!> @file surface_layer_fluxes_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! ! Description: ! ------------ !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the !> variables at grid point k=1 based on Newton iteration. !> !> @todo (Re)move large_scale_forcing actions !> @todo Check/optimize OpenMP directives !> @todo Simplify if conditions (which flux need to be computed in which case) !--------------------------------------------------------------------------------------------------! MODULE surface_layer_fluxes_mod USE arrays_3d, & ONLY: d_exner, & drho_air_zw, & e, & kh, & nc, & nr, & pt, & q, & ql, & qc, & qr, & s, & u, & v, & vpt, & w, & zu, & zw, & rho_air_zw USE basic_constants_and_equations_mod, & ONLY: g, & kappa, & lv_d_cp, & pi, & rd_d_rv USE chem_gasphase_mod, & ONLY: nvar USE chem_modules, & ONLY: constant_csflux USE cpulog USE control_parameters, & ONLY: air_chemistry, & cloud_droplets, & constant_heatflux, & constant_scalarflux, & constant_waterflux, & coupling_mode, & debug_output_timestep, & humidity, & ibc_e_b, & ibc_pt_b, & indoor_model, & land_surface, & large_scale_forcing, & loop_optimization, & lsf_surf, & message_string, & neutral, & passive_scalar, & pt_surface, & q_surface, & run_coupled, & surface_pressure, & simulated_time, & time_since_reference_point, & urban_surface, & use_free_convection_scaling, & zeta_max, & zeta_min USE grid_variables, & ONLY: dx, & dy USE indices, & ONLY: nzt USE kinds USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, & microphysics_morrison, & microphysics_seifert USE pegrid USE land_surface_model_mod, & ONLY: aero_resist_kray, & skip_time_do_lsm USE surface_mod, & ONLY : surf_def_h, & surf_def_v, & surf_lsm_h, & surf_lsm_v, & surf_type, & surf_usm_h, & surf_usm_v IMPLICIT NONE INTEGER(iwp) :: i !< loop index x direction INTEGER(iwp) :: j !< loop index y direction INTEGER(iwp) :: k !< loop index z direction INTEGER(iwp) :: l !< loop index for surf type LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production LOGICAL :: surf_vertical !< Flag indicating vertical surfaces REAL(wp) :: e_s !< Saturation water vapor pressure REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines SAVE PRIVATE PUBLIC init_surface_layer_fluxes, & phi_m, & psi_h, & psi_m, & surface_layer_fluxes INTERFACE init_surface_layer_fluxes MODULE PROCEDURE init_surface_layer_fluxes END INTERFACE init_surface_layer_fluxes INTERFACE phi_m MODULE PROCEDURE phi_m END INTERFACE phi_m INTERFACE psi_h MODULE PROCEDURE psi_h END INTERFACE psi_h INTERFACE psi_m MODULE PROCEDURE psi_m END INTERFACE psi_m INTERFACE surface_layer_fluxes MODULE PROCEDURE surface_layer_fluxes END INTERFACE surface_layer_fluxes CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Main routine to compute the surface fluxes. !--------------------------------------------------------------------------------------------------! SUBROUTINE surface_layer_fluxes IMPLICIT NONE IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements downward = .FALSE. !< flag indicating downward-facing surface elements ! !-- First, precalculate ln(z/z0) for all surfaces. This is done each timestep, in order to account !-- for time-dependent roughness or user-modifications. DO l = 0, 1 IF ( surf_def_h(l)%ns >= 1 ) THEN surf => surf_def_h(l) CALL calc_ln ENDIF IF ( surf_lsm_h(l)%ns >= 1 ) THEN surf => surf_lsm_h(l) CALL calc_ln ENDIF IF ( surf_usm_h(l)%ns >= 1 ) THEN surf => surf_usm_h(l) CALL calc_ln ENDIF ENDDO DO l = 0, 3 IF ( surf_def_v(l)%ns >= 1 ) THEN surf => surf_def_v(l) CALL calc_ln ENDIF IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) CALL calc_ln ENDIF IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) CALL calc_ln ENDIF ENDDO ! !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q DO l = 0, 1 !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) IF ( surf_def_h(l)%ns >= 1 ) THEN surf => surf_def_h(l) CALL calc_pt_q IF ( .NOT. neutral ) THEN CALL calc_pt_surface IF ( humidity ) THEN CALL calc_q_surface CALL calc_vpt_surface ENDIF ENDIF ENDIF ! !-- Call for natural-type horizontal surfaces IF ( surf_lsm_h(l)%ns >= 1 ) THEN surf => surf_lsm_h(l) CALL calc_pt_q ENDIF ! !-- Call for urban-type horizontal surfaces IF ( surf_usm_h(l)%ns >= 1 ) THEN surf => surf_usm_h(l) CALL calc_pt_q ENDIF ENDDO ! !-- Call for natural-type vertical surfaces DO l = 0, 3 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) CALL calc_pt_q ENDIF !-- Call for urban-type vertical surfaces IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) CALL calc_pt_q ENDIF ENDDO ! !-- First, calculate the new Obukhov length from precalculated values of log(z/z0) and wind speeds. !-- As a second step, then calculate new friction velocity, followed by the new scaling !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called !-- for different surface types. First call for default-type horizontal surfaces, for natural- and !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. !-- Note, calculation of log(z/z0) is redone each timestep, in order to account for time-dependent !-- values. !