deciduous forests (DF) and eight
evergreen forests (EF) (Fig. 1). Half of these sites, composed of five
DF and five EF, were used to derive the LUE model and the remaining
sites were used for validation. Detailed descriptions of these sites are
shown in Table 1.

2.2. Flux and meteorological measurements

Flux data for the nine Canadian sites were downloaded from the
Fluxnet-Canada Data Information System (http://www.fluxnet-
canada.ca) while data for the other eleven AmeriFlux sites were
acquired from http://public.ornl.gov/ameriflux/dataproducts.shtml.
For all sites, months with modeled total GPP equal to or below zero or
themean Ta below zerowere not used. To runmodels at amonthly tem-
poral scale, sums ofmonthly precipitation and PARwere also generated.

For the Canadian sites, a standard procedure was used to estimate
annual net ecosystem production (NEP) and to partition NEP into
components of GPP and ecosystem respiration (Re) from gap-filled
half-hourly measurements (Barr et al., 2004). Empirical regressions
of nighttime NEE to temperature and daytime GPP to PAR were
used to estimate GPP and Re and fill gaps as discussed in more detail
in Barr et al. (2004).

For the AmeriFlux sites, level-4 monthly products were used for the
monthly GPP, air temperature (Ta) and radiation measurements. These
data were gap-filled with the Artificial Neural Network (ANN) method
(Papale & Valentini, 2003) and/or the Marginal Distribution Sampling
(MDS) method (Reichstein et al., 2005). Flags with information
regarding the quality of the original and gap-filled datawere also added.

Desai et al. (2008) show that while partitioning methods can cause
GPP or Re estimates to vary widely (~20%), using consistent
methodology across sites allows for robust characterization of
differences in GPP and Re across space and time. This is because flux
tower NEE generally constrains GPP and Re to a range of magnitudes
that do not strongly depend on partitioning technique, but care must
be taken in this process, as discussed in more detail in Desai et al.
(2008).
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2.3. MODIS products

Three derived MODIS land surface products were used in this
study. These data for each site were acquired at the Oak Ridge Nation-
al Laboratory's Distributed Active Archive Center (DAAC) website
(http://www.modis.ornl.gov/modis/index.cfm). The first is the 16-
day Terra MODIS vegetation index product (MOD13Q1, 250 m,
collection 5) that provides both NDVI and EVI computed from
atmospherically corrected bi-directional surface reflectance which
have been masked for water, clouds, heavy aerosols, and cloud
shadows. For each site, both NDVI and EVI were extracted from
3×3 MODIS pixels centered on the flux tower similar to the approach
used by Sims et al. (2008). The 3×3 MODIS pixels method was also
checked at each site with respect to both footprints (~1 km) and
land cover (Chen et al., 2011).

The second product is the MODIS GPP product (MOD17A2, 1 km,
collection 5.1), which is included in this study for model comparison.
MODIS GPP is driven by daily MODIS landcover, fAPAR/LAI and

interpolated surface meteorology at 1 km for the global vegetated
land surface (Zhao et al., 2006). This product is calculated using LUE
as:

GPP ¼ εmax �m T minð Þ �m VPDð Þ � FPAR� SWrad� 0:45 ð2Þ

where εmax is themaximumLUEobtained from lookup tables on the basis
of vegetation type. The scalers m(Tmin) and m(VPD) reduce εmaxunder
unfavorable conditions of low temperature and high VPD. Tmin, VPD
and SWrad are obtained from large spatial-scale meteorological data
sets that are available from the NASA Global Modeling and Assimilation
Office (GMAO) (http://gmao.gsfc.nasa.gov/).

The most recent update to the 8-day GPP products also corrects
previous issues arising from cloud contamination (Zhao et al., 2006).
Since it is not straightforward to determine which pixel the tower foot-
print primarily falls in, we have applied both the central and mean
values of 3×3 pixels. Preliminary results indicated that the latter
provided better correlation with GPP from flux measurements, and

Fig. 1. Spatial distribution of the twenty sites in this study, DF and EF represent deciduous forest and evergreen forest sites, respectively.
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therefore we subsequently relied on that value to estimate MODIS-
derived tower GPP.

We also extracted MODIS 8-day Land Surface Temperature (LST)
and Emissivity product (MOD11A2, 1 km) derived by applying the
generalized split-window algorithm. In the split-window algorithm,
emissivity in bands 31 and 32 are estimated from land cover types,
and atmospheric column water vapor and lower boundary air surface
temperature are separated into tractable sub-ranges for optimal
retrieval (Wan, 2008).

