!> @file read_restart_data_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Reads restart data from restart-file(s) (binary format). !> !> @todo: Revise max_pr_cs (profiles for chemistry) !> @todo: Modularize reading of restart data for diagnostic quantities, which !> is not possible with the current module-interface structure !------------------------------------------------------------------------------! MODULE read_restart_data_mod USE arrays_3d, & ONLY: inflow_damping_factor, mean_inflow_profiles, pt_init, & q_init, ref_state, sa_init, s_init, u_init, ug, v_init, vg, & e, kh, km, p, pt, q, ql, s, u, v, vpt, w USE averaging USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE chem_modules, & ONLY: max_pr_cs USE control_parameters USE cpulog, & ONLY: cpu_log, log_point_s USE grid_variables, & ONLY: dx, dy USE gust_mod, & ONLY: gust_module_enabled USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, nx_on_file, ny, nys, nysg, nyn, & nyng, ny_on_file, nz, nzb, nzt USE indoor_model_mod, & ONLY: time_indoor USE kinds USE model_1d_mod, & ONLY: damp_level_1d, dt_pr_1d, dt_run_control_1d, end_time_1d USE module_interface, & ONLY: module_interface_rrd_global, & module_interface_rrd_local USE netcdf_interface, & ONLY: netcdf_precision, output_for_t0 USE particle_attributes, & ONLY: particle_advection USE pegrid USE radiation_model_mod, & ONLY: time_radiation USE random_function_mod, & ONLY: random_iv, random_iy USE random_generator_parallel, & ONLY: id_random_array, seq_random_array USE restart_data_mpi_io_mod, & ONLY: rd_mpi_io_check_array, rd_mpi_io_close, rd_mpi_io_open, rrd_mpi_io, & rrd_mpi_io_global_array USE spectra_mod, & ONLY: average_count_sp, spectrum_x, spectrum_y USE surface_mod, & ONLY : surface_rrd_local USE statistics, & ONLY: statistic_regions, hom, hom_sum, pr_palm, u_max, u_max_ijk, & v_max, v_max_ijk, w_max, w_max_ijk, z_i USE user, & ONLY: user_module_enabled USE virtual_measurement_mod, & ONLY: time_virtual_measurement IMPLICIT NONE INTERFACE rrd_global MODULE PROCEDURE rrd_global END INTERFACE rrd_global INTERFACE rrd_read_parts_of_global MODULE PROCEDURE rrd_read_parts_of_global END INTERFACE rrd_read_parts_of_global INTERFACE rrd_local MODULE PROCEDURE rrd_local END INTERFACE rrd_local INTERFACE rrd_skip_global MODULE PROCEDURE rrd_skip_global END INTERFACE rrd_skip_global PUBLIC rrd_global, rrd_read_parts_of_global, rrd_local, rrd_skip_global CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads values of global control variables from restart-file (binary format) !> created by PE0 of the previous run !------------------------------------------------------------------------------! SUBROUTINE rrd_global CHARACTER(LEN=10) :: binary_version_global !< CHARACTER(LEN=10) :: version_on_file !< CHARACTER(LEN=20) :: tmp_name !< temporary variable INTEGER :: i !< loop index LOGICAL :: array_found !< LOGICAL :: found !< CALL location_message( 'read global restart data', 'start' ) ! !-- Caution: When any of the read instructions have been changed, the !-- ------- version number stored in the variable binary_version_global has !-- to be increased. The same changes must also be done in wrd_write_global. binary_version_global = '5.4' IF ( TRIM( restart_data_format_input ) == 'fortran_binary' ) THEN ! !-- Input in Fortran binary format CALL check_open( 13 ) ! !-- Make version number check first READ ( 13 ) length READ ( 13 ) restart_string(1:length) READ ( 13 ) version_on_file IF ( TRIM( version_on_file ) /= TRIM( binary_version_global ) ) THEN WRITE( message_string, * ) 'version mismatch concerning ', & 'binary_version_global:', & '&version on file = "', & TRIM( version_on_file ), '"', & '&version on program = "', & TRIM( binary_version_global ), '"' CALL message( 'rrd_global', 'PA0296', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read number of PEs and horizontal index bounds of all PEs used in the !-- previous run READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( TRIM( restart_string(1:length) ) /= 'numprocs' ) THEN WRITE( message_string, * ) 'numprocs not found in data from prior ', & 'run on PE ', myid CALL message( 'rrd_global', 'PA0297', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) numprocs_previous_run IF ( .NOT. ALLOCATED( hor_index_bounds_previous_run ) ) THEN ALLOCATE( hor_index_bounds_previous_run(4,0:numprocs_previous_run-1) ) ENDIF READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'hor_index_bounds' ) THEN WRITE( message_string, * ) 'hor_index_bounds not found in data ', & 'from prior run on PE ', myid CALL message( 'rrd_global', 'PA0298', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) hor_index_bounds_previous_run ! !-- Read vertical number of gridpoints and number of different areas used !-- for computing statistics. Allocate arrays depending on these values, !-- which are needed for the following read instructions. READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'nz' ) THEN WRITE( message_string, * ) 'nz not found in data from prior run ', & 'on PE ', myid CALL message( 'rrd_global', 'PA0299', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) nz READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'max_pr_user' ) THEN WRITE( message_string, * ) 'max_pr_user not found in data from ', & 'prior run on PE ', myid CALL message( 'rrd_global', 'PA0300', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) max_pr_user ! This value is checked against the number of ! user profiles given for the current run ! in routine user_parin (it has to match) READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'statistic_regions' ) THEN WRITE( message_string, * ) 'statistic_regions not found in data ', & 'from prior run on PE ', myid CALL message( 'rrd_global', 'PA0301', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) statistic_regions ! !-- The following global arrays (better to say, they have the same size and values on each !-- subdomain) are by default allocated in routine parin, but not in case of restarts! IF ( .NOT. ALLOCATED( ug ) ) THEN ALLOCATE( ug(0:nz+1), u_init(0:nz+1), vg(0:nz+1), & v_init(0:nz+1), pt_init(0:nz+1), q_init(0:nz+1), & ref_state(0:nz+1), s_init(0:nz+1), sa_init(0:nz+1), & hom(0:nz+1,2,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:statistic_regions), & hom_sum(0:nz+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:statistic_regions) ) ENDIF ! !-- Now read all control parameters: READ ( 13 ) length READ ( 13 ) restart_string(1:length) DO WHILE ( restart_string(1:length) /= 'binary_version_local' ) found = .FALSE. SELECT CASE ( restart_string(1:length) ) CASE ( 'advected_distance_x' ) READ ( 13 ) advected_distance_x CASE ( 'advected_distance_y' ) READ ( 13 ) advected_distance_y CASE ( 'alpha_surface' ) READ ( 13 ) alpha_surface CASE ( 'average_count_pr' ) READ ( 13 ) average_count_pr CASE ( 'average_count_sp' ) READ ( 13 ) average_count_sp CASE ( 'average_count_3d' ) READ ( 13 ) average_count_3d CASE ( 'bc_e_b' ) READ ( 13 ) bc_e_b CASE ( 'bc_lr' ) READ ( 13 ) bc_lr CASE ( 'bc_ns' ) READ ( 13 ) bc_ns CASE ( 'bc_p_b' ) READ ( 13 ) bc_p_b CASE ( 'bc_p_t' ) READ ( 13 ) bc_p_t CASE ( 'bc_pt_b' ) READ ( 13 ) bc_pt_b CASE ( 'bc_pt_t' ) READ ( 13 ) bc_pt_t CASE ( 'bc_pt_t_val' ) READ ( 13 ) bc_pt_t_val CASE ( 'bc_q_b' ) READ ( 13 ) bc_q_b CASE ( 'bc_q_t' ) READ ( 13 ) bc_q_t CASE ( 'bc_q_t_val' ) READ ( 13 ) bc_q_t_val CASE ( 'bc_s_b' ) READ ( 13 ) bc_s_b CASE ( 'bc_s_t' ) READ ( 13 ) bc_s_t CASE ( 'bc_uv_b' ) READ ( 13 ) bc_uv_b CASE ( 'bc_uv_t' ) READ ( 13 ) bc_uv_t CASE ( 'building_height' ) READ ( 13 ) building_height CASE ( 'building_length_x' ) READ ( 13 ) building_length_x CASE ( 'building_length_y' ) READ ( 13 ) building_length_y CASE ( 'building_wall_left' ) READ ( 13 ) building_wall_left CASE ( 'building_wall_south' ) READ ( 13 ) building_wall_south CASE ( 'call_psolver_at_all_substeps' ) READ ( 13 ) call_psolver_at_all_substeps CASE ( 'canyon_height' ) READ ( 13 ) canyon_height CASE ( 'canyon_wall_left' ) READ ( 13 ) canyon_wall_left CASE ( 'canyon_wall_south' ) READ ( 13 ) canyon_wall_south CASE ( 'canyon_width_x' ) READ ( 13 ) canyon_width_x CASE ( 'canyon_width_y' ) READ ( 13 ) canyon_width_y CASE ( 'cfl_factor' ) READ ( 13 ) cfl_factor CASE ( 'cloud_droplets' ) READ ( 13 ) cloud_droplets CASE ( 'collective_wait' ) READ ( 13 ) collective_wait CASE ( 'conserve_volume_flow' ) READ ( 13 ) conserve_volume_flow CASE ( 'conserve_volume_flow_mode' ) READ ( 13 ) conserve_volume_flow_mode CASE ( 'constant_flux_layer' ) READ ( 13 ) constant_flux_layer CASE ( 'coupling_start_time' ) READ ( 13 ) coupling_start_time CASE ( 'current_timestep_number' ) READ ( 13 ) current_timestep_number CASE ( 'cycle_mg' ) READ ( 13 ) cycle_mg CASE ( 'damp_level_1d' ) READ ( 13 ) damp_level_1d CASE ( 'origin_date_time' ) READ ( 13 ) origin_date_time CASE ( 'dissipation_1d' ) READ ( 13 ) dissipation_1d