-- Start with default-type upward-facing horizontal surfaces IF ( surf_def_h(0)%ns >= 1 ) THEN surf => surf_def_h(0) CALL calc_uvw_abs IF ( .NOT. neutral ) CALL calc_ol CALL calc_us CALL calc_scaling_parameters CALL calc_surface_fluxes ENDIF ! !-- Natural-type horizontal surfaces IF ( surf_lsm_h(0)%ns >= 1 ) THEN surf => surf_lsm_h(0) CALL calc_uvw_abs IF ( .NOT. neutral ) CALL calc_ol CALL calc_us CALL calc_scaling_parameters CALL calc_surface_fluxes ENDIF ! !-- Urban-type horizontal surfaces IF ( surf_usm_h(0)%ns >= 1 ) THEN surf => surf_usm_h(0) CALL calc_uvw_abs IF ( .NOT. neutral ) CALL calc_ol CALL calc_us CALL calc_scaling_parameters CALL calc_surface_fluxes ! !-- Calculate 10cm temperature, required in indoor model IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) ENDIF ! !-- Treat downward-facing horizontal surfaces. !-- Stratification is not considered in this case, hence, no further distinction between different !-- most_method is required. downward = .TRUE. !-- Default type. IF ( surf_def_h(1)%ns >= 1 ) THEN surf => surf_def_h(1) CALL calc_uvw_abs CALL calc_us CALL calc_surface_fluxes ENDIF !-- Natural surface type. IF ( surf_lsm_h(1)%ns >= 1 ) THEN surf => surf_lsm_h(1) CALL calc_uvw_abs CALL calc_us CALL calc_surface_fluxes ENDIF !-- Urban surface type. IF ( surf_usm_h(1)%ns >= 1 ) THEN surf => surf_usm_h(1) CALL calc_uvw_abs CALL calc_us CALL calc_surface_fluxes ENDIF downward = .FALSE. ! !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change !-- if stability is once considered. surf_vertical = .TRUE. ! !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). !-- For default-type surfaces mom_uv = .TRUE. DO l = 0, 1 IF ( surf_def_v(l)%ns >= 1 ) THEN surf => surf_def_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_ugrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ! !-- For natural-type surfaces. Please note, even though stability is not considered for the !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization !-- of heat flux in land-surface model in case that aero_resist_kray is not true. IF ( .NOT. aero_resist_kray ) THEN DO l = 0, 1 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_ugrid ! !-- Compute Obukhov length IF ( .NOT. neutral ) CALL calc_ol ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute scaling parameters CALL calc_scaling_parameters ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ! !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. ELSE DO l = 0, 1 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_ugrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ENDIF ! !-- For urban-type surfaces DO l = 0, 1 IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_ugrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ! !-- Calculate 10cm temperature, required in indoor model IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) ENDIF ENDDO ! !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). !-- For default-type surfaces DO l = 2, 3 IF ( surf_def_v(l)%ns >= 1 ) THEN surf => surf_def_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_vgrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ! !-- For natural-type surfaces. Please note, even though stability is not considered for the !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization !-- of heat flux in land-surface model in case that aero_resist_kray is not true. IF ( .NOT. aero_resist_kray ) THEN DO l = 2, 3 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_vgrid ! !-- Compute Obukhov length IF ( .NOT. neutral ) CALL calc_ol ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute scaling parameters CALL calc_scaling_parameters ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ELSE DO l = 2, 3 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_vgrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ENDIF ENDDO ENDIF ! !-- For urban-type surfaces DO l = 2, 3 IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) ! !-- Compute surface-parallel velocity CALL calc_uvw_abs_v_vgrid ! !-- Compute respective friction velocity on staggered grid CALL calc_us ! !-- Compute respective surface fluxes for momentum and TKE CALL calc_surface_fluxes ! !-- Calculate 10cm temperature, required in indoor model IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) ENDIF ENDDO mom_uv = .FALSE. ! !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. mom_w = .TRUE. ! !-- Default-type surfaces DO l = 0, 3 IF ( surf_def_v(l)%ns >= 1 ) THEN surf => surf_def_v(l) CALL calc_uvw_abs_v_wgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO ! !-- Natural-type surfaces DO l = 0, 3 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) CALL calc_uvw_abs_v_wgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO ! !-- Urban-type surfaces DO l = 0, 3 IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) CALL calc_uvw_abs_v_wgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO mom_w = .FALSE. ! !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. mom_tke = .TRUE. ! !-- Default-type surfaces DO l = 0, 3 IF ( surf_def_v(l)%ns >= 1 ) THEN surf => surf_def_v(l) CALL calc_uvw_abs_v_sgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO ! !