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ABSTRACT 

Multispectral IKONOS imagery was used to create a high-resolution land cover map for 

an Earth Observing System (EOS) satellite validation study site in northern Wisconsin.  

Panchromatic texture and raw radiances (NIR, red, green, and blue) were merged to create 

unique signatures for 12 land classes, which will be used in process-based ecosystem models 

of forest growth and carbon sequestration.  A hierarchical, hybrid of unsupervised and 

supervised methods was used to classify 4 m pixels within the 10 × 10 km study area, resulting 

in conservative and optimistic accuracies of 65 and 80%, respectively.  Confusions involved 

species that are found together in mixed stands, and minimum mapping unit differences and 

positional error between the reference data and classified image were likely sources of error.  

Landscape coverage for each of the classes was similar to other classifications of the area, and 

greater resolution revealed small features (e.g., roads, streams, canopy gaps, harvests) and 

individual classes within mixed stands, which are generalized in larger resolution maps.  

Variability in lowland area between MODIS-size pixels was large, ranging from <1 to 83%, 

representing a large source of uncertainty associated with remotely sensed estimates of plant 

production and carbon exchange between terrestrial ecosystems and the atmosphere. 
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INTRODUCTION 

The objective of this study was to produce a high-resolution land cover map for an Earth 

Observing System (EOS) satellite validation study site in northern Wisconsin (NASA, 2005a).  

The landscape at this site is complex and highly fragmented (Bresee et al., 2004), which is 

typical for much of the Great Lakes Region (Saunders et al., 2002).   The ability to accurately 

estimate standing biomass and monitor vegetation production in this region from remotely 

sensed satellite imagery (Running et al., 2004) is likely to be limited by: 1) resolution of the 

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS satellites 

(approximately 1 km; Barnes et al., 1998); and 2) current algorithms that ignore wetlands 

(Strahler et al., 1999; Heinsch et al., 2003).  To assess these potential errors and improve 

biomass and production estimates, high-resolution landcover maps are needed to support 

efforts to upscale ground-based observations using nested ecosystem models (Ahl et al., 

2005a; Desai et al., 2005; Davis et al., 2003a; Wang et al., 2004).   

Unique spectral characteristics of vegetation types have been used to derive moderate 

resolution (30 m) land cover maps from multispectral sources for quite some time (e.g., Bolstad 

and Lillesand, 1992).  The Wisconsin DNR commissioned such a map in the 1990s, and a 

statewide land cover classification, WISCLAND, was produced using multispectral data from 

Landsat satellites as the primary data source (Wisconsin DNR, 2005a).  Spectral signatures for 

vegetation types vary across the state, and as a result, accuracies vary from region to region.   

Ahl et al. (2005a) assessed WISCLAND at the EOS validation site in northern Wisconsin, and 

found an overall accuracy of 50%.  Some of the errors were associated with land use changes 

(i.e., timber harvesting and forest regrowth) since the 1990s, but confusion between forested 

and shrub wetland was a widespread problem with the WISCLAND classification.   

Overall accuracies were increased to 84% by Ahl et al. (2005a) using higher resolution 

multispectral data (15 m) collected from an airborne Advanced Thermal and Land Applications 

Sensor (ATLAS; NASA, 2005b) and a modified classification scheme that aggregated similar 
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deciduous and coniferous species.  Unfortunately, the land cover map produced by Ahl et al. 

only covers an area about 2 × 3 km, and the classification did not separate lowland forests from 

lowland shrub or wet meadows.  Continuous measurements of forest growth and carbon 

exchange are made from a 400 m AmeriFlux tower at the center of this plot, and “footprints” 

associated with these measurements extend outwards about 6 km. 

The IKONOS satellite is another source of multispectral data that has been utilized for 

land cover classifications in forested landscapes of the United States and Canada (e.g., 

Lennertz and Congalton, 2004; Tatham and O’Brian, 2005).  IKONOS imagery offers higher 

resolutions (<1 to 3 m), and a single scene covers an area of about 11 × 11 km.  Band widths 

are rather broad (70 to 130 nm), but canopy shadows (Asner et al., 2003) and texture (Lennertz 

and Congalton, 2004; Hurtt et al., 2003) can enhance classifications.   