CASE ( 'do2d_xy_time_count' ) READ ( 13 ) do2d_xy_time_count CASE ( 'do2d_xz_time_count' ) READ ( 13 ) do2d_xz_time_count CASE ( 'do2d_yz_time_count' ) READ ( 13 ) do2d_yz_time_count CASE ( 'do3d_time_count' ) READ ( 13 ) do3d_time_count CASE ( 'dp_external' ) READ ( 13 ) dp_external CASE ( 'dp_level_b' ) READ ( 13 ) dp_level_b CASE ( 'dp_smooth' ) READ ( 13 ) dp_smooth CASE ( 'dpdxy' ) READ ( 13 ) dpdxy CASE ( 'dt_3d' ) READ ( 13 ) dt_3d CASE ( 'dt_pr_1d' ) READ ( 13 ) dt_pr_1d CASE ( 'dt_run_control_1d' ) READ ( 13 ) dt_run_control_1d CASE ( 'dx' ) READ ( 13 ) dx CASE ( 'dy' ) READ ( 13 ) dy CASE ( 'dz' ) READ ( 13 ) dz CASE ( 'dz_max' ) READ ( 13 ) dz_max CASE ( 'dz_stretch_factor' ) READ ( 13 ) dz_stretch_factor CASE ( 'dz_stretch_factor_array' ) READ ( 13 ) dz_stretch_factor_array CASE ( 'dz_stretch_level' ) READ ( 13 ) dz_stretch_level CASE ( 'dz_stretch_level_end' ) READ ( 13 ) dz_stretch_level_end CASE ( 'dz_stretch_level_start' ) READ ( 13 ) dz_stretch_level_start CASE ( 'e_min' ) READ ( 13 ) e_min CASE ( 'end_time_1d' ) READ ( 13 ) end_time_1d CASE ( 'fft_method' ) READ ( 13 ) fft_method CASE ( 'first_call_lpm' ) READ ( 13 ) first_call_lpm CASE ( 'galilei_transformation' ) READ ( 13 ) galilei_transformation CASE ( 'hom' ) READ ( 13 ) hom CASE ( 'hom_sum' ) READ ( 13 ) hom_sum CASE ( 'humidity' ) READ ( 13 ) humidity CASE ( 'inflow_damping_factor' ) IF ( .NOT. ALLOCATED( inflow_damping_factor ) ) THEN ALLOCATE( inflow_damping_factor(0:nz+1) ) ENDIF READ ( 13 ) inflow_damping_factor CASE ( 'inflow_damping_height' ) READ ( 13 ) inflow_damping_height CASE ( 'inflow_damping_width' ) READ ( 13 ) inflow_damping_width CASE ( 'inflow_disturbance_begin' ) READ ( 13 ) inflow_disturbance_begin CASE ( 'inflow_disturbance_end' ) READ ( 13 ) inflow_disturbance_end CASE ( 'km_constant' ) READ ( 13 ) km_constant CASE ( 'large_scale_forcing' ) READ ( 13 ) large_scale_forcing CASE ( 'large_scale_subsidence' ) READ ( 13 ) large_scale_subsidence CASE ( 'latitude' ) READ ( 13 ) latitude CASE ( 'longitude' ) READ ( 13 ) longitude CASE ( 'loop_optimization' ) READ ( 13 ) loop_optimization CASE ( 'masking_method' ) READ ( 13 ) masking_method CASE ( 'mean_inflow_profiles' ) IF ( .NOT. ALLOCATED( mean_inflow_profiles ) ) THEN ALLOCATE( mean_inflow_profiles(0:nz+1,1:num_mean_inflow_profiles) ) ENDIF READ ( 13 ) mean_inflow_profiles CASE ( 'mg_cycles' ) READ ( 13 ) mg_cycles CASE ( 'mg_switch_to_pe0_level' ) READ ( 13 ) mg_switch_to_pe0_level CASE ( 'mixing_length_1d' ) READ ( 13 ) mixing_length_1d CASE ( 'momentum_advec' ) READ ( 13 ) momentum_advec CASE ( 'netcdf_precision' ) READ ( 13 ) netcdf_precision CASE ( 'neutral' ) READ ( 13 ) neutral CASE ( 'ngsrb' ) READ ( 13 ) ngsrb CASE ( 'nsor' ) READ ( 13 ) nsor CASE ( 'nsor_ini' ) READ ( 13 ) nsor_ini CASE ( 'nudging' ) READ ( 13 ) nudging CASE ( 'num_leg' ) READ ( 13 ) num_leg CASE ( 'nx' ) READ ( 13 ) nx nx_on_file = nx CASE ( 'ny' ) READ ( 13 ) ny ny_on_file = ny CASE ( 'ocean_mode' ) READ ( 13 ) ocean_mode CASE ( 'omega' ) READ ( 13 ) omega CASE ( 'omega_sor' ) READ ( 13 ) omega_sor CASE ( 'output_for_t0' ) READ (13) output_for_t0 CASE ( 'passive_scalar' ) READ ( 13 ) passive_scalar CASE ( 'prandtl_number' ) READ ( 13 ) prandtl_number CASE ( 'psolver' ) READ ( 13 ) psolver CASE ( 'pt_damping_factor' ) READ ( 13 ) pt_damping_factor CASE ( 'pt_damping_width' ) READ ( 13 ) pt_damping_width CASE ( 'pt_init' ) READ ( 13 ) pt_init CASE ( 'pt_reference' ) READ ( 13 ) pt_reference CASE ( 'pt_surface' ) READ ( 13 ) pt_surface CASE ( 'pt_surface_initial_change' ) READ ( 13 ) pt_surface_initial_change CASE ( 'pt_vertical_gradient' ) READ ( 13 ) pt_vertical_gradient CASE ( 'pt_vertical_gradient_level' ) READ ( 13 ) pt_vertical_gradient_level CASE ( 'pt_vertical_gradient_level_ind' ) READ ( 13 ) pt_vertical_gradient_level_ind CASE ( 'q_init' ) READ ( 13 ) q_init CASE ( 'q_surface' ) READ ( 13 ) q_surface CASE ( 'q_surface_initial_change' ) READ ( 13 ) q_surface_initial_change CASE ( 'q_vertical_gradient' ) READ ( 13 ) q_vertical_gradient CASE ( 'q_vertical_gradient_level' ) READ ( 13 ) q_vertical_gradient_level CASE ( 'q_vertical_gradient_level_ind' ) READ ( 13 ) q_vertical_gradient_level_ind CASE ( 'random_generator' ) READ ( 13 ) random_generator CASE ( 'random_heatflux' ) READ ( 13 ) random_heatflux CASE ( 'rans_mode' ) READ ( 13 ) rans_mode CASE ( 'rayleigh_damping_factor' ) READ ( 13 ) rayleigh_damping_factor CASE ( 'rayleigh_damping_height' ) READ ( 13 ) rayleigh_damping_height CASE ( 'recycling_width' ) READ ( 13 ) recycling_width CASE ( 'ref_state' ) READ ( 13 ) ref_state CASE ( 'reference_state' ) READ ( 13 ) reference_state CASE ( 'residual_limit' ) READ ( 13 ) residual_limit CASE ( 'roughness_length' ) READ ( 13 ) roughness_length CASE ( 'run_coupled' ) READ ( 13 ) run_coupled CASE ( 'runnr' ) READ ( 13 ) runnr CASE ( 's_init' ) READ ( 13 ) s_init CASE ( 's_surface' ) READ ( 13 ) s_surface CASE ( 's_surface_initial_change' ) READ ( 13 ) s_surface_initial_change CASE ( 's_vertical_gradient' ) READ ( 13 ) s_vertical_gradient CASE ( 's_vertical_gradient_level' ) READ ( 13 ) s_vertical_gradient_level CASE ( 's_vertical_gradient_level_ind' ) READ ( 13 ) s_vertical_gradient_level_ind CASE ( 'scalar_advec' ) READ ( 13 ) scalar_advec CASE ( 'simulated_time' ) READ ( 13 ) simulated_time CASE ( 'spectrum_x' ) IF ( .NOT. ALLOCATED( spectrum_x ) ) THEN ALLOCATE( spectrum_x( 1:nx/2, 1:100, 1:10 ) ) ENDIF READ ( 13 ) spectrum_x CASE ( 'spectrum_y' ) IF ( .NOT. ALLOCATED( spectrum_y ) ) THEN ALLOCATE( spectrum_y( 1:ny/2, 1:100, 1:10 ) ) ENDIF READ ( 13 ) spectrum_y CASE ( 'spinup_time' ) READ ( 13 ) spinup_time CASE ( 'subs_vertical_gradient' ) READ ( 13 ) subs_vertical_gradient CASE ( 'subs_vertical_gradient_level' ) READ ( 13 ) subs_vertical_gradient_level CASE ( 'subs_vertical_gradient_level_i' ) READ ( 13 ) subs_vertical_gradient_level_i CASE ( 'surface_heatflux' ) READ ( 13 ) surface_heatflux CASE ( 'surface_pressure' ) READ ( 13 ) surface_pressure CASE ( 'surface_scalarflux' ) READ ( 13 ) surface_scalarflux CASE ( 'surface_waterflux' ) READ ( 13 ) surface_waterflux CASE ( 'time_coupling' ) READ ( 13 ) time_coupling CASE ( 'time_disturb' ) READ ( 13 ) time_disturb CASE ( 'time_do2d_xy' ) READ ( 13 ) time_do2d_xy CASE ( 'time_do2d_xz' ) READ ( 13 ) time_do2d_xz CASE ( 'time_do2d_yz' ) READ ( 13 ) time_do2d_yz CASE ( 'time_do3d' ) READ ( 13 ) time_do3d CASE ( 'time_do_av' ) READ ( 13 ) time_do_av CASE ( 'time_do_sla' ) READ ( 13 ) time_do_sla CASE ( 'time_domask' ) READ ( 13 ) time_domask CASE ( 'time_dopr' ) READ ( 13 ) time_dopr CASE ( 'time_dopr_av' ) READ ( 13 ) time_dopr_av CASE ( 'time_dopr_listing' ) READ ( 13 ) time_dopr_listing CASE ( 'time_dopts' ) READ ( 13 ) time_dopts CASE ( 'time_dosp' ) READ ( 13 ) time_dosp CASE ( 'time_dots' ) READ ( 13 ) time_dots CASE ( 'time_indoor' ) READ ( 13 ) time_indoor CASE ( 'time_radiation' ) READ ( 13 ) time_radiation CASE ( 'time_restart' ) READ ( 13 ) time_restart CASE ( 'time_run_control' ) READ ( 13 ) time_run_control CASE ( 'time_since_reference_point' ) READ ( 13 ) time_since_reference_point CASE ( 'time_virtual_measurement' ) READ ( 13 ) time_virtual_measurement CASE ( 'timestep_scheme' ) READ ( 13 ) timestep_scheme CASE ( 'top_heatflux' ) READ ( 13 ) top_heatflux CASE ( 'top_momentumflux_u' ) READ ( 13 ) top_momentumflux_u CASE ( 'top_momentumflux_v' ) READ ( 13 ) top_momentumflux_v CASE ( 'top_scalarflux' ) READ ( 13 ) top_scalarflux CASE ( 'topography' ) READ ( 13 ) topography CASE ( 'topography_grid_convention' ) READ ( 13 ) topography_grid_convention CASE ( 'tsc' ) READ ( 13 ) tsc CASE ( 'tunnel_height' ) READ ( 13 ) tunnel_height CASE ( 'tunnel_length' ) READ ( 13 ) tunnel_length CASE ( 'tunnel_wall_depth' ) READ ( 13 ) tunnel_wall_depth CASE ( 'tunnel_width_x' ) READ ( 13 ) tunnel_width_x CASE ( 'tunnel_width_y' ) READ ( 13 ) tunnel_width_y CASE ( 'turbulence_closure' ) READ ( 13 ) turbulence_closure CASE ( 'turbulent_inflow' ) READ ( 13 ) turbulent_inflow CASE ( 'u_bulk' ) READ ( 13 ) u_bulk CASE ( 'u_init' ) READ ( 13 ) u_init CASE ( 'u_max' ) READ ( 13 ) u_max CASE ( 'u_max_ijk' ) READ ( 13 ) u_max_ijk CASE ( 'ug' ) READ ( 13 ) ug CASE ( 'ug_surface' ) READ ( 13 ) ug_surface CASE ( 'ug_vertical_gradient' ) READ ( 13 ) ug_vertical_gradient CASE ( 'ug_vertical_gradient_level' ) READ ( 13 ) ug_vertical_gradient_level CASE ( 'ug_vertical_gradient_level_ind' ) READ ( 13 ) ug_vertical_gradient_level_ind CASE ( 'use_surface_fluxes' ) READ ( 13 ) use_surface_fluxes CASE ( 'use_top_fluxes' ) READ ( 13 ) use_top_fluxes CASE ( 'use_ug_for_galilei_tr' ) READ ( 13 ) use_ug_for_galilei_tr CASE ( 'use_upstream_for_tke' ) READ ( 13 ) use_upstream_for_tke CASE ( 'v_bulk' ) READ ( 13 ) v_bulk CASE ( 'v_init' ) READ ( 13 ) v_init CASE ( 'v_max' ) READ ( 13 ) v_max CASE ( 'v_max_ijk' ) READ ( 13 ) v_max_ijk CASE ( 'vg' ) READ ( 13 ) vg CASE ( 'vg_surface' ) READ ( 13 ) vg_surface CASE ( 'vg_vertical_gradient' ) READ ( 13 ) vg_vertical_gradient CASE ( 'vg_vertical_gradient_level' ) READ ( 13 ) vg_vertical_gradient_level CASE ( 'vg_vertical_gradient_level_ind' ) READ ( 13 ) vg_vertical_gradient_level_ind CASE ( 'virtual_flight' ) READ ( 13 ) virtual_flight CASE ( 'volume_flow_area' ) READ ( 13 ) volume_flow_area CASE ( 'volume_flow_initial' ) READ ( 13 ) volume_flow_initial CASE ( 'w_max' ) READ ( 13 ) w_max CASE ( 'w_max_ijk' ) READ ( 13 ) w_max_ijk CASE ( 'wall_adjustment' ) READ ( 13 ) wall_adjustment CASE ( 'wall_heatflux' ) READ ( 13 ) wall_heatflux CASE ( 'wall_humidityflux' ) READ ( 13 ) wall_humidityflux CASE ( 'wall_scalarflux' ) READ ( 13 ) wall_scalarflux CASE ( 'y_shift' ) READ ( 13 ) y_shift CASE ( 'z0h_factor' ) READ ( 13 ) z0h_factor CASE ( 'zeta_max' ) READ ( 13 ) zeta_max CASE ( 'zeta_min' ) READ ( 13 ) zeta_min CASE ( 'z_i' ) READ ( 13 ) z_i CASE DEFAULT ! !