-- Natural-type surfaces DO l = 0, 3 IF ( surf_lsm_v(l)%ns >= 1 ) THEN surf => surf_lsm_v(l) CALL calc_uvw_abs_v_sgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO ! !-- Urban-type surfaces DO l = 0, 3 IF ( surf_usm_v(l)%ns >= 1 ) THEN surf => surf_usm_v(l) CALL calc_uvw_abs_v_sgrid CALL calc_us CALL calc_surface_fluxes ENDIF ENDDO mom_tke = .FALSE. IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) END SUBROUTINE surface_layer_fluxes !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initializing actions for the surface layer routine. !--------------------------------------------------------------------------------------------------! SUBROUTINE init_surface_layer_fluxes IMPLICIT NONE INTEGER(iwp) :: l !< running index for vertical surface orientation CALL location_message( 'initializing surface layer', 'start' ) ! !-- In case of runs with neutral statification, set Obukhov length to a large value IF ( neutral ) THEN DO l = 0, 1 IF ( surf_def_h(l)%ns >= 1 .AND. & ALLOCATED( surf_def_h(l)%ol ) ) surf_def_h(l)%ol = 1.0E10_wp IF ( surf_lsm_h(l)%ns >= 1 .AND. & ALLOCATED( surf_lsm_h(l)%ol ) ) surf_lsm_h(l)%ol = 1.0E10_wp IF ( surf_usm_h(l)%ns >= 1 .AND. & ALLOCATED( surf_usm_h(l)%ol ) ) surf_usm_h(l)%ol = 1.0E10_wp ENDDO DO l = 0, 3 IF ( surf_def_v(l)%ns >= 1 .AND. & ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp IF ( surf_lsm_v(l)%ns >= 1 .AND. & ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp IF ( surf_usm_v(l)%ns >= 1 .AND. & ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp ENDDO ENDIF CALL location_message( 'initializing surface layer', 'finished' ) END SUBROUTINE init_surface_layer_fluxes !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute ln(z/z0). !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_ln INTEGER(iwp) :: m !< running index surface elements ! !-- Note, ln(z/z0h) and ln(z/z0q) is also calculated even if neural simulations are applied. !-- This is because the scalar coefficients are also used for other scalars such as passive scalars, !-- chemistry and aerosols. !$OMP PARALLEL DO PRIVATE( z_mo ) !$ACC PARALLEL LOOP PRIVATE(z_mo) & !$ACC PRESENT(surf) DO m = 1, surf%ns z_mo = surf%z_mo(m) surf%ln_z_z0(m) = LOG( z_mo / surf%z0(m) ) surf%ln_z_z0h(m) = LOG( z_mo / surf%z0h(m) ) surf%ln_z_z0q(m) = LOG( z_mo / surf%z0q(m) ) ENDDO END SUBROUTINE calc_ln !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal !> surface elements. This is required by all methods. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_uvw_abs IMPLICIT NONE INTEGER(iwp) :: i !< running index x direction INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces INTEGER(iwp) :: j !< running index y direction INTEGER(iwp) :: k !< running index z direction INTEGER(iwp) :: m !< running index surface elements REAL(wp) :: w_lfc !< local free convection velocity scale ! !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. ibit = MERGE( 1, 0, .NOT. downward ) IF ( use_free_convection_scaling ) THEN !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & !$ACC PRESENT(surf, u, v) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) ! !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is !-- used to set w_lfc to zero under stable conditions. w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) ! !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the !-- lower surface is the ocean). Please note, in new surface modelling concept the index values !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & ) * ibit ) & )**2 & + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & ) * ibit ) & )**2 + w_lfc**2 ) ENDDO ELSE !$OMP PARALLEL DO PRIVATE(i, j, k) !$ACC PARALLEL LOOP PRIVATE(i, j, k) & !$ACC PRESENT(surf, u, v) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) ! !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the !-- lower surface is the ocean). Please note, in new surface modelling concept the index values !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & ) * ibit ) & )**2 & + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & ) * ibit ) & )**2 ) ENDDO ENDIF END SUBROUTINE calc_uvw_abs !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal !> surface elements. This is required by all methods. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_uvw_abs_v_ugrid IMPLICIT NONE INTEGER(iwp) :: i !< running index x direction INTEGER(iwp) :: j !< running index y direction INTEGER(iwp) :: k !< running index z direction INTEGER(iwp) :: m !< running index surface elements REAL(wp) :: u_i !< u-component on xu-grid REAL(wp) :: w_i !< w-component on xu-grid DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) ! !-- Compute the absolute value of the surface parallel velocity on u-grid. u_i = u(k,j,i) w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) ENDDO END SUBROUTINE calc_uvw_abs_v_ugrid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal !> surface elements. This is required by all methods. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_uvw_abs_v_vgrid IMPLICIT NONE INTEGER(iwp) :: i !< running index x direction INTEGER(iwp) :: j !< running index y direction INTEGER(iwp) :: k !< running index z direction INTEGER(iwp) :: m !