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[1] The climate sensitivity of plant seasonal life cycles, or phenology, may impart
significant carbon cycle feedbacks on climatic change. Analysis of interannual ecosystem
carbon exchange provides one way to assess this climate sensitivity. Multiyear eddy
covariance carbon dioxide flux observations from five different ecosystems (deciduous
forest, northern hardwood mixed forest, old‐growth forest, shrub wetland, and mixed
wetland‐forest) in the Upper Great Lakes, United States, located within 400 km of each
other and exhibiting coherent interannual variability, were used to parameterize a simple
ecosystem model. The model, when properly constrained with an interannual sensitive cost
function, was able to explain a significant proportion of the interannual variation of carbon
fluxes in all ecosystems except the old‐growth forest. The results reveal that spring or
autumn climate thresholds impact annual carbon uptake, though the magnitude and strength
varied by site. When the model was forced to maintain the same climate‐phenology
relationship across the five sites, most of the interannual variability could still be explained
except at the old‐growth forest and the forest farthest in distance from the others. These
results suggest that at least for this region, coarse spatial resolution carbon‐climate models
could likely specify general climate‐phenological relationships at grid scales on order of
100 km without appreciably sacrificing ability to model interannual carbon cycling.

Citation: Desai, A. R. (2010), Climatic and phenological controls on coherent regional interannual variability of carbon dioxide
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1. Introduction

[2] One key to understanding impacts of the terrestrial
carbon cycle on future climate change is better diagnosis of
climatic controls on interannual variability (IAV) of land‐
atmosphere carbon dioxide net ecosystem exchange (NEE).
This is especially the case in temperate and boreal forests
where IAV is large [Yuan et al., 2009] and strongly linked to
climate variability [e.g., Barr et al., 2006; Chen et al., 1999;
Goulden et al., 1996; Hollinger et al., 2004; Sierra et al.,
2009]. Large IAV could, for example, lead to reduced long‐
term carbon accumulation in some forests, due to the impact
of disturbance‐driven respiration pulses [Sierra et al., 2009].
Despite its importance, observed IAV of NEE in these biomes
is difficult to simulate in ecosystem models, which are better
tuned to capture diurnal, seasonal, and successional patterns
[Ricciuto et al., 2008;Urbanski et al., 2007; Stoy et al., 2009].
[3] Currently, we lack a strong physical basis for many of

the complex interactions that exist in terrestrial systems at this
timescale [Bonan, 2008; Stoy et al., 2009]. For example,
while annual NEE typically declines with latitude in tem-

perate regions, relative IAV increases in deciduous forests
and declines in evergreen forests, a result that is difficult to
explain [Yuan et al., 2009]. In several grasslands, it was noted
that sensitivity of plant productivity to climate drivers varied
year‐to‐year [Polley et al., 2010]. This result is similar to
findings of Richardson et al. [2007] who argued that biotic,
not climate, variability was the primary cause of decadal flux
variability in a spruce forest.
[4] Still, we lack understanding about what spatial scales

do we expect to see coherence in interannual variability.
Identifying such would enable specification of optimal spatial
resolution for specifying climate‐ecosystem relationships in
land‐atmosphere models. One promising avenue of research
for better modeling of regional ecosystem model IAV is
improved simulation of climate sensitivity in plant pheno-
logical life cycles [Peñuelas et al., 2009]. Phenology links
climate anomalies, especially in the shoulders of the plant
growing season, to plant biogeochemistry [Morisette et al.,
2009; Piao et al., 2008].
[5] Recent climatic warming leading to advances in spring

flowering and leaf timing has been noted in many parts of the
globe [Linderholm, 2006], especially in Europe [Menzel and
Fabian, 1999; Stöckli and Vidale, 2004] and North America
[Myneni et al., 1997; White et al., 2009], and across diverse
ecosystems including temperate forests [e.g., Richardson
et al., 2006; Vitasse et al., 2009] and Mediterranean shrub-

1Department of Atmospheric and Oceanic Sciences, University of
Wisconsin‐Madison, Madison, Wisconsin, USA.

Copyright 2010 by the American Geophysical Union.
0148‐0227/10/2010JG001423

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, G00J02, doi:10.1029/2010JG001423, 2010

G00J02 1 of 13

http://dx.doi.org/10.1029/2010JG001423


lands [e.g., Gordo and Sanz, 2010]. Climate records hint at
shifts in both phase and amplitude of the annual temperature
[Stine et al., 2009], suggesting that links between phenology
and climate will likely have significant impacts on ecosystem
productivity with ensuing anthropogenic climate change. The
impact of warm springs and longer growing season lengths on
carbon uptake has been well noted at several sites [Barr et al.,
2006;Chen et al., 1999;Churkina et al., 2005;Dragoni et al.,
2010; Goulden et al., 1996; Hollinger et al., 2004], but eco-
systemmodels that can capture this impact on IAV are elusive
[Baldocchi et al., 2005].
[6] One way to advance our understanding is to develop

and test ecosystem models constrained by multiyear obser-
vations that connect phenology, carbon cycling, and climate
at multiple sites. Long‐term eddy covariance flux towers,
which directly observe NEE of ecosystems over multiple
years, are particularly well suited for testing how well models
of phenology capture carbon cycle IAV [Richardson et al.,
2009], though only a few studies have used multiple flux
towers [Baldocchi et al., 2005; Churkina et al., 2005] and
none focused onmultiple towers in one region. Coherent IAV
has been observed across a set of flux towers in a similar
climate and biome [Desai et al., 2008], but there has been
limited success in modeling this IAV. Here, I ask to what
extent can the observed IAV be explained by a simple climate
sensitive model of plant phenology and what does it imply for
methods to improve modeling of ecosystem IAV?
[7] To investigate this question, a simple ecosystem model

was developed and parameterized using Bayesian techniques
against multiyear flux tower data observed in five ecosystems
that span a range of ecoystem types from mixed forests to
hardwood forests to shrub wetlands, where we would not
expect a priori coherent interannual carbon cycle responses.
Estimating parameters in models involves a cost function that
is typically based on least squares comparison of hourly or
daily modeled and observed NEE. However, this cost func-
tion formulation may mute the information content of IAV
in observations. To test this assertion, an alternative IAV‐
sensitive formulation of the cost function was also applied as
part of the parameterization. Finally, to investigate controls
on synchronous forcing, model parameterization was further
modified to force spatial convergence on phenological para-
meters. Findings from these investigations are used to discuss
implications for environmental controls and spatial coherence
of regional IAV.

2. Data and Methods

2.1. Site and Data Description

[8] Five eddy covariance flux towers in the temperate‐
boreal transition region of the Upper Great Lakes were ana-

lyzed in this study (Table 1). The sites, which included three
forests of different age classes and types, one shrub wetland,
and one tall tower regional mixed forest‐wetland footprint,
are located within 400 km of each other (Figure 1). Each site
has at least five years of flux and meteorological data, and
have been previously analyzed and described in an upscaling
study [Desai et al., 2008]. Four of the sites (US‐WCr, US‐
Syv, US‐Los, and US‐PFa) are within 150 km of each other
in north central Wisconsin/upper Michigan, while the fifth
site, US‐UMB, is in northern Lower Michigan. Of the forest
sites, two are mature age class (US‐WCr and US‐UMB),
and one is old‐growth (US‐Syv). While US‐WCr is a
northern hardwood forest, dominated by maple‐beech‐
basswood cover, US‐UMB, on sandier soil, is dominated by
more of an aspen‐oak mix. US‐Syv is more reflective of
presettlement conditions, with a mixed maple‐hemlock tree
cover. The wetland site is a short‐stature shrub alder‐willow
fen. The tall tower is a 447 m radio tower with flux mea-
surements at three heights. For the purposes of this com-
parison, the fluxes from the three levels of the tall tower
were combined in an optimal selection strategy, as
described byDavis et al. [2003], to produce a single “regional”
NEE. This regional NEE footprint sampled a range of
mature northern hardwood forests, early aspen forests, open
bogs, and shrub wetlands.
[9] Meteorological data from each site were acquired and

gap‐filled using a combination of nearest neighbor andmoving‐
window ensemble diurnal average techniques [Desai et al.,
2008]. Eddy covariance and storage fluxes of CO2 observed
with closed‐path infrared gas analyzers and 3‐D sonic ane-
mometry were used to compute NEE at each site. Standard

Figure 1. Map of north central United States showing loca-
tion of the five flux tower sites used in this study.