2.4. Calculation of LUE

One important step in calculating canopy level LUE is the determi-
nation of fAPAR, which is a parameter indicating the green biomass
within a canopy that absorbs radiation. Given the well established
correlation between NDVI and fAPAR (Fensholt et al., 2004;
Huemmrich et al., 2010; Viña & Gitelson, 2005), we used the empiri-
cal relationship validated for many AmeriFlux ecosystems (Sims et al.,
2006),

f APAR ¼ 1:24NDVI � 0:168 ð3Þ

where the NDVI is extracted from the MODIS vegetation index
product.

We use these coefficients because they have been validated
previously by Sims et al. (2006) in five of our study sites (US-NR1,
US-HO1, US-HA1, US-MMS and CA-MAN), which give more
confidence in the use of this relationship.

Two other methods of fAPAR calculation were adopted for two
specific sites, providing an opportunity to compare various methods
in LUE calculation. In site US-WCR, radiation at different heights
was measured and therefore the fAPAR can be directly calculated by:

f APAR ¼ PAR30−PAR2

PAR30
ð4Þ

where PAR30 and PAR2 represent for the PAR at 30 m and 2 m, which
span above canopy and below canopy, respectively. The calculation of
fAPAR has been validated in this site because the relative difference in
above canopy and bottom of canopy PAR is a good measure of true
APAR (Cook et al., 2008, 2009).

For site US-MMS, where temporal in situ LAI data were available,
the fAPAR was calculated using the mean in situ LAI, light extinction
coefficient (k=0.5) and the following equation (Xiao et al., 2004):

f APAR ¼ 0:95 1� e�kLAI
��

ð5Þ

After the calculation of fAPAR, the LUE was determined as,

LUE ¼ GPP
f APAR � PAR

ð6Þ

2.5. Structure of this analysis

To give a clear description of the structure of our analysis, we
provided a section about the methods and procedures in the deriving
and validation of our model. We first explored the potential of the EVI
as an indicator of canopy LUE across all sites as well as the factors that
can influence this correlation. Then, we used half of all sites, five DF
and five EF sites, respectively, to derive a new model that can
estimate the canopy LUE with a combination of MODIS EVI and LST.
The calibration process was also conducted for these ten sites in
order to determine the coefficients of the predicting model. The
calibrated model was then validated for the estimation of LUE in the
remaining ten independent sites to show the robustness of our
algorithm. Finally, we further applied this new LUE algorithm for
the estimation of GPP and compared with the standard MODIS GPP
for all sites. Some in-depth discussions on both the perspectives and
limitations of our model were also included.

3. Results

3.1. Relationship between LUE and EVI

The relationship between all tower-derived monthly LUE and
remotely sensed EVI reveals a relationship with a coefficient of
determination (R2) equal to 0.46 (Fig. 2a) with evident differences
among forest functional types. An R2 of 0.62 was found for deciduous
forest (DF) sites, suggesting that EVI can better simulate the dynamics
of LUE for ecosystems with wider dynamical ranges in EVI. For
example, EVI values for DF sites generally fluctuated between 0.15
and 0.75 with a mean standard deviation (sd) of among months
around 0.15. The LUE in DF sites was closely related to phenological

Table 1
Description of flux sites in this study (DF and EF represent deciduous and evergreen forests, respectively).