-- Read global variables from of other modules CALL module_interface_rrd_global( found ) IF ( .NOT. found ) THEN WRITE( message_string, * ) 'unknown variable named "', & restart_string(1:length), & '" found in global data from ', & 'prior run on PE ', myid CALL message( 'rrd_global', 'PA0302', 1, 2, 0, 6, 0 ) ENDIF END SELECT ! !-- Read next string READ ( 13 ) length READ ( 13 ) restart_string(1:length) ENDDO ! End of loop for reading the restart string CALL close_file( 13 ) ELSEIF ( restart_data_format_input(1:3) == 'mpi' ) THEN ! !-- Read global restart data using MPI-IO !-- ATTENTION: Arrays need to be read with routine rrd_mpi_io_global_array! ! !-- Open the MPI-IO restart file. CALL rd_mpi_io_open( 'read', 'BININ' // TRIM( coupling_char ), & open_for_global_io_only = .TRUE. ) ! !-- Make version number check first CALL rrd_mpi_io( 'binary_version_global', version_on_file ) IF ( TRIM( version_on_file ) /= TRIM( binary_version_global ) ) THEN WRITE( message_string, * ) 'version mismatch concerning binary_version_global:', & '&version on file = "', TRIM( version_on_file ), '"', & '&version in program = "', TRIM( binary_version_global ), '"' CALL message( 'rrd_global', 'PA0296', 1, 2, 0, 6, 0 ) ENDIF CALL rrd_mpi_io( 'numprocs', numprocs_previous_run ) CALL rrd_mpi_io( 'nz' , nz ) CALL rrd_mpi_io( 'max_pr_user', max_pr_user ) CALL rrd_mpi_io( 'statistic_regions', statistic_regions ) ! !-- The following global arrays (better to say, they have the same size and values on each !-- subdomain) are by default allocated in routine parin, but not in case of restarts! IF ( .NOT. ALLOCATED( ug ) ) THEN ALLOCATE( ug(0:nz+1), u_init(0:nz+1), vg(0:nz+1), & v_init(0:nz+1), pt_init(0:nz+1), q_init(0:nz+1), & ref_state(0:nz+1), s_init(0:nz+1), sa_init(0:nz+1), & hom(0:nz+1,2,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:statistic_regions), & hom_sum(0:nz+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:statistic_regions) ) ENDIF CALL rrd_mpi_io( 'advected_distance_x', advected_distance_x ) CALL rrd_mpi_io( 'advected_distance_y', advected_distance_y ) CALL rrd_mpi_io( 'alpha_surface', alpha_surface ) CALL rrd_mpi_io( 'average_count_pr', average_count_pr ) CALL rrd_mpi_io( 'average_count_sp', average_count_sp ) CALL rrd_mpi_io( 'average_count_3d', average_count_3d ) CALL rrd_mpi_io( 'bc_e_b', bc_e_b ) CALL rrd_mpi_io( 'bc_lr', bc_lr ) CALL rrd_mpi_io( 'bc_ns', bc_ns ) CALL rrd_mpi_io( 'bc_p_b', bc_p_b ) CALL rrd_mpi_io( 'bc_p_t', bc_p_t ) CALL rrd_mpi_io( 'bc_pt_b', bc_pt_b ) CALL rrd_mpi_io( 'bc_pt_t', bc_pt_t ) CALL rrd_mpi_io( 'bc_pt_t_val', bc_pt_t_val ) CALL rrd_mpi_io( 'bc_q_b', bc_q_b ) CALL rrd_mpi_io( 'bc_q_t', bc_q_t ) CALL rrd_mpi_io( 'bc_q_t_val', bc_q_t_val ) CALL rrd_mpi_io( 'bc_s_b', bc_s_b ) CALL rrd_mpi_io( 'bc_s_t', bc_s_t ) CALL rrd_mpi_io( 'bc_uv_b', bc_uv_b ) CALL rrd_mpi_io( 'bc_uv_t', bc_uv_t ) CALL rrd_mpi_io( 'biometeorology', biometeorology ) CALL rrd_mpi_io( 'building_height', building_height ) CALL rrd_mpi_io( 'building_length_x', building_length_x ) CALL rrd_mpi_io( 'building_length_y', building_length_y ) CALL rrd_mpi_io( 'building_wall_left', building_wall_left ) CALL rrd_mpi_io( 'building_wall_south', building_wall_south ) CALL rrd_mpi_io( 'bulk_cloud_model', bulk_cloud_model ) CALL rrd_mpi_io( 'call_psolver_at_all_substeps', call_psolver_at_all_substeps ) CALL rrd_mpi_io( 'canyon_height', canyon_height ) CALL rrd_mpi_io( 'canyon_wall_left', canyon_wall_left ) CALL rrd_mpi_io( 'canyon_wall_south', canyon_wall_south ) CALL rrd_mpi_io( 'canyon_width_x', canyon_width_x ) CALL rrd_mpi_io( 'canyon_width_y', canyon_width_y ) CALL rrd_mpi_io( 'cfl_factor', cfl_factor ) CALL rrd_mpi_io( 'cloud_droplets', cloud_droplets ) CALL rrd_mpi_io( 'collective_wait', collective_wait ) CALL rrd_mpi_io( 'conserve_volume_flow', conserve_volume_flow ) CALL rrd_mpi_io( 'conserve_volume_flow_mode', conserve_volume_flow_mode ) CALL rrd_mpi_io( 'constant_flux_layer', constant_flux_layer ) CALL rrd_mpi_io( 'coupling_start_time', coupling_start_time ) CALL rrd_mpi_io( 'current_timestep_number', current_timestep_number ) CALL rrd_mpi_io( 'cycle_mg', cycle_mg ) CALL rrd_mpi_io( 'damp_level_1d', damp_level_1d ) CALL rrd_mpi_io( 'dissipation_1d', dissipation_1d ) CALL rrd_mpi_io_global_array( 'do2d_xy_time_count', do2d_xy_time_count ) CALL rrd_mpi_io_global_array( 'do2d_xz_time_count', do2d_xz_time_count ) CALL rrd_mpi_io_global_array( 'do2d_yz_time_count', do2d_yz_time_count ) CALL rrd_mpi_io_global_array( 'do3d_time_count', do3d_time_count ) CALL rrd_mpi_io( 'dp_external', dp_external ) CALL rrd_mpi_io( 'dp_level_b', dp_level_b ) CALL rrd_mpi_io( 'dp_smooth', dp_smooth ) CALL rrd_mpi_io_global_array( 'dpdxy', dpdxy ) CALL rrd_mpi_io( 'dt_3d', dt_3d ) CALL rrd_mpi_io( 'dt_pr_1d', dt_pr_1d ) CALL rrd_mpi_io( 'dt_run_control_1d', dt_run_control_1d ) CALL rrd_mpi_io( 'dx', dx ) CALL rrd_mpi_io( 'dy', dy ) CALL rrd_mpi_io_global_array( 'dz', dz ) CALL rrd_mpi_io( 'dz_max', dz_max ) CALL rrd_mpi_io( 'dz_stretch_factor', dz_stretch_factor ) CALL rrd_mpi_io_global_array( 'dz_stretch_factor_array', dz_stretch_factor_array ) CALL rrd_mpi_io( 'dz_stretch_level', dz_stretch_level ) CALL rrd_mpi_io_global_array( 'dz_stretch_level_end', dz_stretch_level_end ) CALL rrd_mpi_io_global_array( 'dz_stretch_level_start', dz_stretch_level_start ) CALL rrd_mpi_io( 'e_min', e_min ) CALL rrd_mpi_io( 'end_time_1d', end_time_1d ) CALL rrd_mpi_io( 'fft_method', fft_method ) CALL rrd_mpi_io( 'first_call_lpm', first_call_lpm ) CALL rrd_mpi_io( 'galilei_transformation', galilei_transformation ) CALL rrd_mpi_io( 'gust_module_enabled', gust_module_enabled ) CALL rrd_mpi_io_global_array( 'hom', hom ) CALL rrd_mpi_io_global_array( 'hom_sum', hom_sum ) CALL rrd_mpi_io( 'humidity', humidity ) CALL rd_mpi_io_check_array( 'inflow_damping_factor', found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( inflow_damping_factor ) ) THEN ALLOCATE( inflow_damping_factor(0:nz+1) ) ENDIF CALL rrd_mpi_io_global_array( 'inflow_damping_factor', inflow_damping_factor ) ENDIF CALL rrd_mpi_io( 'inflow_damping_height', inflow_damping_height ) CALL rrd_mpi_io( 'inflow_damping_width', inflow_damping_width ) CALL rrd_mpi_io( 'inflow_disturbance_begin', inflow_disturbance_begin ) CALL rrd_mpi_io( 'inflow_disturbance_end', inflow_disturbance_end ) CALL rrd_mpi_io( 'km_constant', km_constant ) CALL rrd_mpi_io( 'large_scale_forcing', large_scale_forcing ) CALL rrd_mpi_io( 'large_scale_subsidence', large_scale_subsidence ) CALL rrd_mpi_io( 'latitude', latitude ) CALL rrd_mpi_io( 'longitude', longitude ) CALL rrd_mpi_io( 'loop_optimization', loop_optimization ) CALL rrd_mpi_io( 'masking_method', masking_method ) CALL rd_mpi_io_check_array( 'mean_inflow_profiles', found = array_found ) IF ( array_found) THEN IF ( .NOT. ALLOCATED( mean_inflow_profiles ) ) THEN ALLOCATE( mean_inflow_profiles(0:nz+1,7) ) ENDIF CALL rrd_mpi_io_global_array( 'mean_inflow_profiles', mean_inflow_profiles ) ENDIF CALL rrd_mpi_io( 'mg_cycles', mg_cycles ) CALL rrd_mpi_io( 'mg_switch_to_pe0_level', mg_switch_to_pe0_level ) CALL rrd_mpi_io( 'mixing_length_1d', mixing_length_1d ) CALL rrd_mpi_io( 'momentum_advec', momentum_advec ) ! !