Table 1. Location and Types of Colocated Eddy Covariance Flux Towers and Time Periods Analyzed in This Study Along With Their
Mean Annual NEE and Uncertainty, s IAV, Postfiltering Total Gap Fraction, and Referencea

Name Location Type Years
NEE

(gC m−2 yr−1)
IAV

(gC m−2 yr−1)
Percent
Gaps Reference

US‐WCr 45o48′N, 90o5′W Northern hardwood mature forest 2000–2006 −380 ± 29 149 51% Cook et al. [2004]
US‐UMB 45o34′N, 84o43′W Deciduous broadleaf mature forest 1999–2003 −284 ± 22 43 39% Gough et al. [2008]
US‐Syv 46o14′N, 89o21′W Old‐growth mixed forest 2002–2006 1 ± 18 112 48% Desai et al. [2005]
US‐Los 46o5′N, 89o59′W Shrub fen wetland 2001–2006 −84 ± 10 16 32% Sulman et al. [2009]
US‐PFa 45o57′N, 90o16′W Mixed regional footprint 1997–2005 111 ± 21 67 28% Ricciuto et al. [2008]

aData gaps were strongly skewed toward nighttime data due to low turbulence screening criteria.
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flux computation methods at each site were relatively similar
[Desai et al., 2008] and fluxes computed by these codes have
compared favorably to the Ameriflux “gold” standard, a
network‐wide blind data processing protocol. Common
techniques were used to screen for low turbulence conditions
and gap filling of data gaps that occur due to low turbulence or
instrument failure [Desai et al., 2005]. The gap‐filling tech-
nique compared well with other standard techniques used by
the flux tower community [Moffat et al., 2007]. All fluxes
were computed at the half‐hourly scale, except for US‐PFa,
which used an hourly scale owing to the taller height. For
assimilation into the model, all flux and meteorological data
were averaged across day and night periods, similar to the
method of Sacks et al. [2006]. Using half‐daily summed
fluxes reduces impact of random turbulent flux error on data
assimilation, but retains the nocturnal respiration signal.
Summed half‐daily flux integrals whose hours were more
than 25% gap‐filled were discarded for data assimilation to
minimize artifacts arising from model‐model comparison.

2.2. Model Description

[10] A simple ecosystem model, the Interannual Flux
Tower Upscaling Experiment (IFUSE), was parameterized
against all site data. The model consisted of 17 total para-
meters (Table 2), of which 3 were fixed for each site, 10 were
optimized at each site, and four phenology parameters were
either optimized at each site separately (asynchronous mode)
or jointly for all sites (synchronousmode). Themodel was run
with a half daily (day/night) adaptive length time step, which
has been shown to be well suited for parameter optimization
against flux tower NEE [Sacks et al., 2006].
[11] At each time step, the model applied environmental

forcing of canopy air temperature (Ta), 5 cm soil temperature
(Ts), photosynthetic active radiation (PAR), and vapor pres-
sure deficit (VPD) to estimate gross primary production

(GPP), ecosystem respiration (ER), and NEE in gC m−2 time
step−1 and leaf area index (LAI) in m2 m−2. GPP was esti-
mated using a five‐parameter light, temperature, and VPD
limited modified light use efficiency equation:

GPP ¼ LUE � 1� e�k�LAI� �
PAR

Ta � Tmin

Topt � Tmin

� �

� VPDmax � VPD

VPDmax � VPDmin

� �
ð1Þ

where LUE, k, Tmin, Topt, VPDmax, and VPDmin are model
parameters as described in Table 2.
[12] To calculate LAI, leaf phenology of emergence and

senescence was modeled with a two‐parameter sigmoidal
relationship. The phenology model used here consisted of the
well established accumulated growing degree days base 10 C
(GDD) approach for midpoint of leaf emergence and a 5 cm
soil temperature threshold for midpoint of leaf senescence,
models which have been shown to explain much of the var-
iation in canopy development for northern forests [Baldocchi
et al., 2005; Richardson et al., 2006]. Canopy fraction with
evergreen vegetation was simulated by preventing LAI to
decline beyond a minimum threshold (LAImin), leading to:

LAI ¼ LAImin þ LAImax � LAIminð ÞLspringLfall
� �

Lspring ¼ 1

e
�� DOY�Lon

2ð Þ ; Lfall ¼ 1� 1

e
�� DOY�

Loff
2

� �
Lx ¼ Lx�min Lxð Þ

max Lxð Þ�min Lxð Þ ; x ¼ spring=fall

Lon ¼ DOY GDD>GDDThreshj ; Loff ¼ DOY Ts<TThresh[Lspring>0:99

��

8>>>>>>>><
>>>>>>>>:

ð2Þ

where LAImin, LAImax, a, b, GDDthresh, and Tthresh are model
parameters (Table 2). Lspring and Lfall describe the variation of

Table 2. Model Parameters Definitions, Prior Values, and Acceptable Posterior Parameter Ranges Used by the IFUSE Model and
MCMC Parameterization

Name Definition Value

Fixed Parameters
k Light extinction coefficient 0.5 fixed
LAImin Minimum leaf area US‐WCr 0.0, US‐UMB 0.0, US‐Syl 0.5,

US‐Los 0.0, US‐PFa 0.5
LAImax Maximum leaf area US‐WCr 5.3, US‐UMB 3.7, US‐Syl 4.1,

US‐Los 4.9, US‐PFa 3.7

Phenology Parameters
a Leaf on (LON) slope 0.05 (0.05–0.5)
GDDthresh Growing degree day threshold 200 (10–400)
b Leaf off (LOFF) slope 0.1 (0.05–0.5)
TEMPthresh Soil temperature threshold 4 (0–20)

Photosynthesis Parameters
LUE Light use efficiency 0.25 (0–1)
Tmin Minimum photosynthetic temperature 0 (−15–10)
Topt Optimum photosynthetic temperature 15 (5–40)
VPDmax Maximum photosynthetic VPD 3000 (0–20000)
VPDmin Minimum photosynthetic VPD 100 (0–2000)

Respiration Parameters
rs Basal maintenance respiration 2 (0.1–5)
rv Basal growth respiration 2 (0.1–5)
b1 Maintenance respiration rate 0.03 (0–0.5)
b2 Growth respiration rate 0.03 (0–0.25)
b3 Leaf respiration fraction 0.05 (0–0.25)
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LAI around the leaf on (Lon) or leaf off (Loff) day of year
(DOY). Both of these functions were further normalized to
vary between 0 and 1 and then multiplied together, thus al-
lowing LAI to vary between LAImin and LAImax. Conse-
quently, interannual variability in LAI is quite muted in this
model, which allowed this model to focus on the role of
growing season length (GSL) on IAV of NEE.
[13] ER was estimated with five parameters that control

respiration rates in three soil pools sensitive to Ts, Ta, and
GPP:

ER ¼ rs � eb1 Ts�15ð Þ
h i

þ rv � eb2 Ta�15ð Þ��
GPP>0

h i
þ b3 � GPPDOY�1½ �

ð3Þ

where rs, rv, b1, b2, and b3 aremodel parameters (Table 2). The
first term represents the combined effects soil heterotrophic
and plant maintenance respiration. The second term, which is
only present when GPP is positive, represents plant growth
respiration (or alternatively, the change in respiration sensi-
tivity in growing versus dormant seasons), while the final
term, is a fraction of the previous day GPP, representing
autotrophic respiration of newly assimilated carbohydrate and
allows for GPP lag effects in the model. These formulations
were chosen to represent the dynamics that could likely be
resolved from NEE measurements, as opposed to a more
mechanistic, but also more parameter intensive and pool
sensitive model of respiration.
[14] NEE was computed as the residual between ER and

GPP. Themodel was designed to be purposefully simple so as
to capture the key diurnal and season dynamics typically seen
inNEE observations while limiting the number of parameters.
By avoiding specification of soil and biomass pools outside of
leaves, the model removed one of the largest sources of
uncertainty and equifinality in estimating model parameters
from flux data [Luo et al., 2009]. This structure implied that
soil pools were assumed to be steady state relative to the
fluxes, which is generally a reasonable assumption for mature,
established secondary succession ecosystems. Since the goal
was simulation of daily to interannual NEE at timescales less
than a decade (i.e., < 10% of a temperate hardwood forest
successional cycle), this assumption implied that short‐term
variations in NEE were driven entirely by the response of ER
and GPP to climate. Given the mesic climate of the region,
influences of precipitation and moisture variability were
assumed to be minimal. The impact of these assumptions on
interpretation of results is provided in the discussion.