< running index surface elements REAL(wp) :: v_i !< v-component on yv-grid REAL(wp) :: w_i !< w-component on yv-grid DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) v_i = v(k,j,i) w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) ENDDO END SUBROUTINE calc_uvw_abs_v_vgrid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal !> surface elements. This is required by all methods. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_uvw_abs_v_wgrid IMPLICIT NONE INTEGER(iwp) :: i !< running index x direction INTEGER(iwp) :: j !< running index y direction INTEGER(iwp) :: k !< running index z direction INTEGER(iwp) :: m !< running index surface elements REAL(wp) :: u_i !< u-component on x-zw-grid REAL(wp) :: v_i !< v-component on y-zw-grid REAL(wp) :: w_i !< w-component on zw-grid ! !-- North- (l=0) and south-facing (l=1) surfaces IF ( l == 0 .OR. l == 1 ) THEN DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) v_i = 0.0_wp w_i = w(k,j,i) surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) ENDDO ! !-- East- (l=2) and west-facing (l=3) surfaces ELSE DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i = 0.0_wp v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) w_i = w(k,j,i) surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) ENDDO ENDIF END SUBROUTINE calc_uvw_abs_v_wgrid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal !> surface elements. This is required by all methods. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_uvw_abs_v_sgrid IMPLICIT NONE INTEGER(iwp) :: i !< running index x direction INTEGER(iwp) :: j !< running index y direction INTEGER(iwp) :: k !< running index z direction INTEGER(iwp) :: m !< running index surface elements REAL(wp) :: u_i !< u-component on scalar grid REAL(wp) :: v_i !< v-component on scalar grid REAL(wp) :: w_i !< w-component on scalar grid ! !-- North- (l=0) and south-facing (l=1) walls IF ( l == 0 .OR. l == 1 ) THEN DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) v_i = 0.0_wp w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) ENDDO ! !-- East- (l=2) and west-facing (l=3) walls ELSE DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i = 0.0_wp v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) ENDDO ENDIF END SUBROUTINE calc_uvw_abs_v_sgrid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate the Obukhov length (L) and Richardson flux number (z/L) !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_ol IMPLICIT NONE INTEGER(iwp) :: iter !< Newton iteration step INTEGER(iwp) :: m !< loop variable over all horizontal wall elements LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization !$ACC DECLARE CREATE( convergence_reached ) REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 REAL(wp) :: f_d_ol !< Derivative of f REAL(wp) :: ol_l !< Lower bound of L for Newton iteration REAL(wp) :: ol_m !< Previous value of L for Newton iteration REAL(wp) :: ol_old !< Previous time step value of L REAL(wp) :: ol_u !< Upper bound of L for Newton iteration REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) ! !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary !-- conditions) IF ( ibc_pt_b /= 1 ) THEN IF ( humidity ) THEN !$OMP PARALLEL DO PRIVATE( z_mo ) DO m = 1, surf%ns z_mo = surf%z_mo(m) surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) ENDDO ELSE !$OMP PARALLEL DO PRIVATE( z_mo ) DO m = 1, surf%ns z_mo = surf%z_mo(m) surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) ENDDO ENDIF ELSE IF ( humidity ) THEN !$OMP PARALLEL DO PRIVATE( k, z_mo ) DO m = 1, surf%ns k = surf%k(m) z_mo = surf%z_mo(m) surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & + 1.0E-20_wp ) ENDDO ELSE !$OMP PARALLEL DO PRIVATE( k, z_mo ) !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & !$ACC PRESENT(surf, drho_air_zw) DO m = 1, surf%ns k = surf%k(m) z_mo = surf%z_mo(m) surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) ENDDO ENDIF ENDIF IF ( loop_optimization == 'cache' ) THEN ! !-- Calculate the Obukhov length using Newton iteration !$OMP PARALLEL DO PRIVATE(i, j, z_mo, ol_old, iter, ol_m, ol_l, ol_u, f, f_d_ol) !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & !$ACC PRESENT(surf) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) z_mo = surf%z_mo(m) ! !-- Store current value in case the Newton iteration fails ol_old = surf%ol(m) ! !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp ENDIF ! !-- Iteration to find Obukhov length iter = 0 DO iter = iter + 1 ! !-- In case of divergence, use the value of the previous time step IF ( iter > 1000 ) THEN surf%ol(m) = ol_old EXIT ENDIF ol_m = surf%ol(m) ol_l = ol_m - 0.001_wp * ol_m ol_u = ol_m + 0.001_wp * ol_m IF ( ibc_pt_b /= 1 ) THEN ! !-- Calculate f = Ri - [...]/[...]^2 = 0 f = surf%rib(m) - ( z_mo / ol_m ) * ( surf%ln_z_z0h(m) & - psi_h( z_mo / ol_m ) & + psi_h( surf%z0h(m) / ol_m ) ) / & ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) & + psi_m( surf%z0(m) / ol_m ) )**2 ! !