Coupling of the IKONOS land cover classification with other sources of remotely sensed 

data will be explored in future studies.  Hyperspectral AVIRIS (Airborne Visible/Infrared Imaging 

Spectrometer) imagery can be used to reduce confusion between vegetation with similar 

spectral signatures, and will be used to delineate wetlands to a higher level of accuracy and 

resolution (15 m) than the existing Wisconsin Wetland Inventory (30 m; Wisconsin DNR, 

2005b).  Airborne LiDAR (Light Detection and Ranging) measurements will be collected during 

2005 to produce highly accurate maps of forest structure (e.g., canopy heights, wood volume; 

Næsset, 1997).  Spacing between laser pulses (1 to 3 points m-3) is small enough to isolate 

individual trees, and fusion with land cover data has been shown to improve biomass 

inventories (Popescu and Wynne, 2004). 
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MATERIALS AND METHODS 

Site Description 

The EOS validation site in northern Wisconsin is located at 90.2729ºN, 45.9451ºW 

(Figure 1).  The site is centered on a 400 m tall broadcasting tower (Figure 2), which is used as 

a platform for measuring ecosystem-atmosphere exchange of CO2 and inferring landscape-

scale forest growth (Davis et al., 2003b).  A 10×10 km area representing the approximate 

“footprint” of the tower observations was classified for this study.  Approximately 71% of total 

land area is located within the Chequamegon-Nicolet National Forest (CNNF), which is actively 

managed for recreation, wildlife, preservation, and forestry products, and about one-third is 

occupied by wetlands.  Differences in land ownership, land use, and physical geography 

contribute to a complex, fragmented pattern of vegetation (Figure 2; Bresee et al., 2004), which 

is typical of the Great Lakes Region (Saunders et al., 2002) 

                           
 

Figure 1.  Location of the Earth Observing System  Figure 2.  Complex landscape of the Chequamegon- 
(EOS) core validiation site near Park Falls, WI, USA   Nicolet National Forest (CNNF) and adjoining lands 
(Color landform map courtesy of Ray Sterner, © 1995). (photo courtesy of Michael L. Jensen, 2003). 
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IKONOS Imagery 

A multispectral image acquired from the IKONOS satellite on 5 July 2002, 1712 GMT, 

was procured by the National Aeronautics and Space Administration (NASA) John C. Stennis 

Space Center for this study.  Acquisition during mid-growing season and solar noon was an 

ideal time for characterizing different vegetation spectra and minimizing shadows.  The image 

was geocorrected by Space Imaging (Thorton, CO) to a positional accuracy of <15 m.  The 

panchromatic band has a resolution of 1 m, while the multispectral bands (near infrared, red, 

green, and blue) have resolutions of 4 m.  Relative spectral response and positions of these 

broad spectral bands are shown in Figure 3. 

 

Figure 3.  IKONOS Relative spectral response: black, panchromatic band (450 to 900 
nm); blue, blue band (450 to 520 nm); green, green band (510 to 600 nm); red, red band 
(630 to 700 nm); magenta, near infrared band (760 to 850 nm). 

 

Land Cover Classes 

Each 4 m IKONOS pixel was assigned to one of the land cover classes listed in Table 1.  

These categories were chosen on the basis of: 1) distinct spectral and textural patterns that 

could be identified from remotely sensed data (discussed below); 2) similar processes model 

parameters (BIOME-BGC; Running and Hunt, 1993), or similar to ecosystems being monitored 

by the Chequamegon-Ecosystem Atmospheric Study (ChEAS, 1995); and 3) compatibility with 

Source:  Space Imaging, Thorton, CO 
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EOS global land cover products (International Biosphere-Geosphere Program, IGBP; University 

of Maryland’s Global Land Cover Classification, UMD).  This strategy incorporates quantifiable 

error into regional estimates of forest growth and carbon exchange, which can be attributed to 

within class variability (Ahl et al., 2004) and ineffective aggregation of class at different spatial 

scales (Reich et al., 1999).  Quantifying and reducing these errors is an overall objective of 

upscaling efforts at this site. 

 

Table 1.  Land cover classes used for this study, and corresponding categories from other classifications (class 
values in parentheses) used to select training sites and interpret the unsupervised classification.   