2.3. Model Parameterization

[15] Free parameters of the model (phenology, photosyn-
thesis and respiration parameters in Table 2) were estimated
using a Markov Chain Monte Carlo (MCMC) estimator
[Braswell et al., 2005] with theMetropolis‐Hasting algorithm
[Metropolis and Ulam, 1949]. In this approach, free para-
meters were randomly perturbed across a range of reasonable
prior values, assuming a uniform distribution (Table 2). New
parameter sets were “accepted” when a cost function indi-
cated better fit of model to data, and occasionally when not, so
as to avoid local minima. Multiple chains (six, in this study)
were built from random locations in parameter space and
iterated until a convergence criterion is reached, usually
within 50,000 iterations. Iteration sizes were chosen to be arbi-

trarily large, so as to oversample the parameter space. The
best chain was then propagated forward another 70,000 iter-
ations, and a subset of the final 80,000 iterations were saved
as “accepted” parameter sets based on the acceptance crite-
rion. Best model output and variance were computed from the
model output of these accepted parameter sets. More details
of the general approach are provided by Braswell et al.
[2005].
[16] The first five years of half‐daily NEE observations for

each site were used in the MCMC cost function to minimize
model‐data mismatch. The cost function can be written as:

LD ¼
Yn
i¼1

1ffiffiffiffiffiffi
2�

p
�
e
� xi��ið Þ2

2�2 ð4Þ

where LD is the likelihood to be maximized, xi is observed
half‐daily NEE, ui is model NEE, and s2 is data error with
respect to model structure, which was computed as the mean
sum of square deviations between xi and ui [Sacks et al.,
2006]. To improve numerical stability, this equation was
computed as the log likelihood, allowing the product function
to be written as a sum. Additionally, to test whether the cost
function biases how well the model identifies parameters
responsible for determining carbon flux IAV, equation (4)
was further modified to account for both fast (half‐daily)
and slow (annual) variations in NEE:

Ly ¼
Qn
i¼1

1ffiffiffiffi
2�

p
�
e
� xm

i
��m

ið Þ2
2�2

xmi ¼ Pi
j¼i�DOY

xi;�m
i ¼ Pi

j¼i�DOY
�i

L ¼ LDLy

8>>>>>><
>>>>>>:

ð5Þ

where Ly is a likehood for annual NEE, and xi
m is observed

cumulative NEE from the start of the year to point i, and ui
m is

the equivalent for themodel. The new cost function is then the
product of the two likelihoods. Thus the model trades fit at the
daily scale for fits at the annual scale, with the assumption that
accepted parameters sets would be Pareto optimal for both.
Cumulative NEEwas used instead of annual NEE to allow for
both the daily and annual to have roughly the sameweight and
also to prevent the model from fitting annual NEEwith a poor
seasonal pattern. The expectation is that this cost function
may improve model reproduction of seasonal NEE and IAV
without significant loss in explaining short‐term variation.
While Ld was weighted to account for the influence of gap‐
filled data by removing half‐daily NEE sums with more than
25% gap‐filled, Ly included all NEE to create well formed
NEE integrals. In most cases, this did not add significantly
more points or appear to bias results.
[17] In addition to the two cost functions above, an alternate

optimization was performed where phenology parameters
(Table 2) were forced to be the same for all five sites. In this
“synchrony” setup, the parameter optimization was run in
tandem at all five sites, such that the four phenology para-
meters were optimized to be the same at all five sites, while
the other ten parameters were allowed to vary by site. Com-
putationally, this was simply performed by concatenating
arrays of flux and forcing data for all sites, with 5 sets of 10
independent parameters (50), and 4 codependent parameters.
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Thus a single MCMC run estimated 54 parameters, instead of
14 at a time for each site. To compensate for the larger number
of parameters, the number of chains was increased to 20 and
total iterations to 432,000 (with 144,000 spin‐up iterations).
Since phenology parameters were jointly modified at all five
sites, the optimized phenology parameters were the same at
all sites in the synchrony optimization.

2.4. Experimental Design

[18] Given the two cost functions, and two forms of
parameter optimization (asynchronous and synchronous), a
total of three out of four experiments or model modes were
analyzed here. These include asynchronous optimizationwith
the equation (4) half‐daily cost function (“AH”), the asyn-

chronous optimization with the equation (5) interannual cost
function (“AI”), and finally a synchronous optimization with
the equation (5) cost function (“S”). Results from the fourth,
synchronous optimization with the daily cost function, were
performed but not discussed here since the results were nearly
identical to the AH experiment. The three experiments pro-
vide information about how well IAV can be parameterized
and simulated at five sites by a simple ecosystem model
(experiments AH and AI) as well as test how important syn-
chronous phenological forcing drives coherent IAV (experi-
ment S). Beyond comparing daily, seasonal, and cumulative
NEE to observations, we also assess model parameters and
compute carbon uptake period statistics. Carbon uptake period
(CUP) here was calculated as the start and end day of each year
when 8 day smoothed daily observed or modeled NEE was
negative (uptake).

3. Results

3.1. Seasonal Patterns

[19] Mean annual NEE at the five sites ranged from a large
carbon sink (negative) to a moderate source (positive) of CO2

to the atmosphere (Table 1). Mature forests such as US‐WCr
and US‐UMB were the largest sinks followed by the shrub
wetland (US‐Los). In contrast, the old‐growth forest (US‐
Syv) was near neutral (with large fluctuations between source
and sink in any one year), and the mixed regional very tall
tower (US‐PFa) was the largest source. While the regional
CO2 source observed by the tower has been a continuing
puzzle (see Davis et al. [2003] and Ricciuto et al. [2008] for
further discussion and Desai et al. [2010] for a regional per-
spective), the other towers haveNEE in line with expectations
for vegetation type and latitude [Yuan et al., 2009]. Uncer-
tainty arising from random error, gap‐filling and low‐turbu-
lence filtering was generally small and similar at all sites.
[20] Despite large variations in annual NEE, mean seasonal

patterns at all five sites were quite similar (Figure 2, black
line). Generally, sites started absorbing carbon in late May/
early June, and crossed zero in cumulative NEE by mid‐June,
and turned back into carbon sources by late August or early
September, except for US‐PFa which turned into a carbon
source much earlier in August. While the dates were similar
for each site, small variations in those dates led to large dif-
ferences in the length of observed CUP, with the longest at the
mature forests and wetlands, and shortest in the old‐growth
forest and regional site. This finding provides one basis that
growing season timing and length were a strong controlling
factor of annual carbon flux, and hence IAV.
[21] When compared to seasonal flux tower NEE, the

IFUSE model (averaged across the same years as observa-
tions) generally replicated this pattern regardless of optimi-
zation mode (Figure 2, dotted and gray lines). In all cases,
the AH mode best replicated half‐daily variations in NEE,
explaining 83–93% of variability (Table 3), followed in most
cases by AI, except at US‐UMB, where the S model out-
performed AI. Both AH and AI performed worst at US‐PFa,
perhaps because of the mixed footprint, while the S mode
performed worst at US‐Syv. All modes underestimated the
strength of growing season uptake at US‐PFa. Differences of
model performance due to change in cost function are dis-
cussed in section 3.2. Visually (Figure 2), it is apparent that

Figure 2. Ensemble average cumulative daily NEE for ob-
servations, and the three model experiments (AH, AI, and S).
Averages were performed over the observed record noted in
Table 1. The model generally captured the seasonal pat-
tern of NEE at all sites, with worst performance at US‐Syv
and US‐PFa. Observed and model uncertainty is not shown
to preserve clarity, but generally fall within 10% of any
observation.
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the AI model better captured seasonal variation than AH at
most sites, especially at US‐Syv, but for magnitude of annual
NEE, all modes did well with respect to uncertainty in ob-
servations, except for AH at US‐Syv.