-- Calculate df/dL f_d_ol = ( - ( z_mo / ol_u ) * ( surf%ln_z_z0h(m) & - psi_h( z_mo / ol_u ) & + psi_h( surf%z0h(m) / ol_u ) ) / & ( surf%ln_z_z0(m) - psi_m( z_mo / ol_u ) & + psi_m( surf%z0(m) / ol_u ) )**2 & + ( z_mo / ol_l ) * ( surf%ln_z_z0h(m) - psi_h( z_mo / ol_l ) & + psi_h( surf%z0h(m) / ol_l ) ) /& ( surf%ln_z_z0(m) - psi_m( z_mo / ol_l ) & + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) ELSE ! !-- Calculate f = Ri - 1 /[...]^3 = 0 f = surf%rib(m) - ( z_mo / ol_m ) / & ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) )**3 ! !-- Calculate df/dL f_d_ol = ( - ( z_mo / ol_u ) / ( surf%ln_z_z0(m) & - psi_m( z_mo / ol_u ) & + psi_m( surf%z0(m) / ol_u ) & )**3 & + ( z_mo / ol_l ) / ( surf%ln_z_z0(m) & - psi_m( z_mo / ol_l ) & + psi_m( surf%z0(m) / ol_l ) & )**3 & ) / ( ol_u - ol_l ) ENDIF ! !-- Calculate new L surf%ol(m) = ol_m - f / f_d_ol ! !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and !-- ensure convergence. IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp ! !-- If unrealistic value occurs, set L to the maximum value that is allowed IF ( ABS( surf%ol(m) ) > ol_max ) THEN surf%ol(m) = ol_max EXIT ENDIF ! !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) EXIT ENDIF ! !-- Check for convergence IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT ENDDO ENDDO ! !-- Vector Version ELSE ! !-- Calculate the Obukhov length using Newton iteration !-- First set arrays required for vectorization !$ACC PARALLEL LOOP & !$ACC PRESENT(surf) DO m = 1, surf%ns z_mo_vec(m) = surf%z_mo(m) ! !-- Store current value in case the Newton iteration fails ol_old_vec(m) = surf%ol(m) ! !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp ENDIF ! !-- Initialize convergence flag convergence_reached(m) = .FALSE. ENDDO ! !-- Iteration to find Obukhov length iter = 0 DO iter = iter + 1 ! !-- In case of divergence, use the value(s) of the previous time step IF ( iter > 1000 ) THEN !$ACC PARALLEL LOOP & !$ACC PRESENT(surf) DO m = 1, surf%ns IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) ENDDO EXIT ENDIF !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & !$ACC PRESENT(surf) DO m = 1, surf%ns IF ( convergence_reached(m) ) CYCLE ol_m = surf%ol(m) ol_l = ol_m - 0.001_wp * ol_m ol_u = ol_m + 0.001_wp * ol_m IF ( ibc_pt_b /= 1 ) THEN ! !-- Calculate f = Ri - [...]/[...]^2 = 0 f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( surf%ln_z_z0h(m) & - psi_h( z_mo_vec(m) / ol_m ) & + psi_h( surf%z0h(m) / ol_m ) & ) / & ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_m ) & + psi_m( surf%z0(m) / ol_m ) & )**2 ! !-- Calculate df/dL f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( surf%ln_z_z0h(m) & - psi_h( z_mo_vec(m) / ol_u ) & + psi_h( surf%z0h(m) / ol_u ) & ) / & ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_u ) & + psi_m( surf%z0(m) / ol_u ) & )**2 & + ( z_mo_vec(m) / ol_l ) * ( surf%ln_z_z0h(m) & - psi_h( z_mo_vec(m) / ol_l ) & + psi_h( surf%z0h(m) / ol_l ) & ) / & ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_l ) & + psi_m( surf%z0(m) / ol_l ) & )**2 & ) / ( ol_u - ol_l ) ELSE ! !-- Calculate f = Ri - 1 /[...]^3 = 0 f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_m ) & + psi_m( surf%z0(m) / ol_m ) & )**3 ! !-- Calculate df/dL f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_u ) & + psi_m( surf%z0(m) / ol_u ) & )**3 & + ( z_mo_vec(m) / ol_l ) / ( surf%ln_z_z0(m) & - psi_m( z_mo_vec(m) / ol_l ) & + psi_m( surf%z0(m) / ol_l ) & )**3 & ) / ( ol_u - ol_l ) ENDIF ! !-- Calculate new L surf%ol(m) = ol_m - f / f_d_ol ! !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and !-- ensure convergence. IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp ! !-- Check for convergence !-- This check does not modify surf%ol, therefore this is done first IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN convergence_reached(m) = .TRUE. ENDIF ! !-- If unrealistic value occurs, set L to the maximum allowed value IF ( ABS( surf%ol(m) ) > ol_max ) THEN surf%ol(m) = ol_max convergence_reached(m) = .TRUE. ENDIF ENDDO ! !-- Assure that Obukhov length does not become zero !$ACC PARALLEL LOOP & !$ACC PRESENT(surf) DO m = 1, surf%ns IF ( convergence_reached(m) ) CYCLE IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) convergence_reached(m) = .TRUE. ENDIF ENDDO IF ( ALL( convergence_reached ) ) EXIT ENDDO ! End of iteration loop ENDIF ! End of vector branch END SUBROUTINE calc_ol !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate friction velocity u*. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_us IMPLICIT NONE INTEGER(iwp) :: m !< loop variable over all horizontal surf elements ! !-- Compute u* at horizontal surfaces at the scalars' grid points IF ( .NOT. surf_vertical ) THEN ! !-- Compute u* at upward-facing surfaces IF ( .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( z_mo ) !$ACC PARALLEL LOOP PRIVATE(z_mo) & !$ACC PRESENT(surf) DO m = 1, surf%ns z_mo = surf%z_mo(m) ! !-- Compute u* at the scalars' grid points surf%us(m) = kappa * surf%uvw_abs(m) / ( surf%ln_z_z0(m) & - psi_m( z_mo / surf%ol(m) ) & + psi_m( surf%z0(m) / surf%ol(m) ) ) ENDDO ! !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. ELSE !$OMP PARALLEL DO !$ACC PARALLEL LOOP & !$ACC PRESENT(surf) DO m = 1, surf%ns ! !-- Compute u* at the scalars' grid points surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) ENDDO ENDIF ! !