-- There is no module procedure for CHARACTER arrays DO i = 1, SIZE( netcdf_precision , 1 ) WRITE( tmp_name, '(A,I2.2)' ) 'netcdf_precision_', i CALL rrd_mpi_io( TRIM( tmp_name ), netcdf_precision(i) ) ENDDO CALL rrd_mpi_io( 'neutral', neutral ) CALL rrd_mpi_io( 'ngsrb', ngsrb ) CALL rrd_mpi_io( 'nsor', nsor ) CALL rrd_mpi_io( 'nsor_ini', nsor_ini ) CALL rrd_mpi_io( 'nudging', nudging ) CALL rrd_mpi_io( 'num_leg', num_leg ) CALL rrd_mpi_io( 'nx', nx ) nx_on_file = nx CALL rrd_mpi_io( 'ny', ny ) ny_on_file = ny CALL rrd_mpi_io( 'ocean_mode', ocean_mode ) CALL rrd_mpi_io( 'omega', omega ) CALL rrd_mpi_io( 'omega_sor', omega_sor ) CALL rrd_mpi_io( 'origin_date_time', origin_date_time ) CALL rrd_mpi_io( 'output_for_t0', output_for_t0 ) CALL rrd_mpi_io( 'particle_advection', particle_advection ) CALL rrd_mpi_io( 'passive_scalar', passive_scalar ) CALL rrd_mpi_io( 'prandtl_number', prandtl_number ) CALL rrd_mpi_io( 'psolver', psolver ) CALL rrd_mpi_io( 'pt_damping_factor', pt_damping_factor ) CALL rrd_mpi_io( 'pt_damping_width', pt_damping_width ) CALL rrd_mpi_io_global_array( 'pt_init', pt_init ) CALL rrd_mpi_io( 'pt_reference', pt_reference ) CALL rrd_mpi_io( 'pt_surface', pt_surface ) CALL rrd_mpi_io( 'pt_surface_initial_change', pt_surface_initial_change ) CALL rrd_mpi_io_global_array( 'pt_vertical_gradient', pt_vertical_gradient ) CALL rrd_mpi_io_global_array( 'pt_vertical_gradient_level', pt_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 'pt_vertical_gradient_level_ind', pt_vertical_gradient_level_ind ) CALL rrd_mpi_io_global_array( 'q_init', q_init ) CALL rrd_mpi_io( 'q_surface', q_surface ) CALL rrd_mpi_io( 'q_surface_initial_change', q_surface_initial_change ) CALL rrd_mpi_io_global_array( 'q_vertical_gradient', q_vertical_gradient ) CALL rrd_mpi_io_global_array( 'q_vertical_gradient_level', q_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 'q_vertical_gradient_level_ind', q_vertical_gradient_level_ind ) CALL rrd_mpi_io( 'random_generator', random_generator ) CALL rrd_mpi_io( 'random_heatflux', random_heatflux ) CALL rrd_mpi_io( 'rans_mode', rans_mode ) CALL rrd_mpi_io( 'rayleigh_damping_factor', rayleigh_damping_factor ) CALL rrd_mpi_io( 'rayleigh_damping_height', rayleigh_damping_height ) CALL rrd_mpi_io( 'recycling_width', recycling_width ) CALL rrd_mpi_io_global_array( 'ref_state', ref_state ) CALL rrd_mpi_io( 'reference_state', reference_state ) CALL rrd_mpi_io( 'residual_limit', residual_limit ) CALL rrd_mpi_io( 'roughness_length', roughness_length ) CALL rrd_mpi_io( 'run_coupled', run_coupled ) CALL rrd_mpi_io( 'runnr', runnr ) CALL rrd_mpi_io_global_array( 's_init', s_init ) CALL rrd_mpi_io( 's_surface', s_surface ) CALL rrd_mpi_io( 's_surface_initial_change', s_surface_initial_change ) CALL rrd_mpi_io_global_array( 's_vertical_gradient', s_vertical_gradient ) CALL rrd_mpi_io_global_array( 's_vertical_gradient_level', s_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 's_vertical_gradient_level_ind', s_vertical_gradient_level_ind ) CALL rrd_mpi_io( 'scalar_advec', scalar_advec ) CALL rrd_mpi_io( 'simulated_time', simulated_time ) CALL rd_mpi_io_check_array( 'spectrum_x', found = array_found ) IF (array_found ) THEN IF ( .NOT. ALLOCATED( spectrum_x ) ) THEN ALLOCATE( spectrum_x( 1:nx/2, 1:100, 1:10 ) ) ENDIF CALL rrd_mpi_io_global_array( 'spectrum_x', spectrum_x ) ENDIF CALL rd_mpi_io_check_array( 'spectrum_y', found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( spectrum_y ) ) THEN ALLOCATE( spectrum_y( 1:ny/2, 1:100, 1:10 ) ) ENDIF CALL rrd_mpi_io_global_array( 'spectrum_y', spectrum_y ) ENDIF CALL rrd_mpi_io( 'spinup_time ', spinup_time ) CALL rrd_mpi_io_global_array( 'subs_vertical_gradient', subs_vertical_gradient ) CALL rrd_mpi_io_global_array( 'subs_vertical_gradient_level', subs_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 'subs_vertical_gradient_level_i', subs_vertical_gradient_level_i ) CALL rrd_mpi_io( 'surface_heatflux', surface_heatflux ) CALL rrd_mpi_io( 'surface_pressure', surface_pressure ) CALL rrd_mpi_io( 'surface_output', surface_output ) CALL rrd_mpi_io( 'surface_scalarflux', surface_scalarflux ) CALL rrd_mpi_io( 'surface_waterflux', surface_waterflux ) CALL rrd_mpi_io( 'time_coupling', time_coupling ) CALL rrd_mpi_io( 'time_disturb', time_disturb ) CALL rrd_mpi_io( 'time_do2d_xy', time_do2d_xy ) CALL rrd_mpi_io( 'time_do2d_xz', time_do2d_xz ) CALL rrd_mpi_io( 'time_do2d_yz', time_do2d_yz ) CALL rrd_mpi_io( 'time_do3d', time_do3d ) CALL rrd_mpi_io( 'time_do_av', time_do_av ) CALL rrd_mpi_io( 'time_do_sla', time_do_sla ) CALL rrd_mpi_io_global_array( 'time_domask', time_domask ) CALL rrd_mpi_io( 'time_dopr', time_dopr ) CALL rrd_mpi_io( 'time_dopr_av', time_dopr_av ) CALL rrd_mpi_io( 'time_dopr_listing', time_dopr_listing ) CALL rrd_mpi_io( 'time_dopts', time_dopts ) CALL rrd_mpi_io( 'time_dosp', time_dosp ) CALL rrd_mpi_io( 'time_dots', time_dots ) CALL rrd_mpi_io( 'time_indoor', time_indoor ) CALL rrd_mpi_io( 'time_radiation', time_radiation ) CALL rrd_mpi_io( 'time_restart', time_restart ) CALL rrd_mpi_io( 'time_run_control', time_run_control ) CALL rrd_mpi_io( 'time_since_reference_point', time_since_reference_point ) CALL rrd_mpi_io( 'time_virtual_measurement', time_virtual_measurement ) CALL rrd_mpi_io( 'timestep_scheme', timestep_scheme ) CALL rrd_mpi_io( 'top_heatflux', top_heatflux ) CALL rrd_mpi_io( 'top_momentumflux_u', top_momentumflux_u ) CALL rrd_mpi_io( 'top_momentumflux_v', top_momentumflux_v ) CALL rrd_mpi_io( 'top_scalarflux', top_scalarflux ) CALL rrd_mpi_io( 'topography', topography ) CALL rrd_mpi_io( 'topography_grid_convention', topography_grid_convention ) CALL rrd_mpi_io_global_array( 'tsc', tsc ) CALL rrd_mpi_io( 'tunnel_height', tunnel_height ) CALL rrd_mpi_io( 'tunnel_length', tunnel_length ) CALL rrd_mpi_io( 'tunnel_wall_depth', tunnel_wall_depth ) CALL rrd_mpi_io( 'tunnel_width_x', tunnel_width_x ) CALL rrd_mpi_io( 'tunnel_width_y', tunnel_width_y ) CALL rrd_mpi_io( 'turbulence_closure', turbulence_closure ) CALL rrd_mpi_io( 'turbulent_inflow', turbulent_inflow ) CALL rrd_mpi_io( 'u_bulk', u_bulk ) CALL rrd_mpi_io_global_array( 'u_init', u_init ) CALL rrd_mpi_io( 'u_max', u_max ) CALL rrd_mpi_io_global_array( 'u_max_ijk', u_max_ijk ) CALL rrd_mpi_io_global_array( 'ug', ug ) CALL rrd_mpi_io( 'ug_surface', ug_surface ) CALL rrd_mpi_io_global_array( 'ug_vertical_gradient', ug_vertical_gradient ) CALL rrd_mpi_io_global_array( 'ug_vertical_gradient_level', ug_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 'ug_vertical_gradient_level_ind', ug_vertical_gradient_level_ind ) CALL rrd_mpi_io( 'use_surface_fluxes', use_surface_fluxes ) CALL rrd_mpi_io( 'use_top_fluxes', use_top_fluxes ) CALL rrd_mpi_io( 'use_ug_for_galilei_tr', use_ug_for_galilei_tr ) CALL rrd_mpi_io( 'use_upstream_for_tke', use_upstream_for_tke ) CALL rrd_mpi_io( 'user_module_enabled', user_module_enabled ) CALL rrd_mpi_io( 'v_bulk', v_bulk ) CALL rrd_mpi_io_global_array( 'v_init', v_init ) CALL rrd_mpi_io( 'v_max', v_max ) CALL rrd_mpi_io_global_array( 'v_max_ijk', v_max_ijk ) CALL rrd_mpi_io_global_array( 'vg', vg ) CALL rrd_mpi_io( 'vg_surface', vg_surface ) CALL rrd_mpi_io_global_array( 'vg_vertical_gradient', vg_vertical_gradient ) CALL rrd_mpi_io_global_array( 'vg_vertical_gradient_level', vg_vertical_gradient_level ) CALL rrd_mpi_io_global_array( 'vg_vertical_gradient_level_ind', vg_vertical_gradient_level_ind ) CALL rrd_mpi_io( 'virtual_flight', virtual_flight ) CALL rrd_mpi_io_global_array( 'volume_flow_area', volume_flow_area ) CALL rrd_mpi_io_global_array( 'volume_flow_initial', volume_flow_initial ) CALL rrd_mpi_io( 'w_max', w_max ) CALL rrd_mpi_io_global_array( 'w_max_ijk', w_max_ijk ) CALL rrd_mpi_io( 'wall_adjustment', wall_adjustment ) CALL rrd_mpi_io_global_array( 'wall_heatflux', wall_heatflux ) CALL rrd_mpi_io_global_array( 'wall_humidityflux', wall_humidityflux ) CALL rrd_mpi_io_global_array( 'wall_scalarflux', wall_scalarflux ) CALL rrd_mpi_io( 'y_shift', y_shift ) CALL rrd_mpi_io( 'z0h_factor', z0h_factor ) CALL rrd_mpi_io( 'zeta_max', zeta_max ) CALL rrd_mpi_io( 'zeta_min', zeta_min ) CALL rrd_mpi_io_global_array( 'z_i', z_i ) ! !-- Read global variables from of other modules CALL module_interface_rrd_global ! !-- Close restart file CALL rd_mpi_io_close ENDIF CALL location_message( 'read global restart data', 'finished' ) END SUBROUTINE rrd_global !------------------------------------------------------------------------------! ! Description: ! ------------ !> Skipping the global control variables from restart-file (binary format) !> except some information needed when reading restart data from a previous !> run which used a smaller total domain or/and a different domain decomposition !> (initializing_actions == 'cyclic_fill'). !------------------------------------------------------------------------------! SUBROUTINE rrd_read_parts_of_global CHARACTER (LEN=10) :: version_on_file CHARACTER (LEN=20) :: bc_lr_on_file CHARACTER (LEN=20) :: bc_ns_on_file CHARACTER (LEN=20) :: momentum_advec_check CHARACTER (LEN=20) :: scalar_advec_check CHARACTER (LEN=1) :: cdum INTEGER(iwp) :: max_pr_user_on_file INTEGER(iwp) :: nz_on_file INTEGER(iwp) :: statistic_regions_on_file INTEGER(iwp) :: tmp_mpru INTEGER(iwp) :: tmp_sr REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: hom_sum_on_file REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: hom_on_file IF ( TRIM( restart_data_format_input ) == 'fortran_binary' ) THEN ! !-- Input in Fortran binary format CALL check_open( 13 ) READ ( 13 ) length READ ( 13 ) restart_string(1:length) READ ( 13 ) version_on_file ! !