3.2. Interannual Variability

[22] IAV at all sites ranged from modest in the case of the
wetland, to large in the case of the mature and old‐growth
forests (Table 1).Whenmean annual NEE over the entire time
period is subtracted from observations of annual NEE and the
anomalies are then normalized by dividing these values by
one standard deviation of annual NEE, consistent patterns
emerge among the sites (Figure 3). At most sites, IAV rarely
exceeded s, with the exception of 2001, coincident with a
large regional forest tent caterpillar outbreak and particularly
warm summer [Cook et al., 2008]. Year‐to‐year fluctuations
were quite common, and hints of a longer decadal‐scale
variability were evident. The spatial coherence of these
anomalies is discussed in section 3.3.
[23] No relationship existed between NEEmeanmagnitude

and s IAV (Table 3). In absolute terms, IAV was smallest in
the wetland, barely detectable within the uncertainty in mean
NEE, and largest at US‐WCr, the site most impacted by the
2001 insect outbreak. In the case of US‐Syv, where mean
NEEwas near zero, the site trended from a sink in the first two
years to a source in later years. In all cases, IAV was a major
fraction of NEE.
[24] Despite all modes being able to capture most of the

seasonal pattern of cumulative NEE at all sites, simulation of
IAV anomalies was poor at all sites by AH (Figure 4a), but
significantly improved in AI (Figure 4b). This result high-
lights the importance of the dual‐likelihood cost function
used by AI. AI IAV anomalies were significantly correlated
(p < 0.05) to observed IAV anomalies at US‐WCr, US‐UMB,
and US‐PFa, strongly correlated (p < 0.1) to US‐Los, and

weakly correlated to US‐Syv (Table 3). The trade‐off, of
course, was loss of explanation of variance at the half‐daily
scale ranging from 3 to 11% and an increase in mean absolute
error of half‐daily NEE by 0.03 to 0.3 gC m−2 d−1.
[25] Further evidence that the fit of AI to observations is

not just an artifact of modeling comes when AI Lon and Loff

dates were compared to similar data observed at US‐WCr
(Figure 5). The observed dates were derived from calibrating
a simple LAI model to the ratio of above and below canopy
downwelling PAR and observed LAI [Cook et al., 2008].
While correlations are modest, the model generally captured
the pattern of anomalies in LON and LOFF, though it did
appear to underestimate the variability in Lon and overesti-
mate the variability in Loff. The net effect, however, was
good performance at simulating variations in growing sea-
son length.
[26] In parameter space, there are a number of differences

between AH (Table 4) and AI (Table 5). Among phenology
parameters, the net effect was in most but not all cases to
increase the values of phenology slope parameters, a and b,
consequently modifying the phenology climate thresholds.
Covariances between these parameters and photosynthesis
parameters then led to changes in LUE and temperature
regulation of photosynthesis, since these parameters can also
act like phenology parameters. Less clear were the reasons
behind large changes in respiration parameters. While both
AH and AI essentially optimized to a value of zero for b3
(fraction of GPP respired), AI has significantly smaller b2
(less temperature sensitivity for plant growth respiration), and
some large differences for b1 for the mature forest sites,
suggesting equifinality in model solutions for respiration and

Table 3. Percent of Variance Explained (r2) and Mean Absolute
Error of Observed NEE Anomalies Against the Model in
Asynchronous Half‐Daily Cost Function (AH), Asynchronous
Interannual Cost Function (AI), and Synchronous (S) Experimentsa

Model US‐WCr US‐UMB US‐Syv US‐Los US‐PFa

Half‐daily
r2 AH 0.90 0.93 0.87 0.88 0.83

AI 0.81 0.82 0.84 0.85 0.77
S 0.81 0.88 0.73 0.82 0.77

MAE AH 0.48 0.43 0.50 0.31 0.46
AI 0.78 0.59 0.53 0.37 0.55
S 0.83 0.52 0.64 0.40 0.53

Interannual
r2 AH 0.17 0.44 0.00 0.53 0.38

AI 0.87*** 0.87** 0.69 0.76* 0.78**
S 0.89*** 0.64 0.24 0.88** 0.77**

MAE AH 109 28 95 12 39
AI 58 11 48 6 26
S 46 31 71 9 25

aMAE, mean absolute error. All experiments were able to significantly
capture daily variations NEE (p < 0.01), but AI captured interannual
variabil i ty at the most number of sites, followed by the S. All
correlations at the half‐daily scale were significant, while significance
of model‐data correlations of interannual variability are marked by
*** (p < 0.01), ** (p < 0.05), and * (p < 0.1).

Figure 3. Observed standardized interannual variability in
NEE (ratio of NEE anomaly to one standard deviation) at
the five study sites. Strong coherence in variability in NEE
was observed across the time period, even though absolute
magnitudes in NEE variability varied widely. Observational
uncertainty in NEE is noted by the horizontal bars.
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highlighting the difficulty of estimating optimal respiration
parameters from eddy covariance data.

3.3. Synchronous Forcing

[27] While the magnitude of NEE and IAV varied across
sites and with time, coherent anomalies in IAV were readily
observed when anomalies were statistically standardized
(Figure 3). These results indicate the strong role that regional
climate variability had on IAV. Even after taking NEE
uncertainty into account, coherence was strong, with most
sites showing positive anomalies in 2001 and 2004, and
negative anomalies in 1999–2000, and 2002–2003. A bifur-
cation of trends across sites occurred in 2005 and 2006.While
the tent caterpillar outbreak was one source of the anomaly in
2001, the outbreak was mostly felt at US‐WCr in late spring,
to a small extent in the US‐PFa footprint, and barely at the
other two sites, suggesting that climate anomalies still
explained most of the 2001 NEE coherence.
[28] The S mode tested whether synchronous IAV can be

explained by coupling of phenological parameters across sites.
In this synchronous mode, the model still simulated much of
the IAV at US‐WCr, US‐Los, and US‐PFa (p < 0.05), but lost
ability to simulate IAV at US‐UMB, and like all modes, could
not capture IAV at US‐Syv (Table 3 and Figure 6). Correla-
tion coefficients for the significant correlations were essen-
tially unchanged compared to AI. It is interesting to note that
US‐UMB is the further site from the rest (Figure 1), though it
is equally likely that the decrease in IAV simulation skill may
be related to differences in forest type compared to the other
sites.
[29] The trade‐off in half‐daily NEE simulation for S

compared to AH was quite similar to the trade‐off found for
AI, though with a larger drop in correlation at US‐Syv.
Across all sites, AI has a strong correlationwith observed IAV
(r2 = 0.81) (Figure 4b), but the S mode is still strongly cor-

related (r2 = 0.68), and with 16 fewer parameters in aggregate
compared to AI. Photosynthesis and respiration parameters in
AI (Table 5) and S (Table 6) were more similar than between
those and AH (Table 4). Remarkably, the parameters in S
appeared more in line with literature estimates than those for

Figure 4. Correlation of anomalies in observed and modeled annual NEE using (a) the AH cost function
parameters (Table 4) and (b) the AI cost function parameters (Table 5). Significant improvement in simu-
lation of interannual variability was found for all sites in the latter.

Figure 5. Comparison of observed light extinction profile
derived leaf on (square) and leaf off (triangle) date anomalies
to IFUSE model for the US‐WCr site, using the AI para-
meters. Generally, variability in both dates was modestly well
simulated, though the slope of leaf off appears too steep,
while the leaf on dates mostly fall on the 1:1 line except for
one outlier.

DESAI: GROWING SEASON TIMING AND CARBON FLUXES G00J02G00J02

7 of 13



AI, especially Topt. Phenology parameters in S are fixed for all
five sites, and appeared to fall roughly near the average of
those parameters for each site in AI.

4. Discussion

4.1. Modeling of IAV

[30] The observed IAV iswithin the range (∼50–100 gCm−2

yr−1) observed for deciduous broadleaf forests in midlatitudes
[Yuan et al., 2009], with mature northern hardwood forests
exhibiting the largest. The results here contribute to findings
of interannual variations in seasonal temperature as a domi-
nant driving force of interannual variation in carbon flux at
midlatitudes [Sierra et al., 2009; Yuan et al., 2009]. While
these sites only had 5–8 years of data, typical of most flux
tower sites, the analysis here showed that information about
IAV can still be gleaned by combining all sites in a similar
region, and jointly parameterizing a model with multiple
years of data at each site and evaluating across longer sets.
Certainly, longer data to estimate lower frequency trends in

flux tower data are critical. This analysis also suggests that
extending flux tower records with phenological indicators of
growing season length and carbon uptake period, perhaps
through remote sensing, would be one way forward to better
assess the links between climate variability and carbon cycle
impacts.
[31] Given the observed coherent IAV across space and

likelihood that seasonal temperature fluctuations were
important in the study region, it is not entirely surprising that a
model tuned to capture daily to seasonal climate sensitivity of
carbon cycling can adequately capture the observed IAV,
especially given that seasonal climate forcing strongly
influenced modeled ecosystem growing season length and
timing. Rather, what is surprising is the level of care needed
for proper parameterization and the importance of not just
identifying optimal model structure and parameters, but also
optimal model cost functions. In this case, as in many eco-
system models, the failure of a simple MCMC approach in
tuning parameters for simulating IAV relies partly on the
large signal imparted by CO2 flux diurnal variability (large