_____________________________________________________________________________________________ 
 
Site Specific Chequamegon-Nicolet National Forest Wisconsin Wetlands Inventory 
_____________________________________________________________________________________________ 
 
UPLANDS  
   Forested 
   Upland Conifer Red Pine (2) Upland (U) 
 Jack Pine (1)  
 White Pine (3)  
 
   Aspen-Birch Quaking Aspen (91) Upland (U) 
 Paper Birch (92) 
 
   Upland Hardwood Sugar maple-Basswood (82) Upland (U) 
 Sugar maple (85) 
 Mixed hardwoods (89)  
 
   Non-Forested 
   Upland Openings/Shrub Upland Shrub (98) Upland (U) 
 
   Grassland  Open Upland/Wetland (99) Upland (U) 
 
   Road “Roads” polygon Road (ROAD) 
 
 
LOWLANDS  
   Forested 
   Lowland Conifer Lowland Black Spruce (12) Forested Wetland, 
 Northern White Cedar (14)    Needle Leaved (T8) 
 Tamarack (15)  
 Mixed Swamp Conifer (18)    
 
   Lowland Deciduous Black Ash-American Elm-Red Maple (71) Forested Wetland, Broad 
 Mixed Lowland Hardwoods (79)    Leaved Deciduous (T3) 
 
   Non-Forested 
   Lowland Shrub Lowland Shrub (97) Scrub/Shrub Wetland (S)  
 
   Wet Meadow Open Upland/Wetland (99) Emergent/Wet Meadow (E) 
 
   Open Water  “Lakes” and “Streams” polygons Open Water (W) 
_____________________________________________________________________________________________ 
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Training Sites 
 

A vast majority of the study site has been measured and classified by field surveys 

conducted by the USDA Forest Service, Chequamegon-Nicolet National Forest (CNNF).  

Stands boundaries have been identified for management purposes, and each site is re-

assessed at least once every 10 years.  These provided representative sites of known cover, 

“training sites”, at numerous locations across the site (Figure 4), and increased the likelihood 

that the full range of soil types, landscape positions, vegetation densities, and age classes were 

included in the signature for each class.  Mixed stands were excluded as training sites (Table 1); 

“fuzzy signatures” could have been developed for these stands, but detailed information on 

relative species composition was lacking.  Training sites were not identified for roads and 

streams, since features dimensions were often smaller than image resolution.   

 

 

Figure 4.  Location of training sites using data from the Chequamegon-
Nicolet National Forest (CNNF) and Wisconsin Wetlands Inventory (WWI). 

 

Data from the 1984 Wisconsin Wetlands Inventory (WWI; Wisconsin Department of 

Natural Resources, 2005a) was used to increase the number of wetland sites (Figure 4), and 

classifications were cross-validated with CNNF stand data (Table 1).  Approximately 16% of the 

CNNF and WWI classifications did not agree on an upland/wetland designation, and were 
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discarded as training sites.  These differences may reflect conflicting wetland definitions and 

classification objectives, but it also suggests the need for a more accurate and precise wetlands 

map of the study site.  Wetlands appearing in the WWI were classified and delineated using 

1:24,000 scale aerial photos, with a minimum mapping unit of only 0.8 to 2.0 ha.  The statewide 

land cover classification, WISCLAND, masked the WWI and did not attempt reevaluate the 

classifications and positional accuracies of these wetlands. 

 
Image Enhancement and Signature Development 

 
A secondary objective of this study was to evaluate the utility of classification modules in 

IDRISI Kilimanjaro (Clark Labs, Worcester, MA) for analyzing multispectral IKONOS data.  Clark 

Labs claims to have the fastest classifiers on the market, and they have incorporated several 

tools for image restoration, transformation, and signature development (Eastman, 2003).  In 

addition to upwelling radiance from the four spectral bands (Figure 5b), the potential for using 

signatures derived from transformed bands and panchromatic texture to classify land cover 

across the entire scene was evaluated. 

Transformation of raw spectral radiances is often used to reduce inter-band correlations 

and enhance spectral differences between land cover features.  The “tasseled cap” 

transformation was introduced by Kauth and Thomas (1976) as a method for monitoring 

agricultural crops, but the first two components (brightness and greenness) contain valuable 

information relating to soil reflectance and vegetation greenness.  The four Landsat 

Multispectral Scanner (MSS) bands used in the tasseled cap transformation are analogous to 

the four IKONOS bands, and it is relatively easy to adopt this linear transformation as an 

alternative to spectral signatures from raw bands (Figure 5c). 
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  a)  High resolution panchromatic band. 

 
  b)  True color image using red, green, blue (RGB) bands. 

 
  c)  False color image using tasseled cap brightness, 

greenness, and yellowness as RGB bands. 

 
 

  d)  Panchromatic texture (see text for details). 
 

 
Figure 5a-d.  Appearance of site specific land cover features in IKONOS-derived images for a 3 × 3 km area around 
the tall tower on 5 July 2002. 

