!> @file plant_canopy_model_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover ! Copyright 2017-2021 Institute of Computer Science of the ! Czech Academy of Sciences, Prague !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> 1) Initialization of the canopy model, e.g. construction of leaf area density profile !> (subroutine pcm_init). !> 2) Calculation of sinks and sources of momentum, heat and scalar concentration due to canopy !> elements (subroutine pcm_tendency). ! ! @todo - precalculate constant terms in pcm_calc_transpiration_rate ! @todo - unify variable names (pcm_, pc_, ...) ! @todo - get rid-off dependency on radiation model !--------------------------------------------------------------------------------------------------! MODULE plant_canopy_model_mod #if defined( __parallel ) USE MPI #endif USE arrays_3d, & ONLY: dzu, dzw, e, exner, hyp, pt, q, s, tend, u, v, w, zu, zw USE basic_constants_and_equations_mod, & ONLY: c_p, degc_to_k, l_v, lv_d_cp, r_d, rd_d_rv USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, microphysics_seifert USE control_parameters, & ONLY: average_count_3d, & coupling_char, & debug_output, & dt_3d, & dz, & humidity, & land_surface, & length, & message_string, & ocean_mode, & passive_scalar, & plant_canopy, & restart_data_format_output, & restart_string, & urban_surface USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nbgp, nxl, nxlg, nxlu, nxr, nxrg, nyn, nyng, nys, nysg, nysv, nz, nzb, nzt, & topo_top_ind, topo_flags USE kinds USE netcdf_data_input_mod, & ONLY: char_fill, & check_existence, & close_input_file, & get_attribute, & get_dimension_length, & get_variable, & input_file_static, & input_pids_static, & inquire_num_variables, & inquire_variable_names, & num_var_pids, & open_read_file, & pids_id, & real_3d, & vars_pids USE pegrid USE restart_data_mpi_io_mod, & ONLY: rd_mpi_io_check_array, & rrd_mpi_io, & wrd_mpi_io USE surface_mod, & ONLY: surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE CHARACTER (LEN=30) :: canopy_mode = 'homogeneous' !< canopy coverage INTEGER(iwp) :: pch_index = 0 !< plant canopy height/top index INTEGER(iwp) :: lad_vertical_gradient_level_ind(10) = -9999 !< lad-profile levels (index) INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch_index_ji !< local plant canopy top LOGICAL :: calc_beta_lad_profile = .FALSE. !< switch for calc. of lad from beta func. LOGICAL :: plant_canopy_transpiration = .FALSE. !< flag to switch calculation of transpiration and corresponding latent heat !< for resolved plant canopy inside radiation model !< (calls subroutine pcm_calc_transpiration_rate from module plant_canopy_mod) REAL(wp) :: alpha_lad = 9999999.9_wp !< coefficient for lad calculation REAL(wp) :: beta_lad = 9999999.9_wp !< coefficient for lad calculation REAL(wp) :: canopy_drag_coeff = 0.0_wp !< canopy drag coefficient (parameter) REAL(wp) :: cthf = 0.0_wp !< canopy top heat flux REAL(wp) :: dt_plant_canopy = 0.0_wp !< timestep account. for canopy drag REAL(wp) :: ext_coef = 0.6_wp !< extinction coefficient REAL(wp) :: lad_surface = 0.0_wp !< lad surface value REAL(wp) :: lad_type_coef(0:10) = 1.0_wp !< multiplicative coeficients for particular types !< of plant canopy (e.g. deciduous tree during winter) REAL(wp) :: lad_vertical_gradient(10) = 0.0_wp !< lad gradient REAL(wp) :: lad_vertical_gradient_level(10) = -9999999.9_wp !< lad-prof. levels (in m) REAL(wp) :: lai_beta = 0.0_wp !< leaf area index (lai) for lad calc. REAL(wp) :: leaf_scalar_exch_coeff = 0.0_wp !< canopy scalar exchange coeff. REAL(wp) :: leaf_surface_conc = 0.0_wp !< leaf surface concentration REAL(wp), DIMENSION(:), ALLOCATABLE :: lad !< leaf area density REAL(wp), DIMENSION(:), ALLOCATABLE :: pre_lad !< preliminary lad REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: bad_s !< basal-area density on scalar-grid REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: cum_lai_hf !< cumulative lai for heatflux calc. REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: lad_s !< lad on scalar-grid REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heating_rate !< plant canopy heating rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_heatrate_av !< array for averaging plant canopy sensible heating rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latent_rate !< plant canopy latent heating rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_latentrate_av !< array for averaging plant canopy latent heating rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpiration_rate !< plant canopy transpiration rate REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pcm_transpirationrate_av !< array for averaging plant canopy transpiration rate TYPE(real_3d) :: basal_area_density_f !