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. !-- No stability is considered in this case. ELSE !$OMP PARALLEL DO !$ACC PARALLEL LOOP & !$ACC PRESENT(surf) DO m = 1, surf%ns surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) ENDDO ENDIF END SUBROUTINE calc_us !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate potential temperature, specific humidity, and virtual potential temperature at first !> grid level. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_pt_q IMPLICIT NONE INTEGER(iwp) :: m !< loop variable over all horizontal surf elements !$OMP PARALLEL DO PRIVATE( i, j, k ) !$ACC PARALLEL LOOP PRIVATE(i, j, k) & !$ACC PRESENT(surf, pt) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) #ifndef _OPENACC IF ( bulk_cloud_model ) THEN surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) surf%qv1(m) = q(k,j,i) - ql(k,j,i) ELSEIF( cloud_droplets ) THEN surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) surf%qv1(m) = q(k,j,i) ELSE #endif surf%pt1(m) = pt(k,j,i) #ifndef _OPENACC IF ( humidity ) THEN surf%qv1(m) = q(k,j,i) ELSE #endif surf%qv1(m) = 0.0_wp #ifndef _OPENACC ENDIF ENDIF IF ( humidity ) THEN surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) ENDIF #endif ENDDO END SUBROUTINE calc_pt_q !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Set potential temperature at surface grid level( only for upward-facing surfs ). !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_pt_surface IMPLICIT NONE INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) INTEGER(iwp) :: m !< loop variable over all horizontal surf elements k_off = surf%koff !$OMP PARALLEL DO PRIVATE( i, j, k ) !$ACC PARALLEL LOOP PRIVATE(i, j, k) & !$ACC PRESENT(surf, pt) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%pt_surface(m) = pt(k+k_off,j,i) ENDDO END SUBROUTINE calc_pt_surface ! !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) SUBROUTINE calc_q_surface IMPLICIT NONE INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) INTEGER(iwp) :: m !< loop variable over all horizontal surf elements k_off = surf%koff !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%q_surface(m) = q(k+k_off,j,i) ENDDO END SUBROUTINE calc_q_surface !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_vpt_surface IMPLICIT NONE INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) INTEGER(iwp) :: m !< loop variable over all horizontal surf elements k_off = surf%koff !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%vpt_surface(m) = vpt(k+k_off,j,i) ENDDO END SUBROUTINE calc_vpt_surface !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_scaling_parameters IMPLICIT NONE INTEGER(iwp) :: lsp !< running index for chemical species INTEGER(iwp) :: m !< loop variable over all horizontal surf elements ! !-- Compute theta* at horizontal surfaces IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN ! !-- For a given heat flux in the surface layer: !$OMP PARALLEL DO PRIVATE( i, j, k ) !$ACC PARALLEL LOOP PRIVATE(i, j, k) & !$ACC PRESENT(surf, drho_air_zw) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) ! !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing !-- ol further below IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp ENDDO ELSEIF ( .NOT. surf_vertical ) THEN ! !-- For a given surface temperature: IF ( large_scale_forcing .AND. lsf_surf ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) pt(k-1,j,i) = pt_surface ENDDO ENDIF !$OMP PARALLEL DO PRIVATE( z_mo ) DO m = 1, surf%ns z_mo = surf%z_mo(m) surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0h(m) / surf%ol(m) ) ) ENDDO ENDIF ! !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in !-- order to compute aerodynamical resistance. IF ( surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) ! !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol !-- further below IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp ENDDO ENDIF ! !-- If required compute q* at horizontal surfaces IF ( humidity ) THEN IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN ! !-- For a given water flux in the surface layer !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) ENDDO ELSEIF ( .NOT. surf_vertical ) THEN coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) IF ( large_scale_forcing .AND. lsf_surf ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) q(k-1,j,i) = q_surface ENDDO ENDIF ! !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) IF ( coupled_run ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) ENDDO ENDIF IF ( bulk_cloud_model .OR. cloud_droplets ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) ENDDO ELSE !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) ENDDO ENDIF ENDIF ! !-- Compute q* at vertical surfaces IF ( surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) ENDDO ENDIF ENDIF ! !-- If required compute s* IF ( passive_scalar ) THEN ! !-- At horizontal surfaces IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN ! !-- For a given scalar flux in the surface layer !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) ENDDO ELSEIF ( .NOT. surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0h(m) / surf%ol(m) ) ) ENDDO ENDIF ! !