Code Site name Land cover Latitude Longitude Data range References Note

US-MMS Morgan Monroe State Forest DF 39.3231 −86.4131 2002–2006 Dragoni et al. (2007) Calibration sites
US-HA1 Harvard Forest DF 42.5378 −72.1715 2003–2006 Urbanski et al. (2007)
US-UMB Univ. of Mich. Biological Station DF 45.5598 −84.7138 2002–2006 Curtis et al. (2002)
US-WCR Willow Creek DF 45.8059 −90.0799 2002–2006 Cook et al. (2004)
US-SYV Sylvania Wilderness DF 46.2420 −89.3477 2002–2006 Desai et al. (2005)
US-NR1 Niwot Ridge EF 40.0329 −105.5460 2004–2007 Monson et al. (2005)
US-HO1 Main Howland Forest EF 45.2041 −68.7402 2002–2004 Hollinger et al. (2004)
CA-OJP Old Jack Pine EF 53.9163 −104.6920 2003–2007 Coursolle et al. (2006)
CA-OBS Southern Old Black Spruce EF 53.9871 −105.1177 2003–2007 Barr et al. (2004)
CA-QCU Harvested Black Spruce/Jack Pine EF 49.2671 −74.0365 2005–2009 Giasson et al. (2006)
US-BAR Bartlett Experimental Forest DF 44.0646 −71.2881 2004–2006 Jenkins et al. (2007) Validation sites
US-LPH Little Prospect Hill DF 42.5419 −72.1850 2002–2004 Hadley et al. (2008)
US-LOS Lost Creek DF 46.0827 −89.9792 2003, 2005 Denning et al. (2003)
US-MOZ Missouri Ozark DF 38.7441 −92.2000 2006–2007 Gu et al. (2007)
CA-OAS Old Aspen DF 53.6288 −106.1977 2004–2008 Barr et al. (2004)
CA-CBO Borden Mixedwood DF 44.3185 −79.9342 2004–2006 Teklemariam et al. (2009)
CA-TP4 Turkey Point White Pine 1939 DF 42.7097 −80.3574 2004–2007 Arain et al. (2006)
CA-SJ3 Jack Pine 1975 EF 53.8758 −104.6452 2004–2007 Amiro et al. (2006)
CA-SJ1 Jack Pine 1994 EF 53.9084 −104.6559 2003–2005 Amiro et al. (2006)
CA-MAN Northern Old Black Spruce EF 55.8800 −98.4810 2004–2007 Dunn et al. (2007)
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characteristics, which tend to track LUE, and thus EVI is a good ap-
proximation of LUE.

However, for EF sites, the EVI values fall in the narrow range of
0.15–0.50 with limited monthly variability (sd=0.05). Not surpris-
ingly, we find the LUE–EVI relationship had a much lower coefficient
of determination (R2=0.24). A further analysis (Fig. 2b) reveals a
positive correlation (R2=0.67, p=0.001) between the R2 of EVI-
LUE relationship and the sd of EVI (EVI_sd) for each site during the
experimental period. These findings suggest that EVI is not a reliable
indicator of LUE for biomes with limited seasonal variability in green-
ness, and that other variables should be incorporated to characterize
LUE in these evergreen biomes.

3.2. Relationship between LUE and temperature

In the following sections, only the calibration sites were used. The
relationship between tower-observed monthly air temperature and
LUE was similar in strength to that of LUE and EVI (R2=0.43,

Fig. 3a). When the relationship was partitioned by functional types,
Ta better explained the variances in monthly LUE for DF sites than
for EF sites. EVI has a stronger mechanistic link to LUE, but clearly
the relationship to Ta also predicts seasonality. For the DF sites, Ta is
a simple and consistent proxy for canopy phenological processes
that regulate seasonal changes in LUE. Thus, both EVI and Ta are
found to be correlated with canopy LUE. However, for EF sites, little
variation is expected in canopy greenness and the Ta mainly acts as
a limiting factor to canopy physiological functioning, including GPP.
In this case, monthly LUE is better correlated with Ta (R2=0.34)
than to the EVI (R2=0.24).

Since canopy air temperature cannot be directly observed by
remote sensing, we compared observations of Ta to the MODIS LST
product as an important step for scaling the algorithm up for global
remote sensing. We find that MODIS LST can be a non-linear function
of Ta with coefficients of determination R2 of 0.78 for the overall data-
set, without radiometric to air temperature correction considered
(Fig. 3b). No difference was observed between the two plant

Fig. 2. (a) Relationship between the flux-measured LUE and the MODIS-derived EVI for data in this study, DF and EF represent deciduous forest and evergreen forest, respectively.
The regression line for the overall data is y=0.36x+0.02 (R2=0.46, pb0.001). (b) Relationship between R2 of EVI–LUE correlation and the standard deviation in EVI (EVI_sd) for
each site during the experimental period, the regression line is y=0.30 ln(x)+1.28 (R2=0.67, pb0.001).
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functional types as comparable correlations were acquired with R2 of
0.74 and 0.78 for DF and EF sites, respectively. However, the MODIS
LST tends to overestimate Ta below 25 °C. The 1 km LST signal
measures a combination of the radiant temperature of the land
surface and the intervening atmosphere (Goetz et al., 2000). The
role of cloud contamination may be the largest uncertainty in these
data because of the inherent limitation of the thermal infrared remote
sensing, including the failure to remove cloud-contaminated LST, as
well as the different degrees of influence of cloud contamination
between estimation of LST and emissivity (Wan, 2008).