< input variable for basal area density - resolved vegetation TYPE(real_3d) :: leaf_area_density_f !< input variable for leaf area density - resolved vegetation TYPE(real_3d) :: root_area_density_lad_f !< input variable for root area density - resolved vegetation SAVE PRIVATE ! !-- Public functions PUBLIC pcm_calc_transpiration_rate, & pcm_check_data_output, & pcm_check_parameters, & pcm_3d_data_averaging, & pcm_data_output_3d, & pcm_define_netcdf_grid, & pcm_header, & pcm_init, & pcm_parin, & pcm_rrd_global, & pcm_rrd_local, & pcm_tendency, & pcm_wrd_global, & pcm_wrd_local ! !-- Public variables and constants PUBLIC canopy_drag_coeff, pcm_heating_rate, pcm_transpiration_rate, pcm_latent_rate, & canopy_mode, cthf, dt_plant_canopy, lad, lad_s, pch_index, plant_canopy_transpiration, & pcm_heatrate_av, pcm_latentrate_av INTERFACE pcm_calc_transpiration_rate MODULE PROCEDURE pcm_calc_transpiration_rate END INTERFACE pcm_calc_transpiration_rate INTERFACE pcm_check_data_output MODULE PROCEDURE pcm_check_data_output END INTERFACE pcm_check_data_output INTERFACE pcm_check_parameters MODULE PROCEDURE pcm_check_parameters END INTERFACE pcm_check_parameters INTERFACE pcm_3d_data_averaging MODULE PROCEDURE pcm_3d_data_averaging END INTERFACE pcm_3d_data_averaging INTERFACE pcm_data_output_3d MODULE PROCEDURE pcm_data_output_3d END INTERFACE pcm_data_output_3d INTERFACE pcm_define_netcdf_grid MODULE PROCEDURE pcm_define_netcdf_grid END INTERFACE pcm_define_netcdf_grid INTERFACE pcm_header MODULE PROCEDURE pcm_header END INTERFACE pcm_header INTERFACE pcm_init MODULE PROCEDURE pcm_init END INTERFACE pcm_init INTERFACE pcm_parin MODULE PROCEDURE pcm_parin END INTERFACE pcm_parin INTERFACE pcm_read_plant_canopy_3d MODULE PROCEDURE pcm_read_plant_canopy_3d END INTERFACE pcm_read_plant_canopy_3d INTERFACE pcm_rrd_local MODULE PROCEDURE pcm_rrd_local_ftn MODULE PROCEDURE pcm_rrd_local_mpi END INTERFACE pcm_rrd_local INTERFACE pcm_rrd_global MODULE PROCEDURE pcm_rrd_global_ftn MODULE PROCEDURE pcm_rrd_global_mpi END INTERFACE pcm_rrd_global INTERFACE pcm_tendency MODULE PROCEDURE pcm_tendency MODULE PROCEDURE pcm_tendency_ij END INTERFACE pcm_tendency INTERFACE pcm_wrd_local MODULE PROCEDURE pcm_wrd_local END INTERFACE pcm_wrd_local INTERFACE pcm_wrd_global MODULE PROCEDURE pcm_wrd_global END INTERFACE pcm_wrd_global CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the plant canopy transpiration rate based on the Jarvis-Stewart with !> parametrizations described in Daudet et al. (1999; Agricult. and Forest Meteorol. 97) and Ngao, !> Adam and Saudreau (2017; Agricult. and Forest Meteorol 237-238). Model functions f1-f4 were !> adapted from Stewart (1998; Agric. and Forest. Meteorol. 43) instead, because they are valid for !> broader intervals of values. Funcion f4 used in form present in van Wijk et al. (1998; Tree !> Physiology 20). !> !> This subroutine is called from subroutine radiation_interaction after the calculation of !> radiation in plant canopy boxes. !> (arrays pcbinsw and pcbinlw). !> !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_calc_transpiration_rate(i, j, k, kk, pcbsw, pcblw, pcbtr, pcblh) ! !-- Input parameters INTEGER(iwp), INTENT(IN) :: i, j, k, kk !< indices of the pc gridbox REAL(wp), INTENT(IN) :: pcblw !< lw radiation in gridbox (W) REAL(wp), INTENT(IN) :: pcbsw !< sw radiation in gridbox (W) REAL(wp), INTENT(OUT) :: pcblh !< latent heat from transpiration dT/dt (K/s) REAL(wp), INTENT(OUT) :: pcbtr !< transpiration rate dq/dt (kg/kg/s) !-- Variables and parameters for calculation of transpiration rate REAL(wp), PARAMETER :: gama_psychr = 66.0_wp !< psychrometric constant (Pa/K) REAL(wp), PARAMETER :: g_s_max = 0.01 !< maximum stomatal conductivity (m/s) REAL(wp), PARAMETER :: m_soil = 0.4_wp !< soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: m_wilt = 0.01_wp !< wilting point soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: m_sat = 0.51_wp !< saturation soil water content (needs to adjust or take from LSM) REAL(wp), PARAMETER :: t2_min = 0.0_wp !< minimal temperature for calculation of f2 REAL(wp), PARAMETER :: t2_max = 40.0_wp !< maximal temperature for calculation of f2 REAL(wp) :: d_fact REAL(wp) :: e_eq REAL(wp) :: e_imp REAL(wp) :: evapor_rate REAL(wp) :: f1 REAL(wp) :: f2 REAL(wp) :: f3 REAL(wp) :: f4 REAL(wp) :: g_b REAL(wp) :: g_s REAL(wp) :: rad REAL(wp) :: rswc REAL(wp) :: sat_press REAL(wp) :: sat_press_d REAL(wp) :: temp REAL(wp) :: v_lad REAL(wp) :: vpd REAL(wp) :: wind_speed ! !-- Temperature (deg C) temp = pt(k,j,i) * exner(k) - degc_to_k ! !-- Coefficient for conversion of radiation to grid to radiation to unit leaves surface v_lad = 1.0_wp / ( MAX( lad_s(kk,j,i), 1.0E-10_wp ) * dx * dy * dz(1) ) ! !