Table 4. Best and Range of Accepted Posterior Model Parameters for Each Site Using the Asynchronous Half‐Daily Cost Function (AH)

Name US‐WCr US‐UMB US‐Syv US‐Los US‐PFa

Phenology Parameters
A 0.089 (0.085–0.094) 0.142 (0.122–0.156) 0.195 (0.154–0.283) 0.206 (0.186–0.219) 0.160 (0.130–0.185)
GDDthresh 154.0 (153.8–156.1) 107.1 (102.1–111.3) 81.1 (77.3–84.9) 80.7 (79.9–80.8) 131.5 (131.2–131.6)
B 0.182 (0.155–0.200) 0.165 (0.138–0.198) 0.098 (0.074–0.147) 0.091 (0.070–0.108) 0.135 (0.082–0.199)
TEMPthresh 11.3 (11.1–11.8) 9.0 (8.9–9.2) 9.6 (9.2–11.1) 11.4 (11.3–11.4) 10.2 (9.2–10.9)

Photosynthesis Parameters
LUE 0.273 (0.262–0.281) 0.441 (0.326–0.444) 0.286 (0.265–0.371) 0.195 (0.187–0.251) 0.193 (0.179–0.200)
Tmin −5.6 (−15.0–1.7) −15.0 (−15.0–14.2) −14.0 (−15.0–10.7) −11.0 (−14.9–7.1) −3.5 (−7.7–0.4)
Topt 6.7 (5.0–9.2) 39.1 (27.1–40.0) 29.5 (27.2–40.0) 32.1 (29.7–40.0) 11.0 (7.9–12.8)
VPDmax 4125 (3797–4562) 3143 (3016–3292) 3565 (3291–3908) 3893 (3636–4344) 3571 (3223–3929)
VPDmin 2 (0–115) 73 (0–309) 18 (0–235) 421 (15–513) 0 (0–201)

Respiration Parameters
rs 1.01 (0.76–1.17) 0.11 (0.10–0.25) 0.12 (0.10–0.37) 0.55 (0.40–0.70) 0.73 (0.51–0.99)
rv 0.22 (0.11–0.45) 0.95 (0.83–1.00) 1.55 (1.32–1.68) 0.65 (0.53–0.74) 0.71 (0.54–0.90)
b1 0.0954 (0.0763–0.1238) 0.3812 (0.2634–0.4216) 0.1595 (0.0204–0.3538) 0.1091 (0.0923–0.1343) 0.1111 (0.0840–0.1405)
b2 0.0275 (0.0002–0.0806) 0.0438 (0.0349–0.0499) 0.0811 (0.0730–0.0927) 0.0879 (0.0757–0.0983) 0.0872 (0.0723–0.1066)
b3 0.0001 (0–0.0052) 0.0007 (0–0.0112) 0.0001 (0–0.0391) 0.0121 (0.0001–0.0299) 0.0995 (0.0655–0.1221)

Table 5. Same as Table 4 but for the Asynchronous Interannual Cost Function (AI)

Name US‐WCr US‐UMB US‐Syv US‐Los US‐PFa

Phenology Parameters
A 0.093 (0.084–0.097) 0.500 (0.467–0.500) 0.130 (0.113–0.139) 0.249 (0.245–0.251) 0.050 (0.050–0.051)
GDDthresh 130.2 (127.6–130.3) 71.5 (71.4–71.5) 56.4 (56.3–56.9) 58.2 (57.1–58.4) 149.6 (149.4–149.8)
B 0.490 (0.317–0.500) 0.050 (0.050–0.053) 0.051 (0.050–0.059) 0.476 (0.450–0.483) 0.050 (0.050–0.050)
TEMPthresh 1.4 (1.4–1.4) −7.4 (−8.0–6.8) 14.6 (14.5–14.7) 8.3 (8.1–8.5) −5.6 (−6.9–5.1)

Photosynthesis Parameters
LUE 0.463 (0.444–0.483) 0.204 (0.202–0.205) 0.244 (0.231–0.250) 0.183 (0.179–0.188) 0.159 (0.156–0.162)
Tmin −0.2 (−0.3–0.2) 8.9 (8.8–9.0) 6.7 (6.7–6.8) −4.1 (−4.1–4.0) 5.0 (5.0–5.0)
Topt 36.3 (34.6–37.8) 19.6 (19.5–19.7) 7.0 (6.9–7.0) 30.7 (30.3–31.5) 5.1 (5.1–5.2)
VPDmax 19802 (15935–19998) 2230 (2184–2301) 3681 (3489–3930) 4074 (3874–4314) 13304 (2110–19973)
VPDmin 10 (0–239) 1536 (1506–1549) 3 (0–209) 542 (480–603) 1964 (1732–1999)

Respiration Parameters
rs 0.23 (0.22–0.24) 0.81 (0.78–0.81) 1.29 (1.21–1.41) 0.31 (0.28–0.33) 0.59 (0.55–0.63)
rv 1.06 (1.04–1.12) 0.10 (0.10–0.12) 0.97 (0.86–1.05) 0.89 (0.86–0.92) 1.43 (1.39–1.47)
b1 0.4999 (0.4979–0.5000) 0.0449 (0.0414–0.0449) 0.1395 (0.1330–0.1461) 0.1859 (0.1729–0.2043) 0.0897 (0.0824–0.0944)
b2 0.0001 (0–0.0011) 0.0002 (0–0.0184) 0.0001 (0–0.0020) 0.0769 (0.0745–0.0797) 0.0836 (0.0798–0.0883)
b3 0 (0–0.0010) 0.0005 (0–0.0044) 0.0002 (0–0.0066) 0.0004 (0–0.0058) 0 (0–0.0016)
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and negative in day, large and positive at night), which tends
to mask the more subtle, but perhaps more climatically rele-
vant, interannual signal [Stoy et al., 2009].
[32] The simulation presented here, consequently, is one of

few models that has been able to successfully diagnose
interannual variability of NEE within a relatively simple
ecosystem model. Other well‐known, and arguably more
sophisticated models have shown less ability to model IAV in
north temperate forested regions [Ricciuto et al., 2008;
Urbanski et al., 2007]. It is likely, at least in the case of the
northeastern forest studied by Urbanski et al. [2007], that
successional trajectory was an important factor in long‐term
variability at the site, possibly overwhelming a climate vari-
ability signal. Amajor shortcoming of the approach used here
is the inability to estimate how important succession and
disturbance is part of subdecadal IAV. Investigations at

decadal or longer timescales would certainly need to incor-
porate these processes. Further, the steady state spin‐up
assumption made by developing a model with no carbon
pools would not be valid, and other techniques should be
implemented with a pool based model [e.g.,Carvalhais et al.,
2008].
[33] Analysis also revealed large variation in IAV variance

explained by this model within a small region that appeared to
vary as a function of vegetation type, highlighting the
importance of individual site characteristics in determining
the extent to which interannual carbon cycling may be more
controlled by climate or internal biotic dynamics [Polley
et al., 2010]. Strong internal control of NEE variability
appears to have played a part in the lack of model predictive
ability at the old‐growth forest. Desai et al. [2005] also
highlighted the greater sensitivity to moisture stress that has
been found at this forest compared to nearby mature forests.
[34] One way to assess biotic control that has been dem-

onstrated both by Polley et al. [2010] and Richardson et al.
[2007] is to compare model parameterization with fixed
parameters over multiple years against interannually varying
parameters, the latter reflecting variability in biotic controls
on NEE. Polley et al. [2010] argued that biotic control of
interannual variability was significant in grasslands, and
Richardson et al. [2007] similarly argued that the majority
(55%) of interannual variations in a spruce forest in the
northeast United States was driven by biotic variation.
Though this study did not test a model with variable para-
meters, the findings here of strong explanation by a simple
model with fixed‐in‐time parameters suggests that, at least for
mature hardwood forests of boreal‐temperate transition rea-
sons, climate sensitivity, especially of spring and fall, drove
interannual variation of NEE.
[35] While the model was able to simulate IAV at the

wetland, it was more designed with forest productivity and
aerobic decomposition in mind, suggesting nonshrub or
precipitation‐fed wetlands would not fare as well as the shrub
fen studied here. Still, this particular wetland site was not in
steady state over the time period due to a significant ongoing
decline in water table [Sulman et al., 2009]. Sulman et al.
[2009] showed that water table influences both respiration

Figure 6. Same as Figure 4 but for the S cost function
parameters (Table 6). Interannual variations by the S model
were well simulated for most sites, but less successfully for
US‐UMB and quite poorly for US‐Syv.