A problem with using temperature as an indicator of LUE (Fig. 3c)
is the decreasing sensitivity of LUE at high temperature values. Conse-
quently, we find logarithmic regressions give the best fit between LUE
and Ta or LST. This suggests a declining response to temperature for
LUE, probably because Ta is only a good predictor when phenology
is dynamic. Once temperatures reach high values during the growing
season, LUE will show less sensitivity to Ta since phenology has stabi-
lized. Therefore, here we provide a modified form of LST (Tm) as
below:

Tm;i ¼ exp LSTi=LST maxð Þ ð7Þ

where LSTi is the mean ith month temperature and LSTmax is the
maximum monthly temperature of the site for experimental years.
The exponential transform can improve the LUE sensitivity at high
temperatures. We suspect that incorporating a multi-year maximum
temperature may be potentially helpful for capturing the effects of
both seasonal and interannual variations of temperature on LUE.

The usefulness of Tm is shown in Fig. 3d where the log transform
allows us to produce a linear correlation between LUE and Tm with
coefficient of determination R2 of 0.31 for the overall data. For the

EF sites, no evident effect was observed with the Tm, probably
owing to the low temperature ranges (mean Ta=15.3 °C for all EF
sites). However, in contrast, we find R2 of 0.35 for the DF sites
which have higher monthly temperatures (mean Ta=18.6 °C for all
DF sites) and these results highlight the suitability of Tm instead of
LST for LUE remote sensing in DF.

3.3. Estimating LUE using EVI×Tm

Given the relationships between LUE and both EVI and Tm,
especially in DF, we developed a new model that incorporates both
EVI and Tm, EVI×Tm, to estimate monthly LUE (Fig. 4). A stronger

Fig. 3. Relationship between the flux-measured LUE (LUE_flux) and temperature at the calibration sites, DF and EF represent deciduous forests and evergreen forests, respectively.
(a) Correlation between LUE_flux and Ta, the regression line for overall data is y=0.07ln(x)−0.01 (R2=0.43, pb0.001); (b) Correlation between MODIS LST and Ta from flux mea-
surements, the regression line for overall data is y=7.19ln(x)+0.24 (R2=0.78, pb0.001); (c) Correlation between LUE_flux and LST, the regression line for overall data is
y=0.07ln(x)−0.03 (R2=0.21, pb0.001); (d) Correlation between LUE_flux and the modified LST (Tm), the regression line for overall data is y=0.11x−0.05 (R2=0.31, pb0.001).

Fig. 4. Relationship between the flux-measured LUE and EVI×Tm for data in this study,
DF and EF represent deciduous forests and evergreen forests, respectively. The regres-
sion line for the overall data is y=0.11ln(x)+0.20 (R2=0.51, pb0.001).
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relationship (R2=0.51, pb0.001) is found between LUE and EVI×Tm
than for either variable alone. Improvements are shown for both DF
(R2=0.64) and EF (R2=0.40) sites with this newmodel, as indicated
by higher coefficients of determination when compared with either
EVI or Tm.

The new model is able to replicate the temporal evolution and
magnitude of LUE, but with a range of performance among sites
(Table 2). For the DF sites, the highest coefficients R2 of 0.85 are
observed for US-HA1 and the lowest precision is acquired in US-SYV
with R2 of 0.58. The other three DF sites (US-MMS, US-UMB and US-
WCR) generally show a similar range of R2 between 0.61 and 0.71.
For EF sites, the model generally gives moderate accuracy with R2

ranges from 0.51 for US-NR1 to the largest of 0.64 for CA-QCU.
These results indicate that the EVI×Tm can be a potential candidate
of LUE for different plant functional types, improving on existing
models that only use EVI to predict LUE.