-- Magnus formula for the saturation pressure (see Ngao, Adam and Saudreau (2017) eq. 1) !-- There are updated formulas available, kept consistent with the rest of the parametrization sat_press = 610.8_wp * EXP( 17.27_wp * temp / ( temp + 237.3_wp ) ) ! !-- Saturation pressure derivative (derivative of the above) sat_press_d = sat_press * 17.27_wp * 237.3_wp / ( temp + 237.3_wp )**2 ! !-- Wind speed wind_speed = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 + & ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 + & ( 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) )**2 ) ! !-- Aerodynamic conductivity (Daudet et al. (1999) eq. 14 g_b = 0.01_wp * wind_speed + 0.0071_wp ! !-- Radiation flux per leaf surface unit rad = pcbsw * v_lad ! !-- First function for calculation of stomatal conductivity (radiation dependency) !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 17 f1 = rad * ( 1000.0_wp + 42.1_wp ) / 1000.0_wp / ( rad + 42.1_wp ) ! !-- Second function for calculation of stomatal conductivity (temperature dependency) !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 21 f2 = MAX( t2_min, ( temp - t2_min ) * MAX( 0.0_wp, t2_max - temp )**( ( t2_max - 16.9_wp ) / & ( 16.9_wp - t2_min ) ) & / ( ( 16.9_wp - t2_min ) * ( t2_max - 16.9_wp )**( ( t2_max - 16.9_wp ) / & ( 16.9_wp - t2_min ) ) ) ) ! !-- Water pressure deficit !-- Ngao, Adam and Saudreau (2017) eq. 6 but with water vapour partial pressure vpd = MAX( sat_press - q(k,j,i) * hyp(k) / rd_d_rv, 0._wp ) ! !-- Third function for calculation of stomatal conductivity (water pressure deficit dependency) !-- Ngao, Adam and Saudreau (2017) Table 1, limited from below according to Stewart (1988) !-- The coefficients of the linear dependence should better correspond to broad-leaved trees than !-- the coefficients from Stewart (1988) which correspond to conifer trees. vpd = MIN( MAX( vpd, 770.0_wp ), 3820.0_wp ) f3 = -2E-4_wp * vpd + 1.154_wp ! !-- Fourth function for calculation of stomatal conductivity (soil moisture dependency) !-- Residual soil water content !-- van Wijk et al. (1998; Tree Physiology 20) eq. 7 !-- TODO - over LSM surface might be calculated from LSM parameters rswc = ( m_sat - m_soil ) / ( m_sat - m_wilt ) ! !-- van Wijk et al. (1998; Tree Physiology 20) eq. 5-6 (it is a reformulation of eq. 22-23 of !-- Stewart(1988)) f4 = MAX( 0.0_wp, MIN( 1.0_wp - 0.041_wp * EXP( 3.2_wp * rswc ), 1.0_wp - 0.041_wp ) ) ! !-- Stomatal conductivity !-- Stewart (1988; Agric. and Forest. Meteorol. 43) eq. 12 !-- (notation according to Ngao, Adam and Saudreau (2017) and others) g_s = g_s_max * f1 * f2 * f3 * f4 + 1.0E-10_wp ! !-- Decoupling factor !-- Daudet et al. (1999) eq. 6 d_fact = ( sat_press_d / gama_psychr + 2.0_wp ) / & ( sat_press_d / gama_psychr + 2.0_wp + 2.0_wp * g_b / g_s ) ! !-- Equilibrium evaporation rate !-- Daudet et al. (1999) eq. 4 e_eq = ( pcbsw + pcblw ) * v_lad * sat_press_d / & gama_psychr / ( sat_press_d / gama_psychr + 2.0_wp ) / l_v ! !-- Imposed evaporation rate !-- Daudet et al. (1999) eq. 5 e_imp = r_d * pt(k,j,i) * exner(k) / hyp(k) * c_p * g_s * vpd / gama_psychr / l_v ! !-- Evaporation rate !-- Daudet et al. (1999) eq. 3 !-- (evaporation rate is limited to non-negative values) evapor_rate = MAX( d_fact * e_eq + ( 1.0_wp - d_fact ) * e_imp, 0.0_wp ) ! !-- Conversion of evaporation rate to q tendency in gridbox !-- dq/dt = E * LAD * V_g / (rho_air * V_g) pcbtr = evapor_rate * r_d * pt(k,j,i) * exner(k) * lad_s(kk,j,i) / hyp(k) !-- = dq/dt ! !-- latent heat from evaporation pcblh = pcbtr * lv_d_cp !-- = - dT/dt END SUBROUTINE pcm_calc_transpiration_rate !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Check data output for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_check_data_output( var, unit ) CHARACTER (LEN=*) :: unit !< CHARACTER (LEN=*) :: var !< SELECT CASE ( TRIM( var ) ) CASE ( 'pcm_heatrate' ) ! !-- Output of heatrate can be only done if it is explicitely set by cthf, or parametrized by !-- absorption of radiation. The latter, however, is only available if radiation_interactions !-- are on. Note, these are enabled if land-surface or urban-surface is switched-on. Using !-- radiation_interactions_on directly is not possible since it belongs to the !-- radition_model, which in turn depends on the plant-canopy model, creating circular !-- dependencies. IF ( cthf == 0.0_wp .AND. ( .NOT. urban_surface .AND. .NOT. land_surface ) ) THEN message_string = 'output of "' // TRIM( var ) // '" requi' // & 'res setting of parameter cthf /= 0.0' CALL message( 'pcm_check_data_output', 'PA0718', 1, 2, 0, 6, 0 ) ENDIF unit = 'K s-1' CASE ( 'pcm_transpirationrate' ) unit = 'kg kg-1 s-1' CASE ( 'pcm_latentrate' ) unit = 'K s-1' CASE ( 'pcm_bad', 'pcm_lad' ) unit = 'm2 m-3' CASE DEFAULT unit = 'illegal' END SELECT END SUBROUTINE pcm_check_data_output !