Table 6. Same as Table 4, but for the Synchronous Cost Function (S)

Name US‐WCr US‐UMB US‐Syv US‐Los US‐PFa

Phenology Parameters (Jointly Optimized)
A 0.063 (0.061–0.065)
GDDthresh 165.3 (165.2–165.3)
B 0.100 (0.084–0.112)
TEMPthresh 4.8 (4.7–4.8)

Photosynthesis Parameters
LUE 0.299 (0.295–0.305) 0.495 (0.479–0.520) 0.300 (0.289–0.310) 0.260 (0.251–0.276) 0.159 (0.154–0.162)
Tmin 4.0 (4.0–4.0) −2.8 (−3.0–2.0) 9.4 (9.4–9.5) 2.7 (2.7–3.0) −4.0 (−4.7–3.9)
Topt 21.3 (21.0–21.6) 38.1 (36.9–39.9) 21.2 (21.0–21.8) 37.8 (36.4–40.0) 20.5 (19.4–21.2)
VPDmax 11931 (2010–19999) 3399 (3279–3647) 3389 (3261–3530) 4028 (3339–4565) 11206 (2442–19991)
VPDmin 1981 (1647–1999) 287 (99–369) 144 (10–229) 760 (721–956) 1943 (1084–1999)

Respiration Parameters
rs 0.23 (0.22–0.24) 0.90 (0.81–0.92) 1.79 (1.74–1.81) 0.31 (0.28–0.52) 0.35 (0.26–0.45)
rv 1.26 (1.23–1.29) 0.34 (0.30–0.39) 0.10 (0.10–0.12) 0.91 (0.71–0.93) 1.31 (1.26–1.37)
b1 0.4999 (0.4984–0.5000) 0.1073 (0.0987–0.1165) 0.2103 (0.2032–0.2146) 0.2720 (0.1780–0.3230) 0.2689 (0.2058–0.3217)
b2 0 (0–0.0009) 0.0002 (0.0000–0.0058) 0.0014 (0.0000–0.0187) 0.0859 (0.0635–0.0885) 0.0932 (0.0867–0.0991)
b3 0 (0–0.0005) 0.0003 (0–0.0050) 0 (0–0.0035) 0.0004 (0–0.0245) 0.0014 (0–0.0142)
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and productivity in this wetland, generally leading to little
change in NEE over the time period studied. Consequently,
one could argue that this model may be getting the right
answer for the wrong reasons, given the relatively small
interannual variability of NEE.
[36] Differingmodel structures led theMCMC algorithm to

select different optimal values formany parameters.When the
models were compared in parameter space, it was not always
immediately obvious how other parameter differences
between the models improved the fit to IAV. These parameter
correlations require further examination and suggest that
caution is required when drawing inferences from model
parameter optimization techniques without first testing for
optimal model structure. Additionally, a question of over-
fitting to IAV arises when relying on data sets with only a few
years of data and the modified cost function, which also
requires further examination.

4.2. Synchronous Phenological Forcing

[37] Surprisingly, despite the differences in site ecosystem
type, age, and location, the simulation with synchronous
phenological forcing still managed to explain much of the
IAV in the region, especially for forests. Though the details of
plant phenology vary strongly by species and the microcli-
mate experienced by individual plants, results here suggest
that at stand or regional scale, carbon cycle responses to
climate can generally be simulated by relatively simple
accumulated climatic heating indices and regional soil tem-
perature thresholds. Within this framework, it would make
sense that US‐UMB would fare poorest under synchronous
forcing, as it is the farthest site both climatically and geo-
graphically from the other sites, while the other four sites are
more similar in climate and soil type. However, this assertion
cannot be rigorously tested here without also comparing to
forest similar to US‐UMB at varying distances. Still, these
results hint at a possible way to better estimate the spatial
coherence of phenological forcing by utilizing sets of flux
towers to geostatistically test the ability of models to jointly
simulate flux variability [Yadav et al., 2010]. Here, the find-
ings suggest synchronous scales of at least 100 km, reflecting
the distance among the tower sites outside of US‐UMB. Also,

the decline in explanation of variance at the old growth forest
further develops the case that this site has strong internal
control on interannual carbon cycling.

4.3. Carbon Cycling and Growing Season Length

[38] The parameterized AI model can be further examined
to suggest mechanisms by which climate variability is con-
nected to flux variability, via the interaction of model para-
meters that impact growing season length (Figure 7) and
carbon uptake period (Figure 8). For sites where the AI model
successfully simulated IAV, the mechanism by which phe-
nology impacted IAV was not consistent across all sites.
Hardwood forest sites (US‐WCr and US‐UMB) showed less
carbon uptake (more positive NEE) with later LON, while
other sites had no significant relationship (Figure 7a). For
these two sites, the strength of this LON relationship drove a
negative relationship between growing season length (GSL)
and NEE (longer GSL = more uptake). This finding is con-
sistent with previous single site studies that have noted re-
lationships between warmer springs and enhanced annual
carbon uptake in a boreal aspen forest [Barr et al., 2006;Chen
et al., 1999], eastern deciduous forest [Goulden et al., 1996],
and a spruce‐dominated eastern forest [Hollinger et al., 2004;
Richardson et al., 2009].
[39] The effect of autumn (LOFF) is less clear, with one only

forest (US‐Syv) showing a significant positive relationship
(later LOFF = less uptake) (Figure 7b). The wetland site (US‐
Los) also had a significant relationship, but the magnitude
was very small. A recent paper noted that warmer autumns led
to less carbon uptake in boreal ecosystems, by increasing ER
more than GPP [Piao et al., 2008]. This effect is not strongly
evident here in the temperate‐boreal transition zone.
[40] While strong consistent spring and autumn climate

impacts on NEE were not apparent, the combined effect of
both on GSL is significant and negative (longer growing sea-
son is equal to more carbon uptake) at all sites except the
mixed regional site (US‐PFa), consistent with earlier findings
across the flux tower network showing growing season length
as a strong determinant of net carbon uptake [Baldocchi et al.,
2001;Churkina et al., 2005]. The lack of strong correlation at
the US‐PFa site may be related to complementary responses

Figure 7. Linear regression derived slope of the relationship between annual NEE and anomaly in dates of
(a) leaf on (LON), (b) leaf off (LOFF), and (c) growing season length (GSL) as quantified from IFUSE model
output using AI cost function parameters (Table 5) plotted against linear correlation of this relationship at all
sites. Dotted line indicates p < 0.1 significance level.
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occurring across the mix of stand types sampled by the tall
tower and perhaps the influence of moisture on regional
fluxes that is not apparent at the stand‐scale towers [Desai
et al., 2010].
[41] Interestingly, while the parameter analysis suggests

that spring phenology was a strong controller of growing
season length for mature forests, analysis of CUP showed
mean variability in end date of CUP (+/− 13 days) was virtually
the same as start date (+/− 14 days) at most sites (Figure 8),
though some of this was driven by significant variability in
CUP end date simulated at the old growth site. The simulated
CUPwas relatively well matched to observed variation in CUP,
except for overestimate of CUP end date at US‐PFa, most
likely related to the complex footprint observed at this site.
Spatially, CUP ends dates were more variable across sites
(+/− 25 days) than start dates (+/− 9 days), and the former had
a negative latitudinal trend (earlier end date further north),

while the latter had no discernible trend. Rather, it appears the
earliest CUP dates were associated with sites that have more
evergreen trees in the footprint (US‐PFa and US‐Syl), and the
date of net carbon uptake start otherwise is strongly spatially
coherent, whereas end date is more site‐dependent, with the
latitudinal trend probably spurious given the variation in
ecosystem type. Further analysis of climatic controls revealed
that the CUP start dates were strongly correlated to mean
annual temperature at the mature and old‐growth forest sites
(r2 ranging from 0.50 to 0.87), while end dates had no sig-
nificant relationships to temperature or radiation. CUP start
was also well correlated to mean annual incoming PAR, but
the climate data showed a strong relationship between mean
annual PAR and temperature (r = −0.82). These findings
highlight aspects of climatic spatial coherence and possible
remote sensing approaches to quantifying regional carbon
uptake periods and phenology.
[42] There is also evidence to suggest that relationships

between water and carbon cycle, something not modeled
here, are an important factor to consider when simulating
carbon cycle IAV. Hu et al. [2010] found that evergreen
montaine forest carbon uptake had an inverse relationship
with growing season length, due to the importance of snow-
melt as a source of growing season plant available water. The
findings here, showing mostly the opposite case, do not
suggest a strong control of snow water on IAV in the study
region. However, other studies in the region have shown that
water table depth [Desai et al., 2010; Sulman et al., 2009] and
summer soil moisture [Ricciuto et al., 2008] may also be
important factors in explaining IAV in the patchy forest‐
wetland landscape that characterizes the region, and in similar
forests of other regions [Hollinger et al., 2004]. Ricciuto et al.
[2008] noted that daytime and seasonal NEE at the regional
tall tower (US‐PFa) were correlated to soil moisture, but
correlations were weak at the annual scale. The models used
here did not consider these effects, which may explain some
of the unexplained variability of IAV, especially at the wet-
land and old‐growth forest. Time lags are likely in relation-
ships between moisture and carbon [e.g., Desai et al., 2010;
Dunn et al., 2007;Hu et al., 2010], and model mechanisms to
couple these processes require further assessment.