With results for these ten sites, the monthly LUE can be estimated
as:

LUE ¼ a ln EVI � Tmð Þ þ b ð8Þ

Significant correlation is observed between the coefficient a and
the average EVI (EVI_ave) of the experimental period with an R2

equals to 0.68 (p=0.003, Fig. 5a). The coefficient b, meanwhile, has
been found to be correlated with the minimum monthly LST
(LST_min, R2=0.81, p=0.009, Fig. 5b). Therefore, the coefficients
for the calibrated LUE algorithm can be written as:

a ¼ 0:21EVIPaveþ 0:04
b ¼ −0:04 ln LSTPminð Þ þ 0:25 ð9Þ

Fig. 6 shows the comparison between the modeled LUE and
measured LUE for each site. The use of this model for estimating
LUE in each site shows good agreement, with the largest root mean
square error (RMSE) of 0.068 g Cmol−1 PAR in US-UMB to the lowest
of 0.026 g Cmol−1 PAR in US-NR1.

We further used the calibrated model to predict LUE for the ten
validation sites (Fig. 7). Good estimates of LUE are observed for
both the DF and EF sites with respective R2 of 0.68 and 0.48 and an
overall monthly RMSE of 0.055 g Cmol−1 PAR. The proposed model
gives large improvements for the EF sites indicating the new
algorithm is still suitable for the evergreen forests, even with the
previous caveats raised about weaker relationships among EVI, Tm,
and LUE.

3.4. Evaluation of EVI×Tm model performance

As themodel is derived by incorporation of both effects of greenness
and temperature on LUE, it is useful to investigate model performance
as a function of variables indicating the regional and biophysical proper-
ties of a site. As shown in Fig. 8a, the model performance, indicated by
the R2 of LUE–EVI×Tm relationship, is related to the maximum EVI

(EVI_max, R2=0.56, pb0.001) which implies that the proposed
model will give better estimates of monthly LUE for ecosystems that
have high EVI values. Interestingly, meanmonthly precipitation (Preci-
p_ave) also shows a positive impact on the estimation of LUE using
EVI×Tm (Fig. 8b, R2=0.50, pb0.001, US-LPH, CA-SJ1, CA-SJ3 and CA-
MAN were excluded due to unavailable of precipitation data).

4. Discussions

4.1. Application of this LUE algorithm to estimate GPP

When thenewmodelwas applied to estimate GPP,we also observed
a better performance than the standard MODIS GPP products. An R2 of
0.73 (pb0.001) and an overall RMSE of 52.7 g Cm−2 month−1 are
obtained between the flux-measured GPP and theMODIS GPP products
for all sites (Fig. 9a). Similar to our findings, MODIS GPP also shows bet-
ter suitability for DF sites (R2=0.71, RMSE=60.7 g Cm−2 month−1)
than for EF sites (R2=0.67, RMSE=35.7 g C m−2 month−1). For all
observations, there is a clear pattern for MODIS GPP to be higher than
flux GPP at the low end of the range while lower than flux GPP at the
upper end of the GPP range. Similar results were also reported in
previous studies both at plots and continental scales (Sjöström et al.,
2011; Wu et al., 2011; Xiao et al., 2010). We suggest that the improper
characterization of shaded leaves in dense canopies is the main reason
for the underestimation of high GPP. This hypothesis is supported by
recent study of Cheng et al. (2009) which reports the correlation
between flux-measured LUE and the reflectance difference between
shaded and sunlit leaves in a canopy. These observations also agree
with the improvements on reflectance simulations from radiative
transfer models incorporation of a lower canopy layer comprised of

Table 2
Correlation between LUE and EVI×Tm for each calibration sites.

Site code Coefficient a Coefficient b R2 p value

US-MMS 0.1512 0.1498 0.61 b0.001
US-HA1 0.1791 0.1391 0.85 b0.001
US-UMB 0.1399 0.2101 0.65 b0.001
US-WCR 0.1500 0.2089 0.71 b0.001
US-SYV 0.1154 0.2003 0.58 b0.001
US-NR1 0.0971 0.1908 0.51 b0.001
US-HO1 0.1245 0.2954 0.51 b0.001
CA-OJP 0.1125 0.2437 0.51 b0.001
CA-OBS 0.1031 0.2376 0.52 b0.001
CA-QCU 0.0938 0.1555 0.64 b0.001

Fig. 5. The relationships between the regression coefficients of LUE–EVI×Tmand (a) average
EVI (EVI_ave), (b) the minimummonthly LST (LST_min) for each calibration site.
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Fig. 6. Relationship between the flux-measured LUE and model outputs for each modeling site in this study, DF and EF represent deciduous forests and evergreen forests, respectively.
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shaded leaves beneath the upper sunlit leaf layer (Cheng et al., 2010).
To balance this limitation, overestimations are observed for low GPP
ranges as regression model commonly gives the average situation of
variables. A direct impact of these misinterpretations is the limited
potential in characterizing LUE that a relatively low correlation between
MODIS-derived LUE and flux measurements that was observed with
our dataset (R2=0.32, Fig. 9b).