-- Read number of PEs and horizontal index bounds of all PEs used in previous run READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'numprocs' ) THEN WRITE( message_string, * ) 'numprocs not found in data from prior ', & 'run on PE ', myid CALL message( 'rrd_read_parts_of_global', 'PA0297', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) numprocs_previous_run IF ( .NOT. ALLOCATED( hor_index_bounds_previous_run ) ) THEN ALLOCATE( hor_index_bounds_previous_run(4,0:numprocs_previous_run-1) ) ENDIF READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'hor_index_bounds' ) THEN WRITE( message_string, * ) 'hor_index_bounds not found in data ', & 'from prior run on PE ', myid CALL message( 'rrd_read_parts_of_global', 'PA0298', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) hor_index_bounds_previous_run ! !-- Read vertical number of gridpoints and number of different areas used for computing !-- statistics. Allocate arrays depending on these values, which are needed for the following !-- read instructions. READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'nz' ) THEN message_string = 'nz not found in restart data file' CALL message( 'rrd_read_parts_of_global', 'PA0303', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) nz_on_file IF ( nz_on_file /= nz ) THEN WRITE( message_string, * ) 'mismatch concerning number of ', & 'gridpoints along z:', & '&nz on file = "', nz_on_file, '"', & '&nz from run = "', nz, '"' CALL message( 'rrd_read_parts_of_global', 'PA0304', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'max_pr_user' ) THEN message_string = 'max_pr_user not found in restart data file' CALL message( 'rrd_read_parts_of_global', 'PA0305', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) max_pr_user_on_file IF ( max_pr_user_on_file /= max_pr_user ) THEN WRITE( message_string, * ) 'number of user profiles on res', & 'tart data file differs from the ', & 'current run:&max_pr_user on file = "',& max_pr_user_on_file, '"', & '&max_pr_user from run = "', & max_pr_user, '"' CALL message( 'rrd_read_parts_of_global', 'PA0306', 0, 0, 0, 6, 0 ) tmp_mpru = MIN( max_pr_user_on_file, max_pr_user ) ELSE tmp_mpru = max_pr_user ENDIF READ ( 13 ) length READ ( 13 ) restart_string(1:length) IF ( restart_string(1:length) /= 'statistic_regions' ) THEN message_string = 'statistic_regions not found in restart data file' CALL message( 'rrd_read_parts_of_global', 'PA0307', 1, 2, 0, 6, 0 ) ENDIF READ ( 13 ) statistic_regions_on_file IF ( statistic_regions_on_file /= statistic_regions ) THEN WRITE( message_string, * ) 'statistic regions on restart data file ',& 'differ from the current run:', & '&statistic regions on file = "', & statistic_regions_on_file, '"', & '&statistic regions from run = "', & statistic_regions, '"', & '&statistic data may be lost!' CALL message( 'rrd_read_parts_of_global', 'PA0308', 0, 1, 0, 6, 0 ) tmp_sr = MIN( statistic_regions_on_file, statistic_regions ) ELSE tmp_sr = statistic_regions ENDIF ! !-- Now read and check some control parameters and skip the rest READ ( 13 ) length READ ( 13 ) restart_string(1:length) DO WHILE ( restart_string(1:length) /= 'binary_version_local' ) SELECT CASE ( restart_string(1:length) ) CASE ( 'average_count_pr' ) READ ( 13 ) average_count_pr IF ( average_count_pr /= 0 ) THEN WRITE( message_string, * ) 'inflow profiles not ', & 'temporally averaged. &Averaging will be ', & 'done now using', average_count_pr, & ' samples.' CALL message( 'rrd_read_parts_of_global', 'PA0309', & 0, 1, 0, 6, 0 ) ENDIF CASE ( 'bc_lr' ) READ ( 13 ) bc_lr_on_file IF ( TRIM( bc_lr_on_file ) /= 'cyclic' ) THEN message_string = 'bc_lr in the prerun was set /= "cyclic"' CALL message( 'rrd_read_parts_of_global', 'PA0498', 1, 2, 0, 6, 0 ) ENDIF CASE ( 'bc_ns' ) READ ( 13 ) bc_ns_on_file IF ( TRIM( bc_ns_on_file ) /= 'cyclic' ) THEN message_string = 'bc_ns in the prerun was set /= "cyclic"' CALL message( 'rrd_read_parts_of_global', 'PA0498', 1, 2, 0, 6, 0 ) ENDIF CASE ( 'hom' ) ALLOCATE( hom_on_file(0:nz+1,2,pr_palm+max_pr_user_on_file, & 0:statistic_regions_on_file) ) READ ( 13 ) hom_on_file hom(:,:,1:pr_palm+tmp_mpru,0:tmp_sr) = & hom_on_file(:,:,1:pr_palm+tmp_mpru,0:tmp_sr) DEALLOCATE( hom_on_file ) CASE ( 'hom_sum' ) ALLOCATE( hom_sum_on_file(0:nz+1,pr_palm+max_pr_user_on_file, & 0:statistic_regions_on_file) ) READ ( 13 ) hom_sum_on_file hom_sum(:,1:pr_palm+tmp_mpru,0:tmp_sr) = & hom_sum_on_file(:,1:pr_palm+tmp_mpru,0:tmp_sr) DEALLOCATE( hom_sum_on_file ) CASE ( 'momentum_advec' ) momentum_advec_check = momentum_advec READ ( 13 ) momentum_advec IF ( TRIM( momentum_advec_check ) /= TRIM( momentum_advec ) ) & THEN WRITE( message_string, * ) 'momentum_advec of the restart ',& 'run differs from momentum_advec of the ', & 'initial run.' CALL message( 'rrd_read_parts_of_global', 'PA0100', & 1, 2, 0, 6, 0 ) ENDIF CASE ( 'nx' ) READ ( 13 ) nx_on_file CASE ( 'ny' ) READ ( 13 ) ny_on_file CASE ( 'ref_state' ) READ ( 13 ) ref_state CASE ( 'scalar_advec' ) scalar_advec_check = scalar_advec READ ( 13 ) scalar_advec IF ( TRIM( scalar_advec_check ) /= TRIM( scalar_advec ) ) & THEN WRITE( message_string, * ) 'scalar_advec of the restart ', & 'run differs from scalar_advec of the ', & 'initial run.' CALL message( 'rrd_read_parts_of_global', 'PA0101', & 1, 2, 0, 6, 0 ) ENDIF CASE DEFAULT READ ( 13 ) cdum END SELECT READ ( 13 ) length READ ( 13 ) restart_string(1:length) ENDDO CALL close_file( 13 ) ELSEIF ( restart_data_format_input(1:3) == 'mpi' ) THEN ! !-- Open the MPI-IO restart file. CALL rd_mpi_io_open( 'read', 'BININ' // TRIM( coupling_char ), & open_for_global_io_only = .TRUE. ) ! !-- Read vertical number of gridpoints and number of different areas used for computing !-- statistics. Allocate arrays depending on these values, which are required for the following !-- read instructions. CALL rrd_mpi_io( 'nz', nz_on_file ) IF ( nz_on_file /= nz ) THEN WRITE( message_string, * ) 'mismatch concerning number of gridpoints along z:', & '&nz on file = "', nz_on_file, '"', & '&nz from run = "', nz, '"' CALL message( 'rrd_read_parts_of_global', 'PA0304', 1, 2, 0, 6, 0 ) ENDIF CALL rrd_mpi_io( 'max_pr_user', max_pr_user_on_file ) IF ( max_pr_user_on_file /= max_pr_user ) THEN WRITE( message_string, * ) 'number of user profiles on restart data file differs from ', & 'the current run:&max_pr_user on file = "', & max_pr_user_on_file, '" &max_pr_user from run = "', & max_pr_user, '"' CALL message( 'rrd_read_parts_of_global', 'PA0306', 0, 0, 0, 6, 0 ) tmp_mpru = MIN( max_pr_user_on_file, max_pr_user ) ELSE tmp_mpru = max_pr_user ENDIF CALL rrd_mpi_io( 'statistic_regions', statistic_regions_on_file ) IF ( statistic_regions_on_file /= statistic_regions ) THEN WRITE( message_string, * ) 'statistic regions on restart data file ',& 'differ from the current run:', & '&statistic regions on file = "', & statistic_regions_on_file, '"', & '&statistic regions from run = "', & statistic_regions, '"', & '&statistic data may be lost!' CALL message( 'rrd_read_parts_of_global', 'PA0308', 0, 1, 0, 6, 0 ) tmp_sr = MIN( statistic_regions_on_file, statistic_regions ) ELSE tmp_sr = statistic_regions ENDIF ! !-- Now read and check some control parameters and skip the rest. CALL rrd_mpi_io( 'average_count_pr', average_count_pr ) IF ( average_count_pr /= 0 ) THEN WRITE( message_string, * ) 'inflow profiles not ', & 'temporally averaged. &Averaging will be ', & 'done now using', average_count_pr, & ' samples.' CALL message( 'rrd_read_parts_of_global', 'PA0309', 0, 1, 0, 6, 0 ) ENDIF ALLOCATE( hom_on_file(0:nz+1,2,pr_palm+max_pr_user_on_file,0:statistic_regions_on_file) ) CALL rrd_mpi_io_global_array( 'hom', hom_on_file ) hom(:,:,1:pr_palm+tmp_mpru,0:tmp_sr) = hom_on_file(:,:,1:pr_palm+tmp_mpru,0:tmp_sr) DEALLOCATE( hom_on_file ) ALLOCATE( hom_sum_on_file(0:nz+1,pr_palm+max_pr_user_on_file, 0:statistic_regions_on_file) ) CALL rrd_mpi_io_global_array( 'hom_sum', hom_sum_on_file ) hom_sum(:,1:pr_palm+tmp_mpru,0:tmp_sr) = hom_sum_on_file(:,1:pr_palm+tmp_mpru,0:tmp_sr) DEALLOCATE( hom_sum_on_file ) momentum_advec_check = momentum_advec CALL rrd_mpi_io( 'momentum_advec', momentum_advec ) IF ( TRIM( momentum_advec_check ) /= TRIM( momentum_advec ) ) THEN WRITE( message_string, * ) 'momentum_advec of the restart ',& 'run differs from momentum_advec of the ', & 'initial run.' CALL message( 'rrd_read_parts_of_global', 'PA0100', 1, 2, 0, 6, 0 ) ENDIF CALL rrd_mpi_io( 'bc_lr', bc_lr_on_file ) CALL rrd_mpi_io( 'bc_ns', bc_ns_on_file ) IF ( TRIM( bc_lr_on_file ) /= 'cyclic' .OR. TRIM( bc_ns_on_file ) /= 'cyclic' ) THEN message_string = 'bc_lr and/or bc_ns in the prerun was set /= "cyclic"' CALL message( 'rrd_read_parts_of_global', 'PA0498', 1, 2, 0, 6, 0 ) ENDIF scalar_advec_check = scalar_advec CALL rrd_mpi_io( 'scalar_advec', scalar_advec ) IF ( TRIM( scalar_advec_check ) /= TRIM( scalar_advec ) ) THEN WRITE( message_string, * ) 'scalar_advec of the restart ', & 'run differs from scalar_advec of the ', & 'initial run.' CALL message( 'rrd_read_parts_of_global', 'PA0101', 1, 2, 0, 6, 0 ) ENDIF CALL rrd_mpi_io( 'nx', nx_on_file ) CALL rrd_mpi_io( 'ny', ny_on_file ) CALL rrd_mpi_io_global_array( 'ref_state', ref_state ) ! !