5. Conclusion

[43] Thirty‐one site years of near continuous flux tower
carbon exchange observations across a meso‐network of five
established Ameriflux sites were used to identify a coherent
signal of interannual variability in net ecosystem exchange, a
likely indicator of the role of regional climate variability
on ecoystem carbon cycling. A model parameterized with
climate‐sensitive phenology and a minimal set of carbon
cycle functions and parameters to explain daily variations in
NEE could successfully simulate much of this IAV, espe-
cially at the mature forest sites, but only when the model
cost function was correctly identified and applied.
[44] Climate variability in this boreal‐temperate transition

region drove NEE variability in the model primarily through
the impact of growing season length on length of carbon
uptake period. Given the longer timescales over which
decomposition and respiration processes vary (i.e., slowly
varying soil pools), it was not surprising that most interannual
variability in these sites can be ascribed to photosynthetic

Figure 8. Comparison of model (solid square, line) and
observed (open triangle) carbon uptake start and end dates
for each year at each site sorted by latitude (south to north).
Observed and modeled dates match well, though US‐PFa
end dates were overestimated by model, and US‐Syl showed
large variability in the first several years. No strong latitudinal
trends were detected in start date, but a linear trend was found
of earlier end dates with greater latitude.
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processes. The model also highlighted the role that climate
variability imparts on carbon flux spatial coherence, at least
on length scales of 100 km for this region, though this
question would be best further explored with a larger‐scale
geostatistical study of carbon flux spatial variation [Yadav
et al., 2010].
[45] Old‐growth forest and wetland annual carbon flux

variability were less well simulated, suggesting a strong role
for internal biotic dynamics and moisture variability on car-
bon flux variations at some sites. These dynamics may be an
important aspect of regional carbon cycle variability, espe-
cially as forests in the region age and long‐term drought
conditions persist. Other noted causes of IAV that also require
further consideration, especially at regional scales, include
the role of stochastic disturbance [Desai et al., 2007], pest
outbreaks [Cook et al., 2008], and internal organic matter
decomposition dynamics [Ricciuto et al., 2008].
[46] These findings highlight the complexities involved in

upscaling flux tower NEE and simulating regional carbon
fluxes with ecosystem models. While some level of common
responses of climate variability and carbon uptake can be
specified, as shown here, it is obvious that not all subgrid
variability (i.e., for example in this region, the role of stand
age and wetlands) can be sufficiently simulated with this kind
of approach. Depending on the extent of subgrid variability
within any one region and the research questions being asked,
it is recommended that ecosystem modelers further investi-
gate how to best specify and parameterize this variability in
regional‐ and global‐scale models.
[47] The impact of climate variability on phenology and

ultimately ecosystem biogeochemistry is a first‐order climate‐
ecosystem interaction, and of likely importance on the pre-
dictability of future carbon cycles as anthropogenic climatic
changes are expected to be strongly felt in midcontinental
midlatitude regions. Preliminary findings from long‐term flux
tower observations and careful ecosystem model param-
eterization in a boreal‐temperate transition region suggest that
future climate change in the shoulder seasons is likely to
affect the carbon balance of mixed and deciduous broadleaf
forests, perhaps more than climatic changes occurring in the
central part of the growing season. However, these findings
are limited by lack of longer‐term carbon cycle and pheno-
logical observations. Additionally, the variety of findings
among montaine, grassland, temperate, boreal, and temperate‐
boreal transition regions highlight the need for continued
efforts to better parameterize climate sensitivity of phenology
in ecosystem models.

[48] Acknowledgments. Flux tower observations could not have been
made without the assistance of those associated with the Chequamagon
Ecosystem‐Atmosphere Study (ChEAS), especially K. Davis of Pennsylva-
nia State University, J. Thom and S. Knuth of University of Wisconsin‐
Madison, B. Cook of NASA Goddard Space Flight Center, D. Ricciuto of
Oak Ridge National Labs, P. Curtis of Ohio State University, C. Gough of
Virginia Commonwealth University, C. Vogel of University of Michigan
Biological Station, R. Teclaw and D. Baumann of the US Forest Service
Northern Research Station, and R. Strand of the Wisconsin Education Com-
munications Board (ECB). I also would like to thank B. Sacks, University of
Wisconsin‐Madison, for discussion of parameter estimation techniques and
the Center for Climatic Research (CCR) for support. This work was sup-
ported by theDepartment of Energy (DOE)Office of Biological and Environ-
mental Research (BER) National Institute for Climatic Change Research
(NICCR) Midwestern Region Subagreement 050516Z19 and the National
Science Foundation (NSF) Biology Directorate grant DEB‐0845166.

References
Baldocchi, D. D., et al. (2001), FLUXNET: A new tool to study the temporal
and spatial variability of ecosystem‐scale carbon dioxide, water vapor, and
energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–2434.

Baldocchi, D. D., et al. (2005), Predicting the onset of net carbon uptake by
deciduous forests with soil temperature and climate data: A synthesis of
FLUXNET data, Int. J. Biometeorol., 49, 377–387.

Barr, A. G., et al. (2006), Climatic controls on the carbon and water bal-
ances of a boreal aspen forest, 1994–2003, Global Change Biol., 13,
561–576.

Bonan, G. B. (2008), Forests and climate change: Forcings, feedbacks, and
the climate benefits of forests, Science, 320(5882), 1444–1449,
doi:10.1126/science.1155121.

Braswell, B. H., B. Sacks, E. Linder, and D. S. Schimel (2005), Estimating
ecosystem process parameters by assimilation of eddy flux observations
of NEE, Global Change Biol., 11, 335–355.

Carvalhais, N., et al. (2008), Implications of the carbon cycle steady state
assumption for biogeochemical modeling performance and inverse
parameter retrieval, Global Biogeochem. Cycles, 22, GB2007,
doi:10.1029/2007GB003033.

Chen, W. J., et al. (1999), Effects of climatic variability on the annual carbon
sequestration by a boreal aspen forest, Global Change Biol., 5, 41–53.

Churkina, G., D. Schimel, B. H. Braswell, and X. M. Xiao (2005), Spatial
analysis of growing season length control on net ecosystem exchange,
Global Change Biol., 11, 1777–1787.

Cook, B. D., et al. (2004), Carbon exchange and venting anomalies in an
upland deciduous forest in northernWisconsin, USA, Agric. For. Meteorol.,
126, 271–295.

Cook, B. D., P. V. Bolstad, J. G. Martin, F. A. Heinsch, K. J. Davis, W.Wang,
A. R. Desai, and R.M. Teclaw (2008), Using light‐use and production effi-
ciency models to predict forest production and carbon exchange during
canopy disturbance events, Ecosystems, 11, 26–44, doi:10.1007/s10021-
007-9105-0.

Davis, K. J., et al. (2003), The annual cycle of CO2 and H2O exchange over
a northern mixed forest as observed from a very tall tower, Global
Change Biol., 9, 1278–1293.

Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey
(2005), Comparing net ecosystem exchange of carbon dioxide between
an old‐growth and mature forest in the upper Midwest, USA, Agric.
For. Meteorol., 128(1–2), 33–55, doi:10.1016/j.agformet.2004.09.005.