When the new LUE using our method is introduced, large
improvements are observed for both the overall dataset

(R2=0.86, RMSE=37.6 g Cm−2 month−1), DF sites (R2=0.88,
RMSE=42.5 g Cm−2 month−1), and EF sites (R2=0.74,
RMSE=29.4 g Cm−2 month−1) (Fig. 9c). No significant bias exists
for these observations and the issue of overestimation at high GPP
values is largely reduced, indicating the high sensitivity of the
model for regional application with a wider dynamical range in
GPP. This application of GPP estimation in multi-ecoregions also
indicates that the new LUE algorithm can be of potential use for

Fig. 7. Relationship between the flux-measured LUE and modeled LUE for the valida-
tion sites, DF and EF represent deciduous forests and evergreen forests, respectively.
The regression for the overall dataset is y=0.570x+0.065 (R2=0.61, pb0.001).

Fig. 8. Relationship between the determination coefficients R2 of LUE–EVI×Tm and the
maximum EVI (EVI_max), average precipitation (Preci_ave) for all sites.

Fig. 9. Comparison between the (a) flux-measured GPP and MODIS GPP, (b) flux-
measured LUE and the GPP LUE, (c) the flux-measured GPP and GPP using the pro-
posed LUE algorithm (solid and dash lines represent regressions DF and EF, respective-
ly, the red indicates the 1:1 line). For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
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carbon cycle analysis in various ecosystems that have diverse canopy
structures and climate characteristics. Moreover, a significant advantage
of this algorithm is the lack of a requirement for interpolated
meteorological inputs, which have been shown to add significant bias
to estimating site-level GPP (Heinsch et al., 2006).

4.2. A comparison of fAPAR techniques

Canopy-level LUE can be considered as an integral of the leaf-level
LUE of all leaves (both shaded and sunlit) within the canopy weighted
by the strength of the reflected radiation from each leaf to the sensor.
Consequently, canopy LUE is influenced by canopy structural
characteristics, for example, LAI and the leaf angle distribution. Flux
tower observations provide a robust method for the calculation of
canopy LUE (Baldocchi, 2008). However, this process requires an
independent estimate of fAPAR to determine APAR. Three methods
were used in this analysis and a comparison is required for use in the
operational application of EVI×Tm.

The importance of fAPAR is its relationship with vegetation canopy
functioning and energy absorption capacity. The first method,
measuring PAR at different layers within the canopy, gives direct
observations of fAPAR. For the other two methods, the calculation of
fAPAR using in situ LAI measurements is more appropriate from the
radiative transfer perspective because LAI is a canopy structural
parameter that can be remotely sensed.With available data, calculation
of fAPAR between in situ LAI (fAPAR_LAI) and NDVI (fAPAR_NDVI) was
compared at the US-MMS site and calculation of fAPAR between
meteorological PAR (fAPAR_met) and NDVI (fAPAR_NDVI) was compared
at US-WCR.

As shown in Fig. 10, significant correlations are observed both
between fAPAR_NDVI and fAPAR_LAI in US-MMS (R2=0.63, pb0.001),
and between fAPAR_NDVI and fAPAR_met in US-WCR (R2=0.75,
pb0.001). It can be inferred that the main difference among the
three methods is the mean values of generated fAPAR. Using meteoro-
logical PAR measurements appears to give the highest fAPAR, followed
by the fAPAR_NDVI and fAPAR_LAI. Therefore, the LUE calculated by the

Fig. 10. An analysis of the effect of three fAPAR calculation methods on LUE estimation.
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three respective methods will fall in an inverted order (Fig. 10c and
d). In general, correlations among the three LUEs are very high
(R2>0.95), indicating that the use of a more general, scalable fAPAR
calculation method should not affect estimation of variation in LUE
substantially. However, attention should be considered in operational
applications as differences of 12% and 14% in average LUE are
observed between different methods at US-MMS and US-WCR,
respectively. The effects are further compared for how coefficients
change for our derived algorithm using EVI×Tm (Fig. 10e and f).