-- Close restart file CALL rd_mpi_io_close ENDIF ! !-- Calculate the temporal average of vertical profiles, if neccessary IF ( average_count_pr /= 0 ) THEN hom_sum = hom_sum / REAL( average_count_pr, KIND=wp ) ENDIF END SUBROUTINE rrd_read_parts_of_global ! Description: ! ------------ !> Reads processor (subdomain) specific data of variables and arrays from restart file !> (binary format). !------------------------------------------------------------------------------! SUBROUTINE rrd_local CHARACTER (LEN=7) :: myid_char_save CHARACTER (LEN=10) :: binary_version_local CHARACTER (LEN=10) :: version_on_file CHARACTER (LEN=20) :: tmp_name !< temporary variable INTEGER(iwp) :: files_to_be_opened !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: myid_on_file !< INTEGER(iwp) :: numprocs_on_file !< INTEGER(iwp) :: nxlc !< INTEGER(iwp) :: nxlf !< INTEGER(iwp) :: nxlpr !< INTEGER(iwp) :: nxl_on_file !< INTEGER(iwp) :: nxrc !< INTEGER(iwp) :: nxrf !< INTEGER(iwp) :: nxrpr !< INTEGER(iwp) :: nxr_on_file !< INTEGER(iwp) :: nync !< INTEGER(iwp) :: nynf !< INTEGER(iwp) :: nynpr !< INTEGER(iwp) :: nyn_on_file !< INTEGER(iwp) :: nysc !< INTEGER(iwp) :: nysf !< INTEGER(iwp) :: nyspr !< INTEGER(iwp) :: nys_on_file !< INTEGER(iwp) :: nzb_on_file !< INTEGER(iwp) :: nzt_on_file !< INTEGER(iwp) :: offset_x !< INTEGER(iwp) :: offset_y !< INTEGER(iwp) :: shift_x !< INTEGER(iwp) :: shift_y !< INTEGER(iwp), DIMENSION(numprocs_previous_run) :: file_list !< INTEGER(iwp), DIMENSION(numprocs_previous_run) :: overlap_count !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nxlfa !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nxrfa !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nynfa !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nysfa !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: offset_xa !< INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: offset_ya !< INTEGER(isp), DIMENSION(:,:), ALLOCATABLE :: tmp_2d_id_random !< temporary array for storing random generator data INTEGER(isp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_2d_seq_random !< temporary array for storing random generator data LOGICAL :: array_found !< LOGICAL :: found !< REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tmp_2d !< temporary array for storing 2D data REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array for storing 3D data REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d_non_standard !< temporary array for storing 3D data !< with non standard dimensions ! !-- Read data from previous model run. CALL cpu_log( log_point_s(14), 'read-restart-data-local', 'start' ) CALL location_message( 'reading local restart data', 'start' ) IF ( TRIM( restart_data_format_input ) == 'fortran_binary' ) THEN ! !-- Input in Fortran binary format ! !-- Allocate temporary buffer arrays. In previous versions, they were !-- declared as automated arrays, causing memory problems when these !-- were allocate on stack. ALLOCATE( nxlfa(numprocs_previous_run,1000) ) ALLOCATE( nxrfa(numprocs_previous_run,1000) ) ALLOCATE( nynfa(numprocs_previous_run,1000) ) ALLOCATE( nysfa(numprocs_previous_run,1000) ) ALLOCATE( offset_xa(numprocs_previous_run,1000) ) ALLOCATE( offset_ya(numprocs_previous_run,1000) ) ! !-- Check which of the restart files contain data needed for the subdomain !-- of this PE files_to_be_opened = 0 DO i = 1, numprocs_previous_run ! !-- Store array bounds of the previous run ("pr") in temporary scalars nxlpr = hor_index_bounds_previous_run(1,i-1) nxrpr = hor_index_bounds_previous_run(2,i-1) nyspr = hor_index_bounds_previous_run(3,i-1) nynpr = hor_index_bounds_previous_run(4,i-1) ! !-- Determine the offsets. They may be non-zero in case that the total domain !-- on file is smaller than the current total domain. offset_x = ( nxl / ( nx_on_file + 1 ) ) * ( nx_on_file + 1 ) offset_y = ( nys / ( ny_on_file + 1 ) ) * ( ny_on_file + 1 ) ! !-- Start with this offset and then check, if the subdomain on file !-- matches another time(s) in the current subdomain by shifting it !-- for nx_on_file+1, ny_on_file+1 respectively shift_y = 0 j = 0 DO WHILE ( nyspr+shift_y <= nyn-offset_y ) IF ( nynpr+shift_y >= nys-offset_y ) THEN shift_x = 0 DO WHILE ( nxlpr+shift_x <= nxr-offset_x ) IF ( nxrpr+shift_x >= nxl-offset_x ) THEN j = j +1 IF ( j > 1000 ) THEN ! !-- Array bound exceeded message_string = 'data from subdomain of previous' // & ' run mapped more than 1000 times' CALL message( 'rrd_local', 'PA0284', 2, 2, -1, 6, 1 ) ENDIF IF ( j == 1 ) THEN files_to_be_opened = files_to_be_opened + 1 file_list(files_to_be_opened) = i-1 ENDIF offset_xa(files_to_be_opened,j) = offset_x + shift_x offset_ya(files_to_be_opened,j) = offset_y + shift_y ! !-- Index bounds of overlapping data nxlfa(files_to_be_opened,j) = MAX( nxl-offset_x-shift_x, nxlpr ) nxrfa(files_to_be_opened,j) = MIN( nxr-offset_x-shift_x, nxrpr ) nysfa(files_to_be_opened,j) = MAX( nys-offset_y-shift_y, nyspr ) nynfa(files_to_be_opened,j) = MIN( nyn-offset_y-shift_y, nynpr ) ENDIF shift_x = shift_x + ( nx_on_file + 1 ) ENDDO ENDIF shift_y = shift_y + ( ny_on_file + 1 ) ENDDO IF ( j > 0 ) overlap_count(files_to_be_opened) = j ENDDO ! !-- Save the id-string of the current process, since myid_char may now be used !-- to open files created by PEs with other id. myid_char_save = myid_char IF ( files_to_be_opened /= 1 .OR. numprocs /= numprocs_previous_run ) THEN WRITE( message_string, * ) 'number of PEs or virtual PE-grid changed in restart run. & ', & 'Set debug_output =.T. to get a list of files from which the & ',& 'single PEs will read respectively' CALL message( 'rrd_local', 'PA0285', 0, 0, 0, 6, 0 ) IF ( debug_output ) THEN IF ( files_to_be_opened <= 120 ) THEN WRITE( debug_string, '(2A,1X,120(I6.6,1X))' ) & 'number of PEs or virtual PE-grid changed in restart run. PE will read from ', & 'files ', file_list(1:files_to_be_opened) ELSE WRITE( debug_string, '(3A,1X,120(I6.6,1X),A)' ) & 'number of PEs or virtual PE-grid changed in restart run. PE will read from ', & 'files ', file_list(1:120), '... and more' ENDIF CALL debug_message( 'rrd_local', 'info' ) ENDIF ENDIF ! !-- Read data from all restart files determined above DO i = 1, files_to_be_opened j = file_list(i) ! !-- Set the filename (underscore followed by four digit processor id) WRITE (myid_char,'(''_'',I6.6)') j ! !-- Open the restart file. If this file has been created by PE0 (_000000), !-- the global variables at the beginning of the file have to be skipped !-- first. CALL check_open( 13 ) IF ( j == 0 ) CALL rrd_skip_global ! !-- First compare the version numbers READ ( 13 ) length READ ( 13 ) restart_string(1:length) READ ( 13 ) version_on_file binary_version_local = '5.1' IF ( TRIM( version_on_file ) /= TRIM( binary_version_local ) ) THEN WRITE( message_string, * ) 'version mismatch concerning ', & 'binary_version_local:', & '&version on file = "', TRIM( version_on_file ), '"', & '&version in program = "', TRIM( binary_version_local ), '"' CALL message( 'rrd_local', 'PA0286', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read number of processors, processor-id, and array ranges. !-- Compare the array ranges with those stored in the index bound array. READ ( 13 ) numprocs_on_file, myid_on_file, nxl_on_file, nxr_on_file, nys_on_file, & nyn_on_file, nzb_on_file, nzt_on_file IF ( nxl_on_file /= hor_index_bounds_previous_run(1,j) ) THEN WRITE( message_string, * ) 'problem with index bound nxl on ', & 'restart file "', myid_char, '"', & '&nxl = ', nxl_on_file, ' but it should be', & '&= ', hor_index_bounds_previous_run(1,j), & '&from the index bound information array' CALL message( 'rrd_local', 'PA0287', 2, 2, -1, 6, 1 ) ENDIF IF ( nxr_on_file /= hor_index_bounds_previous_run(2,j) ) THEN WRITE( message_string, * ) 'problem with index bound nxr on ', & 'restart file "', myid_char, '"' , & ' nxr = ', nxr_on_file, ' but it should be', & ' = ', hor_index_bounds_previous_run(2,j), & ' from the index bound information array' CALL message( 'rrd_local', 'PA0288', 2, 2, -1, 6, 1 ) ENDIF IF ( nys_on_file /= hor_index_bounds_previous_run(3,j) ) THEN WRITE( message_string, * ) 'problem with index bound nys on ', & 'restart file "', myid_char, '"', & '&nys = ', nys_on_file, ' but it should be', & '&= ', hor_index_bounds_previous_run(3,j), & '&from the index bound information array' CALL message( 'rrd_local', 'PA0289', 2, 2, -1, 6, 1 ) ENDIF IF ( nyn_on_file /= hor_index_bounds_previous_run(4,j) ) THEN WRITE( message_string, * ) 'problem with index bound nyn on ', & 'restart file "', myid_char, '"', & '&nyn = ', nyn_on_file, ' but it should be', & '&= ', hor_index_bounds_previous_run(4,j), & '&from the index bound information array' CALL message( 'rrd_local', 'PA0290', 2, 2, -1, 6, 1 ) ENDIF IF ( nzb_on_file /= nzb ) THEN WRITE( message_string, * ) 'mismatch between actual data and data ', & 'from prior run on PE ', myid, & '&nzb on file = ', nzb_on_file, & '&nzb = ', nzb CALL message( 'rrd_local', 'PA0291', 1, 2, 0, 6, 0 ) ENDIF IF ( nzt_on_file /= nzt ) THEN WRITE( message_string, * ) 'mismatch between actual data and data ', & 'from prior run on PE ', myid, & '&nzt on file = ', nzt_on_file, & '&nzt = ', nzt CALL message( 'rrd_local', 'PA0292', 1, 2, 0, 6, 0 ) ENDIF ! !