-- At vertical surfaces IF ( surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) ENDDO ENDIF ENDIF ! !-- If required compute cs* (chemical species) IF ( air_chemistry ) THEN ! !-- At horizontal surfaces DO lsp = 1, nvar IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN !-- For a given chemical species' flux in the surface layer !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) ENDDO ENDIF ENDDO ! !-- At vertical surfaces IF ( surf_vertical ) THEN DO lsp = 1, nvar !$OMP PARALLEL DO PRIVATE( i, j ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) ENDDO ENDDO ENDIF ENDIF ! !-- If required compute qc* and nc* IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) ENDDO ENDIF ! !-- If required compute qr* and nr* IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & + psi_h( surf%z0q(m) / surf%ol(m) ) ) ENDDO ENDIF END SUBROUTINE calc_scaling_parameters !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_surface_fluxes IMPLICIT NONE INTEGER(iwp) :: lsp !< running index for chemical species INTEGER(iwp) :: m !< loop variable over all horizontal surf elements REAL(wp) :: dum !< dummy to precalculate logarithm REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes !< at vertical surfaces REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes !< at vertical surfaces REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes !< at vertical surfaces ! !-- Calcuate surface fluxes at horizontal walls IF ( .NOT. surf_vertical ) THEN ! !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the !-- corresponding component of u* and square it. IF ( .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & !$ACC PRESENT(surf, u, rho_air_zw) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & + psi_m( surf%z0(m) / surf%ol(m) ) ) ! !-- Please note, the computation of usws is not fully accurate. Actually a further !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this !-- is not done as this would require several data transfers between 2D-grid and the !-- surf-type. The impact of the missing interpolation is negligible as several tests have !-- shown. Same also for ol. surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ! !-- At downward-facing surfaces ELSE !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%usws(m) = kappa * u(k,j,i) / surf%ln_z_z0(m) surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) ENDDO ENDIF ! !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and !-- square it. !-- Upward-facing surfaces IF ( .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & !$ACC PRESENT(surf, v, rho_air_zw) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) z_mo = surf%z_mo(m) surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & + psi_m( surf%z0(m) / surf%ol(m) ) ) ! !-- Please note, the computation of vsws is not fully accurate. Actually a further !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this !-- is not done as this would require several data transfers between 2D-grid and the !-- surf-type. The impact of the missing interpolation is negligible as several tests have !-- shown. Same also for ol. surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ! !-- Downward-facing surfaces ELSE !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%vsws(m) = kappa * v(k,j,i) / surf%ln_z_z0(m) surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) ENDDO ENDIF ! !-- Compute the vertical kinematic heat flux. Note, only upward-facing surfaces are considered, !-- at downward-facing surfaces the flux is not parametrized with a scaling parameter. IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & .NOT. urban_surface .AND. .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ! !-- Compute the vertical water flux IF ( .NOT. constant_waterflux .AND. humidity .AND. & ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ! !-- Compute the vertical scalar flux IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%ssws(m) = -surf%ss(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ! !-- Compute the vertical chemical species' flux DO lsp = 1, nvar IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ENDDO ! !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%qcsws(m) = -surf%qcs(m) * surf%us(m) * rho_air_zw(k-1) surf%ncsws(m) = -surf%ncs(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ! !-- Compute (turbulent) fluxes of rain water content and rain drop conc. IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN !$OMP PARALLEL DO PRIVATE( k ) DO m = 1, surf%ns k = surf%k(m) surf%qrsws(m) = -surf%qrs(m) * surf%us(m) * rho_air_zw(k-1) surf%nrsws(m) = -surf%nrs(m) * surf%us(m) * rho_air_zw(k-1) ENDDO ENDIF ! !-- Bottom boundary condition for the TKE. IF ( ibc_e_b == 2 ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 ! !-- As a test: cm = 0.4 ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 e(k-1,j,i) = e(k,j,i) ENDDO ENDIF ! !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. !-- Further, no density needs to be considered here. ELSE ! !-- Compute usvs l={0,1} and vsus l={2,3} IF ( mom_uv ) THEN ! !