The results first demonstrate that the use of NDVI to estimate fAPAR
can be a possible method for LUE calculation and this is a reasonable
solution due to difficulties in LAI acquisition in forests and unavailability
of meteorological PAR profile observations. One issue is that the use of
NDVI to calculate fAPAR and thus LUE from flux tower GPP could produce
an autocorrelation between EVI×Tm and LUE (i.e., LUE=GPP/[f
(NDVI)×PAR]). However, it would be a negative autocorrelation, since
an increase in NDVI would increase fAPAR and thus decrease LUE,
assuming constant GPP and PAR. Secondly, if in situ LAI data or PAR
were available, the model EVI×Tm will give better LUE estimates than
the use of NDVI as indicated by the higher coefficients of determination
R2 (0.67 versus 0.61 for US-MMSand 0.82 versus 0.71 for US-WCR). This
conclusion also agrees with the above analysis that finds LUE to be
dependent on canopy structure, i.e., LAI.

4.3. Limitations of the model

Wederived a remote sensing based LUEmodel using entirelyMODIS
observations in temperate and boreal forests in North America.
However, a number of limitations should be stated in the future applica-
tion of the algorithm.

First, the model proposed is validated for the estimation of monthly
LUE, whereas the feasibility of the model at finer temporal scales is
unknown. For example, weekly canopy LUE would be a challenge due
to differences in weather conditions. The variability of LUE in such
shorter timescales will offer an opportunity to examine the model
performance and would be useful to explore the impacts of environ-
mental stresses (e.g., temperature) on the canopy LUE.

We only validated themodel in forest landscapes, and its usefulness
for other plant functional types (e.g., grassland, woody savannas) needs
to be analyzed in future. We suspect the exponential transform of
temperature would be more appropriate for ecosystems with higher
temperatures. However, the degree of such improvement is still difficult
to determine due to the uncertainty of temperature range where it will
accelerate or decrease the photosynthesis. Further experimental data
are needed to assess the model for high temperate controlled
ecosystems.

Theoretical analyses on a more physiologically-based interpretation
of the model performances are needed, which would enhance the
robustness of model with different ecosystems located at diverse
ecoregions. In particular, the model calibration using average EVI and
minimum LST for each site lacks a fundamental connection between
photosynthesis and its drivers, resulting in unexplained model
performances across sites and regions. For example, we found positive
correlations between the model performance and the maximum EVI
and the average precipitation. However, reasons for such correlations
are not well understood as siteswith high EVI values are not necessarily
experiencing higher precipitations (R2=0.24, p=0.069 for all sites,
data not shown here). Therefore, it would be a great advantage to
explain the model coefficients with physiological or mechanistic
terms in future.

5. Conclusions

Light use efficiency is an important variable characterizing plant
eco-physiological function and has been widely used to estimate
forest productivity from remotely sensed data. By incorporation of

both canopy greenness and temperature, here we propose a new
algorithm of EVI×Tm that shows reasonably good estimates of
monthly LUE in various forest ecosystems in North America. We
also find that a simple metric based on the average of EVI and Tmin

allows for calibration of model coefficients. After calibration, the
modeled LUE is shown to reasonably correlate to the flux-measured
LUE with an overall RMSE of 0.055 g Cmol PAR−1 for ten independent
sites. The usefulness of the calibrated model is further evaluated in the
estimation of GPP and an RMSE of around 37.6 g Cm−2 month−1 has
been acquired for all observations, an improvement of 28% over that
of theMODISGPP products, andwith an algorithm that does not require
additional meteorological inputs.

We have developed a novel model to estimate canopy LUE solely
from remote sensing inputs of the formLUE=(0.21EVI _ave+0.04)
ln(EVI×exp(LST/LSTmax))−0.04 ln(LST _min)+0.25. It should be
noted that the calibrated model shows a comparable accuracy in
LUE estimation between the evergreen and deciduous forests, which
is a substantial improvement from models including only EVI. This
is especially meaningful for GPP modeling when applied to evergreen
species because temporal variability of LUE can be revealed by the
seasonal vegetation cycle for deciduous species, while models that
can improve estimates in evergreen forests would be of greater
importance due to the limited variability in canopy greenness
(Garbulsky et al., 2008). The positive impacts of average precipitation
quantity on the model performance may imply that other climate
variables (e.g., soil water content, vapor pressure deficit) should be
integrated to better characterize ecosystem responses to climate
change. However, such a process would require more input data at
both appropriate spatial and temporal resolutions, requiring a
trade-off between the model complexity and accuracy.
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