-- Allocate temporary arrays sized as the arrays on the restart file ALLOCATE( tmp_2d(nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp), & tmp_3d(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp, & nxl_on_file-nbgp:nxr_on_file+nbgp) ) ! !-- Read arrays !-- ATTENTION: If the following read commands have been altered, the !-- ---------- version number of the variable binary_version_local must !-- be altered, too. Furthermore, the output list of arrays in !-- wrd_write_local must also be altered !-- accordingly. READ ( 13 ) length READ ( 13 ) restart_string(1:length) ! !-- Loop over processor specific field data DO WHILE ( restart_string(1:length) /= '*** end ***' ) ! !-- Map data on file as often as needed (data are read only for k=1) DO k = 1, overlap_count(i) found = .FALSE. ! !-- Get the index range of the subdomain on file which overlap with !-- the current subdomain nxlf = nxlfa(i,k) nxlc = nxlfa(i,k) + offset_xa(i,k) nxrf = nxrfa(i,k) nxrc = nxrfa(i,k) + offset_xa(i,k) nysf = nysfa(i,k) nysc = nysfa(i,k) + offset_ya(i,k) nynf = nynfa(i,k) nync = nynfa(i,k) + offset_ya(i,k) SELECT CASE ( restart_string(1:length) ) CASE ( 'ghf_av' ) IF ( .NOT. ALLOCATED( ghf_av ) ) THEN ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d ghf_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'e' ) IF ( k == 1 ) READ ( 13 ) tmp_3d e(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'e_av' ) IF ( .NOT. ALLOCATED( e_av ) ) THEN ALLOCATE( e_av(nzb:nzt+1,nys-nbgp:nyn+nbgp, & nxl-nbgp:nxr+nbgp) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d e_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'kh' ) IF ( k == 1 ) READ ( 13 ) tmp_3d kh(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'kh_av' ) IF ( .NOT. ALLOCATED( kh_av ) ) THEN ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg )) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d kh_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'km' ) IF ( k == 1 ) READ ( 13 ) tmp_3d km(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'km_av' ) IF ( .NOT. ALLOCATED( km_av ) ) THEN ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg )) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d km_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'lpt_av' ) IF ( .NOT. ALLOCATED( lpt_av ) ) THEN ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg )) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d lpt_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'lwp_av' ) IF ( .NOT. ALLOCATED( lwp_av ) ) THEN ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d lwp_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'p' ) IF ( k == 1 ) READ ( 13 ) tmp_3d p(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'p_av' ) IF ( .NOT. ALLOCATED( p_av ) ) THEN ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d p_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'pt' ) IF ( k == 1 ) READ ( 13 ) tmp_3d pt(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'pt_av' ) IF ( .NOT. ALLOCATED( pt_av ) ) THEN ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d pt_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'q' ) IF ( k == 1 ) READ ( 13 ) tmp_3d q(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'q_av' ) IF ( .NOT. ALLOCATED( q_av ) ) THEN ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg )) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d q_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'ql' ) IF ( k == 1 ) READ ( 13 ) tmp_3d ql(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'ql_av' ) IF ( .NOT. ALLOCATED( ql_av ) ) THEN ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d ql_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'qsurf_av' ) IF ( .NOT. ALLOCATED( qsurf_av ) ) THEN ALLOCATE( qsurf_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d qsurf_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'qsws_av' ) IF ( .NOT. ALLOCATED( qsws_av ) ) THEN ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d qsws_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'qv_av' ) IF ( .NOT. ALLOCATED( qv_av ) ) THEN ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d qv_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'r_a_av' ) IF ( .NOT. ALLOCATED( r_a_av ) ) THEN ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d r_a_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'random_iv' ) ! still unresolved issue IF ( k == 1 ) READ ( 13 ) random_iv IF ( k == 1 ) READ ( 13 ) random_iy CASE ( 'seq_random_array' ) ALLOCATE( tmp_2d_id_random(nys_on_file:nyn_on_file,nxl_on_file:nxr_on_file) ) ALLOCATE( tmp_2d_seq_random(5,nys_on_file:nyn_on_file,nxl_on_file:nxr_on_file) ) IF ( .NOT. ALLOCATED( id_random_array ) ) THEN ALLOCATE( id_random_array(nys:nyn,nxl:nxr) ) ENDIF IF ( .NOT. ALLOCATED( seq_random_array ) ) THEN ALLOCATE( seq_random_array(5,nys:nyn,nxl:nxr) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d_id_random IF ( k == 1 ) READ ( 13 ) tmp_2d_seq_random id_random_array(nysc:nync,nxlc:nxrc) = tmp_2d_id_random(nysf:nynf,nxlf:nxrf) seq_random_array(:,nysc:nync,nxlc:nxrc) = tmp_2d_seq_random(:,nysf:nynf,nxlf:nxrf) DEALLOCATE( tmp_2d_id_random, tmp_2d_seq_random ) CASE ( 's' ) IF ( k == 1 ) READ ( 13 ) tmp_3d s(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 's_av' ) IF ( .NOT. ALLOCATED( s_av ) ) THEN ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d s_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'shf_av' ) IF ( .NOT. ALLOCATED( shf_av ) ) THEN ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d shf_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'ssurf_av' ) IF ( .NOT. ALLOCATED( ssurf_av ) ) THEN ALLOCATE( ssurf_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d ssurf_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'ssws_av' ) IF ( .NOT. ALLOCATED( ssws_av ) ) THEN ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d ssws_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'ts_av' ) IF ( .NOT. ALLOCATED( ts_av ) ) THEN ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d ts_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'tsurf_av' ) IF ( .NOT. ALLOCATED( tsurf_av ) ) THEN ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d tsurf_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'u' ) IF ( k == 1 ) READ ( 13 ) tmp_3d u(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'u_av' ) IF ( .NOT. ALLOCATED( u_av ) ) THEN ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d u_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'us_av' ) IF ( .NOT. ALLOCATED( us_av ) ) THEN ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d us_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'v' ) IF ( k == 1 ) READ ( 13 ) tmp_3d v(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'v_av' ) IF ( .NOT. ALLOCATED( v_av ) ) THEN ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d v_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'vpt' ) IF ( k == 1 ) READ ( 13 ) tmp_3d vpt(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'vpt_av' ) IF ( .NOT. ALLOCATED( vpt_av ) ) THEN ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d vpt_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'w' ) IF ( k == 1 ) READ ( 13 ) tmp_3d w(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'w_av' ) IF ( .NOT. ALLOCATED( w_av ) ) THEN ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_3d w_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'z0_av' ) IF ( .NOT. ALLOCATED( z0_av ) ) THEN ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d z0_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'z0h_av' ) IF ( .NOT. ALLOCATED( z0h_av ) ) THEN ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d z0h_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'z0q_av' ) IF ( .NOT. ALLOCATED( z0q_av ) ) THEN ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) ENDIF IF ( k == 1 ) READ ( 13 ) tmp_2d z0q_av(nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_2d(nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE DEFAULT ! !-- Read restart data of surfaces IF ( .NOT. found ) CALL surface_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, & nxr_on_file, nynf, nyn_on_file, & nysf, nysc, nys_on_file, found ) ! !