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters routine for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_check_parameters IF ( ocean_mode ) THEN message_string = 'plant_canopy = .TRUE. is not allowed in the ocean' CALL message( 'pcm_check_parameters', 'PA0696', 1, 2, 0, 6, 0 ) ENDIF IF ( canopy_drag_coeff == 0.0_wp ) THEN message_string = 'plant_canopy = .TRUE. requires a non-zero drag ' // & 'coefficient & given value is canopy_drag_coeff = 0.0' CALL message( 'pcm_check_parameters', 'PA0041', 1, 2, 0, 6, 0 ) ENDIF IF ( ( alpha_lad /= 9999999.9_wp .AND. beta_lad == 9999999.9_wp ) .OR. & beta_lad /= 9999999.9_wp .AND. alpha_lad == 9999999.9_wp ) THEN message_string = 'using the beta function for the construction ' // & 'of the leaf area density profile requires ' // & 'both alpha_lad and beta_lad to be /= 9999999.9' CALL message( 'pcm_check_parameters', 'PA0118', 1, 2, 0, 6, 0 ) ENDIF IF ( calc_beta_lad_profile .AND. lai_beta == 0.0_wp ) THEN message_string = 'using the beta function for the construction ' // & 'of the leaf area density profile requires ' // & 'a non-zero lai_beta, but given value is ' // & 'lai_beta = 0.0' CALL message( 'pcm_check_parameters', 'PA0119', 1, 2, 0, 6, 0 ) ENDIF IF ( calc_beta_lad_profile .AND. lad_surface /= 0.0_wp ) THEN message_string = 'simultaneous setting of alpha_lad /= 9999999.9 '// & 'combined with beta_lad /= 9999999.9 ' // & 'and lad_surface /= 0.0 is not possible, ' // & 'use either vertical gradients or the beta ' // & 'function for the construction of the leaf area '// & 'density profile' CALL message( 'pcm_check_parameters', 'PA0120', 1, 2, 0, 6, 0 ) ENDIF IF ( bulk_cloud_model .AND. microphysics_seifert ) THEN message_string = 'plant_canopy = .TRUE. requires cloud_scheme /= seifert_beheng' CALL message( 'pcm_check_parameters', 'PA0360', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE pcm_check_parameters !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine for averaging 3D data !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_3d_data_averaging( mode, variable ) CHARACTER (LEN=*) :: mode !< CHARACTER (LEN=*) :: variable !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< IF ( mode == 'allocate' ) THEN SELECT CASE ( TRIM( variable ) ) CASE ( 'pcm_heatrate' ) IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF pcm_heatrate_av = 0.0_wp CASE ( 'pcm_latentrate' ) IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF pcm_latentrate_av = 0.0_wp CASE ( 'pcm_transpirationrate' ) IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF pcm_transpirationrate_av = 0.0_wp CASE DEFAULT CONTINUE END SELECT ELSE IF ( mode == 'sum' ) THEN SELECT CASE ( TRIM( variable ) ) CASE ( 'pcm_heatrate' ) IF ( ALLOCATED( pcm_heatrate_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) + & pcm_heating_rate(k,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_latentrate' ) IF ( ALLOCATED( pcm_latentrate_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) + & pcm_latent_rate(k,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_transpirationrate' ) IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) + & pcm_transpiration_rate(k,j,i) ENDDO ENDIF ENDDO ENDDO ENDIF CASE DEFAULT CONTINUE END SELECT ELSE IF ( mode == 'average' ) THEN SELECT CASE ( TRIM( variable ) ) CASE ( 'pcm_heatrate' ) IF ( ALLOCATED( pcm_heatrate_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_heatrate_av(k,j,i) = pcm_heatrate_av(k,j,i) & / REAL( average_count_3d, KIND=wp ) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_latentrate' ) IF ( ALLOCATED( pcm_latentrate_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_latentrate_av(k,j,i) = pcm_latentrate_av(k,j,i) & / REAL( average_count_3d, KIND=wp ) ENDDO ENDIF ENDDO ENDDO ENDIF CASE ( 'pcm_transpirationrate' ) IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng IF ( pch_index_ji(j,i) /= 0 ) THEN DO k = 0, pch_index_ji(j,i) pcm_transpirationrate_av(k,j,i) = pcm_transpirationrate_av(k,j,i) & / REAL( average_count_3d, KIND=wp ) ENDDO ENDIF ENDDO ENDDO ENDIF END SELECT ENDIF END SUBROUTINE pcm_3d_data_averaging !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine defining 3D output variables. !> Note, 3D plant-canopy output has it's own vertical output dimension, meaning that 3D output is !> relative to the model surface now rather than at the actual grid point where the plant canopy is !> located. !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) CHARACTER (LEN=*) :: variable !< treated variable INTEGER(iwp) :: av !