 

Spatial pattern recognition, i.e., comparing a raster cell to neighboring pixels, is an 

alternative to spectrally oriented classification, and the analysis takes full advantage of high 

resolution IKONOS data.  For this study, texture was calculated for each 1 m panchromatic pixel 
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(Figure 5a) using a 7 × 7 kernel and relative richness index, after which, the image was 

contracted to 4 m resolution by pixel aggregation (Figure 5d). 

Linear contrast stretching and compositing was used to enhance the appearance and 

accentuate differences between site specific features, as illustrated in Figure 5.  Principal 

component analysis (PCA) of the entire scene was used during preprocessing to identify 

meaningful underlying information from the IKONOS imagery, and the results of these analyses 

are presented in Table 2.  Correlation within visible (IKONOS red, green, and blue) and tasseled 

cap transformed bands (brightness, greenness, yellowness, and nosuch) was high (r>0.82), 

while raw NIR was highly correlated with greenness (r=0.996) and panchromatic pattern was 

poorly correlated (r<0.20) with all of the spectral bands.  Eigenvectors indicated that most of the 

variability (99.6%) was captured in the first three components, and loadings revealed that NIR, 

texture, and raw visible bands exhibited the strongest influence on these components.  

 
 
Table 2.  Principal Component Analysis of raw IKONOS bands (NIR, red, green, blue), tasseled cap transformed 

bands (brightness, greenness, yellowness, nosuch); and panchromatic texture for the entire scene.   
 
a) Correlations. 
 
 NIR Red Green Blue Brightness Greenness Yellowness Nosuch Pattern 
NIR 1.000 0.302 0.491 0.147 0.855 0.996 0.987 0.987 0.181 
Red  1.000 0.905 0.882 0.739 0.291 0.304 0.223 -0.190 
Green   1.000 0.825 0.858 0.452 0.521 0.426 -0.113 
Blue    1.000 0.601 0.115 0.107 0.080 -0.226 
Brightness     1.000 0.837 0.851 0.811 0.024 
Greenness      1.000 0.979 0.993 0.184 
Yellowness       1.000 0.982 0.187 
Nosuch        1.000 0.201 
Texture         1.000 

b)  Eigenvectors (% of variance).  

Component C1 C2 C3 C4 C5 C6 C7 C8 C9 
Variance (%) 73.82 24.74 1.01 0.20 0.11 0.06 0.03 0.02 0.00 

c)  Loadings. 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 
NIR 0.993 -0.106 -0.010 -0.028 0.061 -0.023 -0.001 0.001 -0.001 
Red 0.242 -0.245 0.892 -0.008 0.019 0.073 -0.191 -0.055 -0.019 
Green 0.444 -0.247 0.810 -0.013 0.031 0.061 0.192 -0.050 -0.018 
Blue 0.101 -0.226 0.877 -0.004 0.010 0.075 0.000 0.375 -0.018 
Brightness 0.832 -0.210 0.488 -0.024 0.053 0.024 0.000 0.000 0.041 
Greenness 0.995 -0.102 0.029 -0.028 -0.043 -0.020 0.000 0.000 0.000 
Yellowness 0.983 -0.100 0.028 0.152 0.000 -0.019 0.000 0.000 0.000 
Nosuch 0.993 -0.084 -0.055 0.000 0.000 0.038 0.000 0.000 0.000 
Texture 0.284 0.959 0.010 0.010 -0.000 0.001 -0.000 0.000 0.000 
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Classification Methodology and Smoothing 

A hierarchical, hybrid image classification technique was used to classify the IKONOS 

imagery.  “Hierarchical” refers to the classification of wetlands and uplands separately, and 

“hybrid” refers to the use of both unsupervised and supervised methods of automated 

classification.   

Spectral signatures of vegetation can be similar enough to confuse upland and wetland 

types, and it can be assumed that overall accuracy will be improved by analyzing spectral 

signatures separately.  As has been done for other classifications (e.g., Ahl et al., 2005a; 

Wisconsin Department of Natural Resources, 2005b), IKONOS pixels were initially separated 

into upland or wetland categories.  For each of these groups, pixels were broadly generalized 

into similar clusters using unsupervised classification.  Each of the clusters was evaluated to 

determine identity (Figure 5); clusters that represented similar land cover (Table 1) were 

combined, and heterogeneous clusters were further separated by supervised, maximum 

likelihood classification using signatures developed from the raw IKONOS bands and 

panchromatic texture (see above).  Unsupervised classification with retention of all clusters 

resulted in 13 lowland clusters and 11 uplands clusters.  Supervised classification was 

performed on 55% of upland pixels, and 21% of lowland pixels. 