-- Read restart data of other modules IF ( .NOT. found ) CALL module_interface_rrd_local( & k, nxlf, nxlc, nxl_on_file, nxrf, & nxrc, nxr_on_file, nynf, nync, & nyn_on_file, nysf, nysc, & nys_on_file, tmp_2d, tmp_3d, found ) IF ( .NOT. found ) THEN WRITE( message_string, * ) 'unknown variable named "', & restart_string(1:length), & '" found in subdomain data ', & 'from prior run on PE ', myid CALL message( 'rrd_local', 'PA0302', 1, 2, 0, 6, 0 ) ENDIF END SELECT ENDDO ! overlaploop ! !-- Deallocate non standard array needed for specific variables only IF ( ALLOCATED( tmp_3d_non_standard ) ) DEALLOCATE( tmp_3d_non_standard ) ! !-- Read next character string READ ( 13 ) length READ ( 13 ) restart_string(1:length) ENDDO ! dataloop ! !-- Close the restart file CALL close_file( 13 ) DEALLOCATE( tmp_2d, tmp_3d ) ENDDO ! loop over restart files ! !-- Deallocate temporary buffer arrays DEALLOCATE( nxlfa ) DEALLOCATE( nxrfa ) DEALLOCATE( nynfa ) DEALLOCATE( nysfa ) DEALLOCATE( offset_xa ) DEALLOCATE( offset_ya ) ! !-- Restore the original filename for the restart file to be written myid_char = myid_char_save ELSEIF ( restart_data_format_input(1:3) == 'mpi' ) THEN ! !-- Read local restart data using MPI-IO ! !-- Open the MPI-IO restart file. CALL rd_mpi_io_open( 'read', 'BININ' // TRIM( coupling_char ) ) CALL rd_mpi_io_check_array( 'ghf_av' , found = array_found ) IF ( array_found ) THEN IF (.NOT. ALLOCATED( ghf_av ) ) ALLOCATE( ghf_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'ghf_av', ghf_av ) ENDIF CALL rrd_mpi_io( 'e', e ) CALL rd_mpi_io_check_array( 'e_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( e_av ) ) ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'e_av', e_av ) ENDIF CALL rrd_mpi_io( 'kh', kh ) CALL rd_mpi_io_check_array( 'kh_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( kh_av ) ) ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'kh_av', kh_av ) ENDIF CALL rrd_mpi_io( 'km' , km) CALL rd_mpi_io_check_array( 'km_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( km_av ) ) ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'km_av', km_av ) ENDIF CALL rd_mpi_io_check_array( 'lpt_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( lpt_av ) ) ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'lpt_av', lpt_av ) ENDIF CALL rd_mpi_io_check_array( 'lwp_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( lwp_av ) ) ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'lwp_av', lwp_av ) ENDIF CALL rrd_mpi_io( 'p', p) CALL rd_mpi_io_check_array( 'p_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( p_av ) ) ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'p_av', p_av ) ENDIF CALL rrd_mpi_io( 'pt', pt) CALL rd_mpi_io_check_array( 'pt_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( pt_av ) ) ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'pt_av', pt_av ) ENDIF CALL rd_mpi_io_check_array( 'q' , found = array_found ) IF ( array_found ) THEN CALL rrd_mpi_io( 'q', q ) ENDIF CALL rd_mpi_io_check_array( 'q_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( q_av ) ) ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'q_av', q_av ) ENDIF CALL rd_mpi_io_check_array( 'ql' , found = array_found ) IF ( array_found ) THEN CALL rrd_mpi_io( 'ql', ql ) ENDIF CALL rd_mpi_io_check_array( 'ql_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( ql_av ) ) ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'ql_av', ql_av ) ENDIF CALL rd_mpi_io_check_array( 'qsurf_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( qsurf_av ) ) ALLOCATE( qsurf_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'qsurf_av', qsurf_av ) ENDIF CALL rd_mpi_io_check_array( 'qsws_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( qsws_av ) ) ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'qsws_av', qsws_av ) ENDIF CALL rd_mpi_io_check_array( 'qv_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( qv_av ) ) ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'qv_av', qv_av ) ENDIF CALL rd_mpi_io_check_array( 'r_a_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( r_a_av ) ) ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'r_a_av', r_a_av ) ENDIF ! !-- ATTENTION: The random seeds are global data! If independent values for every PE are required, !-- the general approach of PE indendent restart will be lost. That means that in general the !-- parallel random number generator in random_generator_parallel_mod should be used! CALL rrd_mpi_io_global_array( 'random_iv', random_iv ) CALL rrd_mpi_io( 'random_iy', random_iy ) CALL rd_mpi_io_check_array( 'id_random_array' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( id_random_array ) ) ALLOCATE( id_random_array(nys:nyn,nxl:nxr) ) IF ( .NOT. ALLOCATED( seq_random_array ) ) ALLOCATE( seq_random_array(5,nys:nyn,nxl:nxr) ) CALL rrd_mpi_io( 'id_random_array', id_random_array) DO i = 1, SIZE( seq_random_array, 1 ) WRITE( tmp_name, '(A,I2.2)' ) 'seq_random_array', i CALL rrd_mpi_io( TRIM(tmp_name), seq_random_array(i,:,:) ) ENDDO ENDIF CALL rd_mpi_io_check_array( 's' , found = array_found ) IF ( array_found ) THEN CALL rrd_mpi_io( 's', s ) ENDIF CALL rd_mpi_io_check_array( 's_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( s_av ) ) ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 's_av', s_av ) ENDIF CALL rd_mpi_io_check_array( 'shf_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( shf_av ) ) ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'shf_av', shf_av ) ENDIF CALL rd_mpi_io_check_array( 'ssurf_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( ssurf_av ) ) ALLOCATE( ssurf_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'ssurf_av', ssurf_av ) ENDIF CALL rd_mpi_io_check_array( 'ssws_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( ssws_av ) ) ALLOCATE( ssws_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'ssws_av', ssws_av ) ENDIF CALL rd_mpi_io_check_array( 'ts_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( ts_av ) ) ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'ts_av', ts_av ) ENDIF CALL rd_mpi_io_check_array( 'tsurf_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( tsurf_av ) ) ALLOCATE( tsurf_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'tsurf_av', tsurf_av ) ENDIF CALL rrd_mpi_io( 'u', u) CALL rd_mpi_io_check_array( 'u_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( u_av ) ) ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'u_av', u_av ) ENDIF CALL rd_mpi_io_check_array( 'us_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( us_av ) ) ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'us_av', us_av ) ENDIF CALL rrd_mpi_io( 'v', v ) CALL rd_mpi_io_check_array( 'v_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( v_av ) ) ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'v_av', v_av ) ENDIF CALL rd_mpi_io_check_array( 'vpt' , found = array_found ) IF ( array_found ) THEN CALL rrd_mpi_io( 'vpt', vpt) ENDIF CALL rd_mpi_io_check_array( 'vpt_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( vpt_av ) ) ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'vpt_av', vpt_av ) ENDIF CALL rrd_mpi_io( 'w', w) CALL rd_mpi_io_check_array( 'w_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( w_av ) ) ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'w_av', w_av ) ENDIF CALL rd_mpi_io_check_array( 'z0_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( z0_av ) ) ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'z0_av', z0_av ) ENDIF CALL rd_mpi_io_check_array( 'z0h_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( z0h_av ) ) ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'z0h_av', z0h_av ) ENDIF CALL rd_mpi_io_check_array( 'z0q_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( z0q_av ) ) ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'z0q_av', z0q_av ) ENDIF ! !-- Read restart data of surfaces CALL surface_rrd_local ! !-- Read restart data of other modules CALL module_interface_rrd_local ! !-- Close restart file CALL rd_mpi_io_close ENDIF CALL location_message( 'reading local restart data', 'finished' ) ! !-- End of time measuring for reading binary data CALL cpu_log( log_point_s(14), 'read-restart-data-local', 'stop' ) END SUBROUTINE rrd_local !------------------------------------------------------------------------------! ! Description: ! ------------ !> Skipping the global control variables from restart-file (binary format) !------------------------------------------------------------------------------! SUBROUTINE rrd_skip_global CHARACTER (LEN=1) :: cdum READ ( 13 ) length READ ( 13 ) restart_string(1:length) DO WHILE ( restart_string(1:length) /= 'binary_version_local' ) READ ( 13 ) cdum READ ( 13 ) length READ ( 13 ) restart_string(1:length) ENDDO BACKSPACE ( 13 ) BACKSPACE ( 13 ) END SUBROUTINE rrd_skip_global END MODULE read_restart_data_mod