< flag indicating instantaneous or averaged data output INTEGER(iwp) :: i !< grid index x-direction INTEGER(iwp) :: j !< grid index y-direction INTEGER(iwp) :: k !< grid index z-direction INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL :: found !< flag indicating if variable is found REAL(wp) :: fill_value !< fill value REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< data output array found = .TRUE. local_pf = REAL( fill_value, KIND = 4 ) SELECT CASE ( TRIM( variable ) ) ! !-- Note, to save memory arrays for heating are allocated from 0:pch_index. !-- Thus, output must be relative to these array indices. Further, check whether the output is !-- within the vertical output range, i.e. nzb_do:nzt_do, which is necessary as local_pf is only !-- allocated for this index space. Note, plant-canopy output has a separate vertical output !-- coordinate zlad, so that output is mapped down to the surface. CASE ( 'pcm_heatrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_heating_rate(k,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_heatrate_av(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pcm_latentrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_latent_rate(k,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_latentrate_av(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pcm_transpirationrate' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_transpiration_rate(k,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = pcm_transpirationrate_av(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pcm_lad' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = lad_s(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'pcm_bad' ) IF ( av == 0 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = MAX( 1, nzb_do ), MIN( pch_index_ji(j,i), nzt_do ) local_pf(i,j,k) = bad_s(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE pcm_data_output_3d !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine defining appropriate grid for netcdf variables. !> It is called from subroutine netcdf. !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) CHARACTER (LEN=*), INTENT(IN) :: var !< CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< LOGICAL, INTENT(OUT) :: found !< found = .TRUE. ! !-- Check for the grid. zpc is zu(nzb:nzb+pch_index) SELECT CASE ( TRIM( var ) ) CASE ( 'pcm_heatrate', 'pcm_bad', 'pcm_lad', 'pcm_transpirationrate', 'pcm_latentrate' ) grid_x = 'x' grid_y = 'y' grid_z = 'zpc' CASE DEFAULT found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' END SELECT END SUBROUTINE pcm_define_netcdf_grid !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Header output for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_header ( io ) CHARACTER (LEN=10) :: coor_chr !< CHARACTER (LEN=86) :: coordinates !< CHARACTER (LEN=86) :: gradients !< CHARACTER (LEN=86) :: leaf_area_density !< CHARACTER (LEN=86) :: slices !< INTEGER(iwp) :: i !< INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file INTEGER(iwp) :: k !< REAL(wp) :: canopy_height !< canopy height (in m) canopy_height = zw(pch_index) WRITE( io, 1 ) canopy_mode, canopy_height, pch_index, canopy_drag_coeff IF ( passive_scalar ) THEN WRITE( io, 2 ) leaf_scalar_exch_coeff, leaf_surface_conc ENDIF ! !-- Heat flux at the top of vegetation WRITE( io, 3 ) cthf ! !-- Leaf area density profile, calculated either from given vertical gradients or from beta !-- probability density function. IF ( .NOT. calc_beta_lad_profile ) THEN ! Building output strings, starting with surface value WRITE( leaf_area_density, '(F7.4)' ) lad_surface gradients = '------' slices = ' 0' coordinates = ' 0.0' DO i = 1, UBOUND( lad_vertical_gradient_level_ind, DIM=1 ) IF ( lad_vertical_gradient_level_ind(i) /= -9999 ) THEN WRITE( coor_chr, '(F7.2)' ) lad(lad_vertical_gradient_level_ind(i)) leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) WRITE( coor_chr, '(F7.2)' ) lad_vertical_gradient(i) gradients = TRIM( gradients ) // ' ' // TRIM( coor_chr ) WRITE( coor_chr, '(I7)' ) lad_vertical_gradient_level_ind(i) slices = TRIM( slices ) // ' ' // TRIM( coor_chr ) WRITE( coor_chr, '(F7.1)' ) lad_vertical_gradient_level(i) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) ELSE EXIT ENDIF ENDDO WRITE( io, 4 ) TRIM( coordinates ), TRIM( leaf_area_density ), TRIM( gradients ), & TRIM( slices ) ELSE WRITE( leaf_area_density, '(F7.4)' ) lad_surface coordinates = ' 0.0' DO k = 1, pch_index WRITE( coor_chr,'(F7.2)' ) lad(k) leaf_area_density = TRIM( leaf_area_density ) // ' ' // TRIM( coor_chr ) WRITE(coor_chr,'(F7.1)') zu(k) coordinates = TRIM( coordinates ) // ' ' // TRIM( coor_chr ) ENDDO WRITE( io, 5 ) TRIM( coordinates ), TRIM( leaf_area_density ), alpha_lad, beta_lad, lai_beta ENDIF 1 FORMAT (/ /' Vegetation canopy (drag) model:' / ' ------------------------------' // & ' Canopy mode: ', A / ' Canopy height: ', F6.2, 'm (',I4,' grid points)' / & ' Leaf drag coefficient: ', F6.2 /) 2 FORMAT (/ ' Scalar exchange coefficient: ',F6.2 / & ' Scalar concentration at leaf surfaces in kg/m**3: ', F6.2 /) 3 FORMAT ( ' Predefined constant heatflux at the top of the vegetation: ', F6.2, ' K m/s') 4 FORMAT (/ ' Characteristic levels of the leaf area density:' // & ' Height: ', A, ' m' / & ' Leaf area density: ', A, ' m**2/m**3' / & ' Gradient: ', A, ' m**2/m**4' / & ' Gridpoint: ', A ) 5 FORMAT (//' Characteristic levels of the leaf area density and coefficients:' // & ' Height: ', A, ' m' / & ' Leaf area density: ', A, ' m**2/m**3' / & ' Coefficient alpha: ',F6.2 / & ' Coefficient beta: ',F6.2 / & ' Leaf area index: ',F6.2,' m**2/m**2' /) END SUBROUTINE pcm_header !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_init USE exchange_horiz_mod, & ONLY: exchange_horiz INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: m !< running index LOGICAL :: lad_on_top = .FALSE. !< dummy flag to indicate that LAD is defined on a building roof LOGICAL :: bad_on_top = .FALSE. !< dummy flag to indicate that BAD is defined on a building roof REAL(wp) :: canopy_height !< canopy height for lad-profile construction REAL(wp) :: gradient !< gradient for lad-profile construction REAL(wp) :: int_bpdf !< vertical integral for lad-profile construction REAL(wp) :: lad_max !< maximum LAD value in the model domain, used to perform a check IF ( debug_output ) CALL debug_message( 'pcm_init', 'start' ) ! !-- Allocate one-dimensional arrays for the computation of the leaf area density (lad) profile ALLOCATE( lad(0:nz+1), pre_lad(0:nz+1) ) lad = 0.0_wp pre_lad = 0.0_wp ! !-- Set flag that indicates that the lad-profile shall be calculated by using a beta probability !-- density function IF ( alpha_lad /= 9999999.9_wp .AND. beta_lad /= 9999999.9_wp ) THEN calc_beta_lad_profile = .TRUE. ENDIF ! !-- Compute the profile of leaf area density used in the plant canopy model. The profile can !-- either be constructed from prescribed vertical gradients of the leaf area density or by using !-- a beta probability density function (see e.g. Markkanen et al., 2003: Boundary-Layer !-- Meteorology, 106, 437-459) IF ( .NOT. calc_beta_lad_profile ) THEN ! !-- Use vertical gradients for lad-profile construction i = 1 gradient = 0.0_wp lad(0) = lad_surface lad_vertical_gradient_level_ind(1) = 0 DO k = 1, pch_index IF ( i < 11 ) THEN IF ( lad_vertical_gradient_level(i) < zu(k) .AND. & lad_vertical_gradient_level(i) >= 0.0_wp ) THEN gradient = lad_vertical_gradient(i) lad_vertical_gradient_level_ind(i) = k - 1 i = i + 1 ENDIF ENDIF IF ( gradient /= 0.0_wp ) THEN IF ( k /= 1 ) THEN lad(k) = lad(k-1) + dzu(k) * gradient ELSE lad(k) = lad_surface + dzu(k) * gradient ENDIF ELSE lad(k) = lad(k-1) ENDIF ENDDO ! !-- In case of no given leaf area density gradients, choose a vanishing gradient. This !-- information is used for the HEADER and the RUN_CONTROL file. IF ( lad_vertical_gradient_level(1) == -9999999.9_wp ) THEN lad_vertical_gradient_level(1) = 0.0_wp ENDIF ELSE ! !-- Use beta function for lad-profile construction int_bpdf = 0.0_wp canopy_height = zw(pch_index) DO k = 0, pch_index int_bpdf = int_bpdf + & ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) * & ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & * ( ( zw(k+1)-zw(k) ) / canopy_height ) ) ENDDO ! !-- Preliminary lad profile (defined on w-grid) DO k = 0, pch_index pre_lad(k) = lai_beta * & ( ( ( zw(k) / canopy_height )**( alpha_lad-1.0_wp ) ) & * ( ( 1.0_wp - ( zw(k) / canopy_height ) )**( beta_lad-1.0_wp ) ) & / int_bpdf & ) / canopy_height ENDDO ! !-- Final lad profile (defined on scalar-grid level, since most prognostic quantities are !-- defined there, hence, less interpolation is required when calculating the canopy !-- tendencies) lad(0) = pre_lad(0) DO k = 1, pch_index lad(k) = 0.5 * ( pre_lad(k-1) + pre_lad(k) ) ENDDO ENDIF ! !-- Allocate 3D-array for the leaf-area density (lad_s) as well as for basal-area densitiy !-- (bad_s). Note, by default bad_s is zero. ALLOCATE( lad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( bad_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) bad_s = 0.0_wp ! !-- Initialization of the canopy coverage in the model domain: !-- Setting the parameter canopy_mode = 'homogeneous' initializes a canopy, which fully covers !-- the domain surface SELECT CASE ( TRIM( canopy_mode ) ) CASE ( 'homogeneous' ) DO i = nxlg, nxrg DO j = nysg, nyng lad_s(:,j,i) = lad(:) ENDDO ENDDO CASE ( 'read_from_file' ) ! !