Desai, A. R., P. R. Moorcroft, P. V. Bolstad, and K. J. Davis (2007),
Regional carbon fluxes from a biometrically constrained dynamic ecosys-
tem model: Impact of disturbance, CO2 fertilization and heterogeneous
land cover, J. Geophys. Res., 112, G01017, doi:10.1029/2006JG000264.

Desai, A. R., et al. (2008), Influence of vegetation and seasonal forcing on
carbon dioxide fluxes across the Upper Midwest, USA: Implications for
regional scaling, Agric. For. Meteorol., 148(2), 288–308, doi:10.1016/j.
agrformet.2007.08.001.

Desai, A. R., B. R. Helliker, P. R. Moorcroft, A. E. Andrews, and J. A.
Berry (2010), Climatic controls of interannual variability in regional car-
bon fluxes from top‐down and bottom‐up perspectives, J. Geophys. Res.,
115, G02011, doi:10.1029/2009JG001122.

Dragoni, D., H. P. Schmid, C. A. Wayson, H. Potter, C. S. B. Grimmond,
and J. Randolph (2010), Evidence of increased net ecosystem productiv-
ity associated with a longer vegetated season in a deciduous forest in
south‐central Indiana, USA, Global Change Biol., doi:10.1111/j.1365-
2486.2010.02281.x, in press.

Dunn, A. L., C. C. Barford, S. C. Wofsy, M. L. Goulden, and B. C. Daube
(2007), A long‐term record of carbon exchange in a boreal blackspruce
forest: Means, responses to interannual variability, and decadal trends,
Global Change Biol., 13, 577–590.

Gordo, O., and J. J. Sanz (2010), Impact of climate change on plant phenol-
ogy in Mediterranean ecosystems, Global Change Biol., 16, 1082–1106,
doi:10.1111/j.1365-2486.2009.02084.x.

Gough, C. M., C. S. Vogel, H.‐P. Schmid, H.‐B. Su, and P. S. Curtis
(2008), Multi‐year convergence of biometric and meteorological esti-
mates of forest carbon storage, Agric. For. Meteorol., 148, 158–170.

Goulden, M. L., J. W. Munger, S. M. Fan, B. C. Daube, and S. C. Wofsy
(1996), Exchange of carbon dioxide by a deciduous forest: Response to
interannual climate variability, Science, 271, 1576–1578.

Hollinger, D. Y., J. Aber, B. Dail, S. M. Davidson, H. Goltz, and H. Hughes
(2004), Spatial and temporal variability in forest‐atmosphere CO2
exchange, Global Change Biol., 10, 1689–1706.

Hu, J., D. J. P. Moore, S. P. Burns, and R. K. Monson (2010), Longer grow-
ing seasons lead to less carbon sequestration by a subalpine forest, Global
Change Biol., 16, 771–783, doi:10.1111/j.1365-2486.2009.01967.x.

Linderholm, H. W. (2006), Growing season changes in the last century,
Agric. For. Meteorol., 137, 1–14.

DESAI: GROWING SEASON TIMING AND CARBON FLUXES G00J02G00J02

12 of 13



Luo, Y. Q., E. S. Weng, X. W. Wu, C. Gao, X. H. Zhou, and L. Zhang
(2009), Parameter identifiability, constraint, and equifinality in data
assimilation with ecosystem models, Ecol. Appl., 19, 571–574.

Menzel, A., and P. Fabian (1999), Growing season extended in Europe,
Nature, 455, 213–215.

Metropolis, N., and S. Ulam (1949), The Monte Carlo method, J. Am. Stat.
Assoc., 44, 335–341.

Moffat, A. M., et al. (2007), Comprehensive comparison of gap filling tech-
niques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147,
209–232.

Morisette, J. T., et al. (2009), Tracking the rhythm of the seasons in the face
of global change: Phenological research in the 21st century, Front. Ecol.
Environ, 7, 253–260, doi:10.1890/070217.

Myneni, R. B., C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani
(1997), Increasing plant growth in the northern high latitudes from
1981 to 1991, Nature, 386, 698–702.

Peñuelas, J., T. Rutishauser, and I. Filella (2009), Phenology feedbacks on
climate change, Science, 324(5929), 887–888, doi:10.1126/science.
1173004.

Piao, S., et al. (2008), Net carbon dioxide losses of northern ecosystems in
response to autumn warming, Nature, 451, 49–53.

Polley, H. W., et al. (2010), Physiological and environmental regulation of
interannual variability in CO2 exchange on rangelands in the western
United States, Global Change Biol., 16, 990–1002, doi:10.1111/j.1365-
2486.2009.01966.x.

Ricciuto, D. M., M. P. Butler, K. J. Davis, B. D. Cook, P. S. Bakwin,
A. Andrews, and R.M. Teclaw (2008), Causes of interannual variability in
ecosystem‐atmosphere CO2 exchange in a northernWisconsin forest using
a Bayesian model calibration, Agric. For. Meteorol., 148(2), 309–327.

Richardson, A. D., A. S. Bailey, E. G. Denny, C. W. Martin, and J. O’Keefe
(2006), Phenology of a northern hardwood forest canopy, Global Change
Biol., 12, 1174–1178.

Richardson, A. D., D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H.
Braswell (2007), Environmental variation is directly responsible for
short‐ but not long‐term variation in forest‐atmosphere carbon exchange,
Global Change Biol., 13, 788–803.

Richardson, A. D., D. Y. Hollinger, D. B. Dail, J. T. Lee, J. W. Munger,
and J. O’Keefe (2009), Influence of spring phenology on seasonal and
annual carbon balance in two contrasting New England forests, Tree
Physiol., 29, 321–331, doi:10.1093/treephys/tpn040.

Sacks, W. J., D. S. Schimel, R. K. Monson, and B. H. Braswell (2006),
Model‐data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge,
Colorado, Global Change Biol., 12(2), 240–259.

Sierra, C., H.W. Loescher, M. E. Harmon, A. D. Richardson, D. Y. Hollinger,
and S. S. Perakis (2009), Interannual variation of carbon fluxes from three
contrasting evergreen forests: The role of forest dynamics and climate,
Ecology, 90(10), 2711–2723.

Stine, A. R., P. Huybers, and I. Y. Fung (2009), Changes in the phase of the
annual cycle of surface temperature, Nature, 457, 435–441, doi:10.1038/
nature07675.

Stöckli, R., and P. L. Vidale (2004), European plant phenology and climate
as seen in a 20‐year AVHRR land‐surface parameter dataset, Int.
J. Remote Sens., 25, 3303–3330.

Stoy, P. C., et al. (2009), Biosphere‐atmosphere exchange of CO2 in
relation to climate: A cross‐biome analysis across multiple time scales,
Biogeosciences, 6, 2297–2312.

Sulman, B. N., A. R. Desai, B. D. Cook, N. Saliendra, and D. S. Mackay
(2009), Contrasting carbon dioxide fluxes between a drying shrub wet-
land in northern Wisconsin, USA, and nearby forests, Biogeosciences,
6, 1115–1126.

Urbanski, S., et al. (2007), Factors controlling CO2 exchange on timescales
from hourly to decadal at Harvard Forest, J. Geophys. Res., 112, G02020,
doi:10.1029/2006JG000293.

Vitasse, Y., A. J. Porte, A. Kremer, R. Michalet, and S. Delzon (2009),
Responses of canopy duration to temperature changes in four temperate
tree species: Relative contributions of spring and autumn leaf phenology,
Oecologia, 161, 187–198.

White, M. A., et al. (2009), Intercomparison, interpretation, and assessment
of spring phenology in North America estimated from remote sensing for
1982–2006, Global Change Biol., 15, 2335–2359.

Yadav, V., K. L. Mueller, D. Dragoni, and A. M. Michalak (2010), A geos-
tatistical synthesis study of factors affecting gross primary productivity in
various ecosystems of North America, Biogeosciences Discuss., 7,
1445–1487, doi:10.5194/bgd-7-1445-2010.

Yuan, W., et al. (2009), Latitudinal patterns of magnitude and interannual
variability in net ecosystem exchange regulated by biological and envi-
ronmental var iables , Global Change Biol . , 15 , 2905–2920,
doi:10.1111/j.1365-2486.2009.01870.x.

A. R. Desai, Department of Atmospheric and Oceanic Sciences,
University of Wisconsin‐Madison, AOSS 1549, 1225 W. Dayton St.,
Madison, WI 53706, USA. (desai@aos.wisc.edu)

DESAI: GROWING SEASON TIMING AND CARBON FLUXES G00J02G00J02

13 of 13



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