-- Generalize computation by introducing flags. At north- and south-facing surfaces !-- u-component is used, at east- and west-facing surfaces v-component is used. flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & surf%ln_z_z0(m) surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) ENDDO ENDIF ! !-- Compute wsus l={0,1} and wsvs l={2,3} IF ( mom_w ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) surf%mom_flux_w(m) = kappa * w(k,j,i) / surf%ln_z_z0(m) surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) ENDDO ENDIF ! !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. !-- IF ( mom_tke ) THEN ! !-- Precalculate velocity components at scalar grid point. ALLOCATE( u_i(1:surf%ns) ) ALLOCATE( v_i(1:surf%ns) ) ALLOCATE( w_i(1:surf%ns) ) IF ( l == 0 .OR. l == 1 ) THEN !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) v_i(m) = 0.0_wp w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) ENDDO ELSE !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) k = surf%k(m) u_i(m) = 0.0_wp v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) ENDDO ENDIF !$OMP PARALLEL DO PRIVATE( i, j, dum ) DO m = 1, surf%ns i = surf%i(m) j = surf%j(m) dum = kappa / surf%ln_z_z0(m) ! !-- usvs (l=0,1) and vsus (l=2,3) surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) ! !-- wsvs (l=0,1) and wsus (l=2,3) surf%mom_flux_tke(1,m) = dum * w_i(m) surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) ENDDO ! !-- Deallocate temporary arrays DEALLOCATE( u_i ) DEALLOCATE( v_i ) DEALLOCATE( w_i ) ENDIF ENDIF END SUBROUTINE calc_surface_fluxes !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_pt_near_surface ( z_char ) IMPLICIT NONE CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level INTEGER(iwp) :: m !< running index for surface elements SELECT CASE ( z_char) CASE ( '10cm' ) ! !-- For horizontal upward-facing surfaces 10-cm temperature can be calculated using MOST. IF ( .NOT. downward .AND. .NOT. surf_vertical ) THEN DO m = 1, surf%ns surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & + psi_h( surf%z0h(m) / surf%ol(m) ) ) ENDDO ! !-- At vertical surfaces 10-cm temperature cannot be calculated via MOST as the Obukhov length !-- and temperature scaling parameter are not calculated. Hence, set 10-cm temperature to !-- the grid-cell temperature. ELSE DO m = 1, surf%ns surf%pt_10cm(m) = pt(surf%k(m)+surf%koff,surf%j(m)+surf%joff,surf%i(m)+surf%ioff) ENDDO ENDIF END SELECT END SUBROUTINE calc_pt_near_surface !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Integrated stability function for momentum. !--------------------------------------------------------------------------------------------------! FUNCTION psi_m( zeta ) !$ACC ROUTINE SEQ USE kinds IMPLICIT NONE REAL(wp) :: psi_m !< Integrated similarity function result REAL(wp) :: zeta !< Stability parameter z/L REAL(wp) :: x !< dummy variable REAL(wp), PARAMETER :: a = 1.0_wp !< constant REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant REAL(wp), PARAMETER :: c = 5.0_wp !< constant REAL(wp), PARAMETER :: d = 0.35_wp !< constant REAL(wp), PARAMETER :: c_d_d = c / d !< constant REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant IF ( zeta < 0.0_wp ) THEN x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & * ( 1.0_wp + x**2 ) * 0.125_wp ) ELSE psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d ! !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta ENDIF END FUNCTION psi_m !--------------------------------------------------------------------------------------------------! ! Description: !------------ !> Integrated stability function for heat and moisture. !--------------------------------------------------------------------------------------------------! FUNCTION psi_h( zeta ) !$ACC ROUTINE SEQ USE kinds IMPLICIT NONE REAL(wp) :: psi_h !< Integrated similarity function result REAL(wp) :: zeta !< Stability parameter z/L REAL(wp) :: x !< dummy variable REAL(wp), PARAMETER :: a = 1.0_wp !< constant REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant REAL(wp), PARAMETER :: c = 5.0_wp !< constant REAL(wp), PARAMETER :: d = 0.35_wp !< constant REAL(wp), PARAMETER :: c_d_d = c / d !< constant REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant IF ( zeta < 0.0_wp ) THEN x = SQRT( 1.0_wp - 16.0_wp * zeta ) psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) ELSE psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp ! !-- Old version for stable conditions (only valid for z/L < 0.5) !-- psi_h = - 5.0_wp * zeta ENDIF END FUNCTION psi_h !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculates stability function for momentum !> !> @author Hauke Wurps !--------------------------------------------------------------------------------------------------! FUNCTION phi_m( zeta ) !$ACC ROUTINE SEQ IMPLICIT NONE REAL(wp) :: phi_m !< Value of the function REAL(wp) :: zeta !< Stability parameter z/L REAL(wp), PARAMETER :: a = 16.0_wp !< constant REAL(wp), PARAMETER :: c = 5.0_wp !< constant IF ( zeta < 0.0_wp ) THEN phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) ELSE phi_m = 1.0_wp + c * zeta ENDIF END FUNCTION phi_m END MODULE surface_layer_fluxes_mod