-- Read plant canopy IF ( input_pids_static ) THEN ! !-- Open the static input file #if defined( __netcdf ) CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), & pids_id ) CALL inquire_num_variables( pids_id, num_var_pids ) ! !-- Allocate memory to store variable names and read them ALLOCATE( vars_pids(1:num_var_pids) ) CALL inquire_variable_names( pids_id, vars_pids ) ! !-- Read leaf area density - resolved vegetation IF ( check_existence( vars_pids, 'lad' ) ) THEN leaf_area_density_f%from_file = .TRUE. CALL get_attribute( pids_id, char_fill, & leaf_area_density_f%fill, & .FALSE., 'lad' ) ! !-- Inquire number of vertical vegetation layer CALL get_dimension_length( pids_id, & leaf_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable for leaf-area density ALLOCATE( leaf_area_density_f%var & (0:leaf_area_density_f%nz-1,nys:nyn,nxl:nxr) ) CALL get_variable( pids_id, 'lad', leaf_area_density_f%var, nxl, nxr, nys, nyn, & 0, leaf_area_density_f%nz-1 ) ELSE leaf_area_density_f%from_file = .FALSE. ENDIF ! !-- Read basal area density - resolved vegetation IF ( check_existence( vars_pids, 'bad' ) ) THEN basal_area_density_f%from_file = .TRUE. CALL get_attribute( pids_id, char_fill, & basal_area_density_f%fill, & .FALSE., 'bad' ) ! !-- Inquire number of vertical vegetation layer CALL get_dimension_length( pids_id, & basal_area_density_f%nz, & 'zlad' ) ! !-- Allocate variable ALLOCATE( basal_area_density_f%var & (0:basal_area_density_f%nz-1,nys:nyn,nxl:nxr) ) CALL get_variable( pids_id, 'bad', basal_area_density_f%var, nxl, nxr, nys, nyn,& 0, basal_area_density_f%nz-1 ) ELSE basal_area_density_f%from_file = .FALSE. ENDIF ! !-- Read root area density - resolved vegetation IF ( check_existence( vars_pids, 'root_area_dens_r' ) ) THEN root_area_density_lad_f%from_file = .TRUE. CALL get_attribute( pids_id, char_fill, & root_area_density_lad_f%fill, & .FALSE., 'root_area_dens_r' ) ! !-- Inquire number of vertical soil layers CALL get_dimension_length( pids_id, & root_area_density_lad_f%nz, & 'zsoil' ) ! !-- Allocate variable ALLOCATE( root_area_density_lad_f%var & (0:root_area_density_lad_f%nz-1,nys:nyn,nxl:nxr) ) CALL get_variable( pids_id, 'root_area_dens_r', root_area_density_lad_f%var, & nxl, nxr, nys, nyn, 0, root_area_density_lad_f%nz-1 ) ELSE root_area_density_lad_f%from_file = .FALSE. ENDIF DEALLOCATE( vars_pids ) ! !-- Finally, close the input file and deallocate temporary array CALL close_input_file( pids_id ) #endif ENDIF ! !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, !-- else take LAD profiles from ASCII file. !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated !-- by leaf_area_density_f%nz. lad_s = 0.0_wp IF ( leaf_area_density_f%from_file ) THEN ! !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use !-- the global top of the canopy layer. pch_index = leaf_area_density_f%nz - 1 DO i = nxl, nxr DO j = nys, nyn DO k = 0, leaf_area_density_f%nz - 1 IF ( leaf_area_density_f%var(k,j,i) /= leaf_area_density_f%fill ) & lad_s(k,j,i) = leaf_area_density_f%var(k,j,i) ENDDO ! !-- Check if resolved vegetation is mapped onto buildings. !-- In general, this is allowed and also meaningful, e.g. when trees carry across !-- roofs. However, due to the topography filtering, new building grid points can !-- emerge at locations where also plant canopy is defined. As a result, plant !-- canopy is mapped on top of roofs, with siginficant impact on the downstream !-- flow field and the nearby surface radiation. In order to avoid that plant !-- canopy is mistakenly mapped onto building roofs, check for building grid !-- points (bit 6) that emerge from the filtering (bit 4) and set LAD to zero at !-- these artificially created building grid points. This case, an informative !-- message is given. IF ( ANY( lad_s(:,j,i) /= 0.0_wp ) .AND. & ANY( BTEST( topo_flags(:,j,i), 6 ) ) .AND. & ANY( BTEST( topo_flags(:,j,i), 4 ) ) ) THEN lad_s(:,j,i) = 0.0_wp lad_on_top = .TRUE. ENDIF ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) #endif IF ( lad_on_top ) THEN WRITE( message_string, * ) & 'Resolved plant-canopy is defined on top of an ' // & 'artificially created building grid point(s) '// & 'the filtering) - LAD/BAD profile is omitted at this / ' //& 'these grid point(s).' CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) ENDIF CALL exchange_horiz( lad_s, nbgp ) ! ! ASCII file !-- Initialize canopy parameters canopy_drag_coeff, leaf_scalar_exch_coeff, !-- leaf_surface_conc from file which contains complete 3D data (separate vertical profiles !-- for each location). ELSE CALL pcm_read_plant_canopy_3d ENDIF ! !-- Initialize LAD with data from file. If LAD is given in NetCDF file, use these values, !