Follow the pixel-by-pixel classification, a 3 × 3 majority filter was applied to the data.  

This reduced the roughness of the classification imagery that was associated with shadows and 

sensor noise. 

 

RESULTS AND DISCUSSION 
 

Classification Map 
 

The classification map (Figure 6) adequately preserved all of the site specific land cover 

features indicated in the raw images (Figure 5).  From a landscape perspective, the site map 
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closely resembled the CNNF stand classifications (Figure 4), and to lesser extent, WISCLAND 

(Figure 7).  Ahl et al. (2005a) observed that WISCLAND accuracy is somewhat poor (50%) in 

this part of the state; ground-truth observations revealed that many lowland forests were 

misclassified as lowland shrub, and many of aspen stands were misclassified as upland 

hardwood.  These same biases were reflected in the IKONOS classification (Figure 7). 

An advantage of the high-resolution IKONOS classification is the elimination of the 

mixed forest class (Figure 7).  This will allow future studies to determine whether mixed forests 

can be scaled by summing model estimates for the individual components.  The IKONOS 

imagery has the ability to sense the forest canopy and gaps between individual and small 

groups of trees, which is desired for fusion with other high resolution data (e.g., LiDAR).  The 

ability to detect and quantify forest openings and canopy gaps differs from classifications using 

moderate-resolution data (e.g., Landsat), which tend to generalize more and incorporate 

percent cover into class descriptions.  Disadvantages of using high resolution IKONOS imagery 

for land cover classification include fewer spectral bands and a higher potential for confusion 

due to shadows and understory vegetation. 

 

 
 

Figure 6.  IKONOS classification for comparison with 3 × 3 km feature images above. 
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a) IKONOS. b) WISCLAND. c) MODIS-UMD and IGBP. 
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100% Mixed Forest 

 
Figure 7a-c.  Comparison of a) IKONOS; b) WISCLAND; and c) MODIS land cover products for the entire study site 
(refer to Fig. 6 legend, adding black for Mixed Forest).   

 

Accuracy Assessment 

The high-resolution map described in this paper was not prepared for the purpose of 

delineating stands, but to provide detailed information on the composition and spatial variability 

of discrete land cover features.  This complicates traditional methods of assessing classification 

accuracy, i.e., assembling an error matrix and computing a kappa coefficient, due to the 

potential for positional errors and discrepancies between pixel and field plot sizes (Verbyla and 

Hammond, 1995).  A conservative estimate of classification accuracy was determined by a 

pixel-to-pixel comparison of the IKONOS classification and a systematically arrangement of 180 

field sites around the tall tower (Burrows et al., 2002).  A 7 × 7 majority filter was applied to the 
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IKONOS data to approximate the size of the field plots.   This method produced an overall 

accuracy of 65% and a Kappa coefficient of 0.56 (Table 3).  A more optimistic estimate of 

classification accuracy was obtained by excluding sites with heterogeneous blocks of pixels 

(Hammond and Verbyla, 1996).  An overall accuracy of 80% was achieved using sites with <3 

land cover class in a 7 × 7 window (n=49).  Most of the confusions involved species that are 

found together in mixed stands, and a visual inspection of the images suggested that minimum 

mapping unit differences and positional error between the reference data and classified image 

were likely source of error.  Accuracy of the ground-based observations was ±50 cm from a 

local benchmark (Burrows et al., 2002); however, accuracy of the geocorrected IKONOS image 

was <15 m, and was not expected to be constant across the scene.  Verbyla and Hammond 

(1995) demonstrated that overall accuracies of identical, high-resolution classifications derived 

from the SPOT satellite (Système Pour l’Observation d la Terre) could be reduced to 77% 

simply by shifting the image by one pixel.  

 

 
Table 3. Conservative estimates of classification accuracy using a pixel-by-pixel comparison of 1999-2000 ground-based 

observations and the IKONOS land cover classification.  Lowland Deciduous, Wet Meadow, Open Water, and Road 
were not sampled in the reference data but appeared in the classification. 

