!> @file tridia_solver_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! ! Description: ! ------------ !> Solves the linear system of equations: !> !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) !> !> by using the Thomas algorithm !--------------------------------------------------------------------------------------------------! #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) MODULE tridia_solver USE basic_constants_and_equations_mod, & ONLY: pi USE indices, & ONLY: nx, & ny, & nz USE kinds USE transpose_mod, & ONLY: nxl_z, & nyn_z, & nxr_z, & nys_z IMPLICIT NONE REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< inverse grid spacings required for the tridiagonal matrix solution REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tric !< coefficients of the tridiagonal matrix for solution of the Poisson !< equation in Fourier space REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: tri !< array to hold the tridiagonal matrix for solution of the Poisson !< equation in Fourier space (4th dimension for threads) PRIVATE INTERFACE tridia_substi MODULE PROCEDURE tridia_substi END INTERFACE tridia_substi PUBLIC tridia_substi, tridia_init, tridia_1dd CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> @todo Missing subroutine description. !--------------------------------------------------------------------------------------------------! SUBROUTINE tridia_init USE arrays_3d, & ONLY: ddzu_pres, & ddzw, & rho_air_zw IMPLICIT NONE INTEGER(iwp) :: k !< ALLOCATE( ddzuw(0:nz-1,3) ) DO k = 0, nz-1 ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) ddzuw(k,3) = -1.0_wp * ( ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) + & ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) ) ENDDO ! !-- Arrays for storing constant coeffficients of the tridiagonal solver ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) ! !-- Calculate constant coefficients of the tridiagonal matrix CALL maketri CALL split #if __acc_fft_device !$ACC ENTER DATA & !$ACC COPYIN(ddzuw(0:nz-1,1:3)) & !$ACC COPYIN(tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,1:2)) #endif END SUBROUTINE tridia_init !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Computes the i- and j-dependent component of the matrix. !> Provide the constant coefficients of the tridiagonal matrix for solution of the Poisson equation !> in Fourier space. The coefficients are computed following the method of Schmidt et al. !> (DFVLR-Mitteilung 84-15), which departs from Stephan Siano's original version by discretizing the !> Poisson equation, before it is Fourier-transformed. !--------------------------------------------------------------------------------------------------! SUBROUTINE maketri USE arrays_3d, & ONLY: rho_air USE control_parameters, & ONLY: ibc_p_b, & ibc_p_t USE grid_variables, & ONLY: dx, & dy IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nnxh !< INTEGER(iwp) :: nnyh !< REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< nnxh = ( nx + 1 ) / 2 nnyh = ( ny + 1 ) / 2 DO j = nys_z, nyn_z DO i = nxl_z, nxr_z IF ( j >= 0 .AND. j <= nnyh ) THEN IF ( i >= 0 .AND. i <= nnxh ) THEN ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) ELSE ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) ENDIF ELSE IF ( i >= 0 .AND. i <= nnxh ) THEN ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) ELSE ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) ENDIF ENDIF ENDDO ENDDO DO k = 0, nz-1 DO j = nys_z, nyn_z DO i = nxl_z, nxr_z tric(i,j,k) = ddzuw(k,3) - ll(i,j) * rho_air(k+1) ENDDO ENDDO ENDDO IF ( ibc_p_b == 1 ) THEN DO j = nys_z, nyn_z DO i = nxl_z, nxr_z tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) ENDDO ENDDO ENDIF IF ( ibc_p_t == 1 ) THEN DO j = nys_z, nyn_z DO i = nxl_z, nxr_z tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) ENDDO ENDDO ENDIF END SUBROUTINE maketri !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Substitution (Forward and Backward) (Thomas algorithm). !--------------------------------------------------------------------------------------------------! SUBROUTINE tridia_substi( ar ) USE control_parameters, & ONLY: ibc_p_b, & ibc_p_t IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< #if __acc_fft_device !$ACC DECLARE CREATE(ar1) #endif !$OMP PARALLEL PRIVATE(i,j,k) ! !-- Forward substitution #if __acc_fft_device !$ACC PARALLEL PRESENT(ar, ar1, tri) PRIVATE(i,j,k) #endif DO k = 0, nz - 1 #if __acc_fft_device !$ACC LOOP COLLAPSE(2) #endif !$OMP DO DO j = nys_z, nyn_z DO i = nxl_z, nxr_z IF ( k == 0 ) THEN ar1(i,j,k) = ar(i,j,k+1) ELSE ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) ENDIF ENDDO ENDDO ENDDO #if __acc_fft_device !$ACC END PARALLEL #endif ! !-- Backward substitution !-- Note, the 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the !-- pressure bc is set to neumann at the top of the model domain. #if __acc_fft_device !$ACC PARALLEL PRESENT(ar, ar1, ddzuw, tri) PRIVATE(i,j,k) #endif DO k = nz-1, 0, -1 #if __acc_fft_device !$ACC LOOP COLLAPSE(2) #endif !$OMP DO DO j = nys_z, nyn_z DO i = nxl_z, nxr_z IF ( k == nz-1 ) THEN ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) ELSE ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) / tri(i,j,k,1) ENDIF ENDDO ENDDO ENDDO #if __acc_fft_device !$ACC END PARALLEL #endif !$OMP END PARALLEL ! !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity !-- is zero. IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN #if __acc_fft_device !$ACC PARALLEL LOOP PRESENT(ar) #endif DO k = 1, nz ar(nxl_z,nys_z,k) = 0.0_wp ENDDO ENDIF ENDIF END SUBROUTINE tridia_substi !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Splitting of the tridiagonal matrix (Thomas algorithm). !--------------------------------------------------------------------------------------------------! SUBROUTINE split IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< ! ! Splitting DO j = nys_z, nyn_z DO i = nxl_z, nxr_z tri(i,j,0,1) = tric(i,j,0) ENDDO ENDDO DO k = 1, nz-1 DO j = nys_z, nyn_z DO i = nxl_z, nxr_z tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) ENDDO ENDDO ENDDO END SUBROUTINE split !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Solves the linear system of equations for a 1d-decomposition along x (see tridia). !> !> @attention When using intel compilers older than 12.0, array tri must be passed as an argument to !> the contained subroutines. Otherwise address faults will occur. This feature can be !> activated with cpp-switch __intel11. On NEC, tri should not be passed !> (except for routine substi_1dd) because this causes very bad performance. !--------------------------------------------------------------------------------------------------! SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) USE arrays_3d, & ONLY: ddzu_pres, & ddzw, & rho_air, & rho_air_zw USE control_parameters, & ONLY: ibc_p_b, & ibc_p_t IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nnyh !< INTEGER(iwp) :: nx !< INTEGER(iwp) :: ny !< REAL(wp) :: ddx2 !< REAL(wp) :: ddy2 !< REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< nnyh = ( ny + 1 ) / 2 ! !-- Define constant elements of the tridiagonal matrix. The compiler on SX6 does loop exchange. !-- If 0:nx is a high power of 2, the exchanged loops create bank conflicts. The following directive !-- prohibits loop exchange and the loops perform much better. !CDIR NOLOOPCHG DO k = 0, nz-1 DO i = 0,nx tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) ENDDO ENDDO IF ( j <= nnyh ) THEN CALL maketri_1dd( j ) ELSE CALL maketri_1dd( ny+1-j ) ENDIF CALL split_1dd CALL substi_1dd( ar, tri_for_1d ) CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Computes the i- and j-dependent component of the matrix. !--------------------------------------------------------------------------------------------------! SUBROUTINE maketri_1dd( j ) IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nnxh !< REAL(wp) :: a !< REAL(wp) :: c !< REAL(wp), DIMENSION(0:nx) :: l !< nnxh = ( nx + 1 ) / 2 ! !-- Provide the tridiagonal matrix for solution of the Poisson equation in Fourier space. !-- The coefficients are computed following the method of Schmidt et al. (DFVLR-Mitteilung 84-15), !-- which departs from Stephan Siano's original version by discretizing the Poisson equation, !-- before it is Fourier-transformed. DO i = 0, nx IF ( i >= 0 .AND. i <= nnxh ) THEN l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & REAL( nx+1, KIND=wp ) ) ) * ddx2 + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & REAL( ny+1, KIND=wp ) ) ) * ddy2 ELSE l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & REAL( nx+1, KIND=wp ) ) ) * ddx2 + & 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & REAL( ny+1, KIND=wp ) ) ) * ddy2 ENDIF ENDDO DO k = 0, nz-1 DO i = 0, nx a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) * rho_air_zw(k+1) c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) * rho_air_zw(k) tri_for_1d(1,i,k) = a + c - l(i) * rho_air(k+1) ENDDO ENDDO IF ( ibc_p_b == 1 ) THEN DO i = 0, nx tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) ENDDO ENDIF IF ( ibc_p_t == 1 ) THEN DO i = 0, nx tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) ENDDO ENDIF END SUBROUTINE maketri_1dd !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Splitting of the tridiagonal matrix (Thomas algorithm). !--------------------------------------------------------------------------------------------------! SUBROUTINE split_1dd IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: k !< ! !-- Splitting DO i = 0, nx tri_for_1d(4,i,0) = tri_for_1d(1,i,0) ENDDO DO k = 1, nz-1 DO i = 0, nx tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) ENDDO ENDDO END SUBROUTINE split_1dd !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Substitution (Forward and Backward) (Thomas algorithm). !--------------------------------------------------------------------------------------------------! SUBROUTINE substi_1dd( ar, tri_for_1d ) IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: k !< REAL(wp), DIMENSION(0:nx,nz) :: ar !< REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< ! !-- Forward substitution DO i = 0, nx ar1(i,0) = ar(i,1) ENDDO DO k = 1, nz-1 DO i = 0, nx ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) ENDDO ENDDO ! !-- Backward substitution !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions by zero appearing if the !-- pressure bc is set to neumann at the top of the model domain. DO i = 0, nx ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) ENDDO DO k = nz-2, 0, -1 DO i = 0, nx ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) / tri_for_1d(4,i,k) ENDDO ENDDO ! !-- Indices i=0, j=0 correspond to horizontally averaged pressure. The respective values of ar !-- should be zero at all k-levels if acceleration of horizontally averaged vertical velocity is !-- zero. IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN IF ( j == 0 ) THEN DO k = 1, nz ar(0,k) = 0.0_wp ENDDO ENDIF ENDIF END SUBROUTINE substi_1dd END SUBROUTINE tridia_1dd END MODULE tridia_solver