 
Classification Upland 

Conifer 
Aspen-
Birch 

Upland 
Hardwood 

Upland 
Opening/Shrub Grassland Lowland 

Conifer 
Lowland 

Deciduous 
Lowland 
Shrub 

Wet 
Meadow 

Open 
Water Road User 

Accuracy 
Upland Conifer 5 1 5 0 0 0 0 0 0 0 0 45% 

Aspen-Birch 12 48 10 0 0 0 0 0 0 0 0 69% 

Upland 
Hardwood 0 0 20 0 0 0 0 0 0 0 0 100% 

Upland 
Opening/Shrub 0 2 14 1 0 0 0 0 0 0 0 6% 

Grassland 0 0 0 0 3 0 0 0 0 0 0 100% 

Lowland 
Conifer 0 0 0 0 0 26 0 17 0 0 0 60% 

Lowland 
Deciduous 0 0 0 0 0 0 0 0 0 0 0 --- 

Lowland Shrub 0 0 0 0 0 0 0 14 1 0 0 93% 

Wet Meadow 0 0 0 0 0 0 0 0 0 0 0 0% 

Open Water 0 0 0 0 1 0 0 0 0 0 0 --- 

Road 0 0 0 0 0 0 0 0 0 0 0 --- 

Producer 
Accuracy 29% 94% 41% 100% 75% 100% --- 45% 0% --- ---  

 
Overall Accuracy:  65% 
 
Kappa Statistic:  0.56  
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Spatial Aggregation and Variability between MODIS Pixels 
 

Estimates of vegetation production by MODIS algorithms include errors associated with 

state variables (e.g., land cover, leaf area), parameterization (e.g., light and temperature 

response functions), and model logic (e.g., the model makes no distinction between uplands 

and wetlands).  Ground-based observations have been used to validate the accuracy of 

MODIS-based products and estimates of vegetation production (Myneni et al., 2002; Burrows et 

al., 2002; Ahl et al., 2005a,b; Mackay et al., 2002; Cohen et al., 2003; Turner et al., 2003; 

Heinsch et al., 2005), but there have been few attempts to evaluate sub-pixel errors and land 

cover generalizations that may reconcile differences (e.g., Myneni, 2002; Ahl et al., 2005a; 

Mackay et al., 2002).  The EOS validation site in northern Wisconsin is well suited for this type 

of study, because the landscape is complex and fragmented within a 1 km MODIS pixel. 

Wetlands occupy about one-third of the landscape in this region (Wisconsin DNR, 

2005a), detection of pure pixels at 1 km resolution would be evasive due to their patchy, non-

contiguous distribution (Figure 4b).  Plant growth and ecosystem processes in wetlands are 

distinctly different from uplands (e.g., Griffis et al., 2000); however, there is no attempt to identify 

wetlands in the MODIS land cover algorithm (Strahler et al., 1999), nor are they modeled 

differently from uplands by the vegetation production algorithm (Heinsch et al., 2003).   

MODIS regards the rich mosaic of uplands, wetlands, grassy openings, and small lakes 

and rivers of the northern Wisconsin study entirely as “Mixed Forest” (Figure 7).  A 1 km grid 

was used to aggregate the high-resolution IKONOS classification into MODIS-size pixels, and 

the frequency distribution for each class was used to graphically display variability between cells 

(Figure 8).  Distributions of most classes were leptokurtic around a land cover mean of 0 to 

10%, indicating that pixel-to-pixel differences were constrained.  In contrast, Aspen-Birch and 

Lowland Conifer distributions exhibited platykurtic shapes over a broad range of cover.  These 

classes dominated the upland and wetland sites (Figure 7), and their overlapping distributions 
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reflected a wide range of wetland area (<1 to 83% of total land area) between simulated MODIS 

pixels.  
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Figure 8.  Frequency distributions between MODIS-size pixels (n=100; bin size=10). 
 

 

CONCLUSION 

 
An accurate, high-resolution land cover map was prepared for the EOS validation site in 

northern Wisconsin, USA, using images from the IKONOS satellite.  Twelve land cover classes 

were chosen to support ecosystem process models, and a 10 × 10 km scene was classified 

using a hybrid of supervised and unsupervised methods.  Spectral signatures were enhanced 

using an index of texture from the panchromatic band, resulting in conservative and optimistic 

accuracies of 65 and 80%, respectively.  Landscape coverage for each of the classes was 

similar to other classifications of the area, and greater resolution revealed small features (e.g., 

roads, streams, canopy gaps, harvests) and individual classes within mixed stands, which are 

generalized in larger resolution maps.  Variability in lowland area between MODIS-size pixels 
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was large, ranging from <1 to 83%, representing a large source of uncertainty associated with 

remotely sensed estimates of plant production and carbon exchange between terrestrial 

ecosystems and the atmosphere.  
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