-- else take LAD profiles from ASCII file. !-- Please note, in NetCDF file LAD is only given up to the maximum canopy top, indicated !-- by basal_area_density_f%nz. bad_s = 0.0_wp IF ( basal_area_density_f%from_file ) THEN ! !-- Set also pch_index, used to be the upper bound of the vertical loops. Therefore, use !-- the global top of the canopy layer. pch_index = basal_area_density_f%nz - 1 DO i = nxl, nxr DO j = nys, nyn DO k = 0, basal_area_density_f%nz - 1 IF ( basal_area_density_f%var(k,j,i) /= basal_area_density_f%fill ) & bad_s(k,j,i) = basal_area_density_f%var(k,j,i) ENDDO ! !-- Check if resolved vegetation is mapped onto buildings. !-- Please see comment for leaf_area density IF ( ANY( bad_s(:,j,i) /= 0.0_wp ) .AND. & ANY( BTEST( topo_flags(:,j,i), 6 ) ) .AND. & ANY( BTEST( topo_flags(:,j,i), 4 ) ) ) THEN bad_s(:,j,i) = 0.0_wp bad_on_top = .TRUE. ENDIF ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, bad_on_top, 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr) #endif IF ( bad_on_top ) THEN WRITE( message_string, * ) & 'Resolved plant-canopy is defined on top of an ' // & 'artificially created building grid point(s) '// & 'the filtering) - LAD/BAD profile is omitted at this / ' //& 'these grid point(s).' CALL message( 'pcm_init', 'PA0313', 0, 0, 0, 6, 0 ) ENDIF CALL exchange_horiz( bad_s, nbgp ) ENDIF CASE DEFAULT ! !-- The DEFAULT case is reached either if the parameter canopy mode contains a wrong !-- character string or if the user has coded a special case in the user interface. !-- There, the subroutine user_init_plant_canopy checks which of these two conditions !-- applies. CALL user_init_plant_canopy END SELECT ! !-- Check that at least one grid point has an LAD /= 0, else this may cause errors in the !-- radiation model. lad_max = MAXVAL( lad_s ) #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, lad_max, 1, MPI_REAL, MPI_MAX, comm2d, ierr) #endif IF ( lad_max <= 0.0_wp ) THEN message_string = 'Plant-canopy model is switched-on but no ' // & 'plant canopy is present in the model domain.' CALL message( 'pcm_init', 'PA0685', 1, 2, 0, 6, 0 ) ENDIF ! !-- Initialize 2D index array indicating canopy top index. ALLOCATE( pch_index_ji(nysg:nyng,nxlg:nxrg) ) pch_index_ji = 0 DO i = nxlg, nxrg DO j = nysg, nyng DO k = 0, pch_index IF ( lad_s(k,j,i) /= 0.0_wp .OR. bad_s(k,j,i) /= 0.0_wp ) pch_index_ji(j,i) = k ENDDO ! !-- Check whether topography and local vegetation on top exceed height of the model domain. IF ( topo_top_ind(j,i,0) + pch_index_ji(j,i) >= nzt + 1 ) THEN message_string = 'Local vegetation height on top of ' // & 'topography exceeds height of model domain.' CALL message( 'pcm_init', 'PA0674', 2, 2, myid, 6, 0 ) ENDIF ENDDO ENDDO ! !-- Calculate global pch_index value (index of top of plant canopy from ground) pch_index = MAXVAL( pch_index_ji ) ! !-- Exchange pch_index from all processors #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, pch_index, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr) #endif ! !-- Allocation of arrays pcm_heating_rate, pcm_transpiration_rate and pcm_latent_rate ALLOCATE( pcm_heating_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_heating_rate = 0.0_wp IF ( humidity ) THEN ALLOCATE( pcm_transpiration_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_transpiration_rate = 0.0_wp ALLOCATE( pcm_latent_rate(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_latent_rate = 0.0_wp ENDIF ! !-- Initialization of the canopy heat source distribution due to heating of the canopy layers by !-- incoming solar radiation, in case that a non-zero !-- value is set for the canopy top heat flux (cthf), which equals the available net radiation at !-- canopy top. !-- The heat source distribution is calculated by a decaying exponential function of the downward !-- cumulative leaf area index (cum_lai_hf), assuming that the foliage inside the plant canopy is !-- heated by solar radiation penetrating the canopy layers according to the distribution of net !-- radiation as suggested by Brown & Covey (1966; Agric. Meteorol. 3, 73–96). This approach has !-- been applied e.g. by Shaw & Schumann (1992; Bound.-Layer Meteorol. 61, 47–64). !-- When using the radiation_interactions, canopy heating (pcm_heating_rate) and plant canopy !-- transpiration (pcm_transpiration_rate, pcm_latent_rate) are calculated in the RTM after the !-- calculation of radiation. IF ( cthf /= 0.0_wp ) THEN ALLOCATE( cum_lai_hf(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- Piecewise calculation of the cumulative leaf area index by vertical integration of the !-- leaf area density cum_lai_hf(:,:,:) = 0.0_wp DO i = nxlg, nxrg DO j = nysg, nyng DO k = pch_index_ji(j,i)-1, 0, -1 IF ( k == pch_index_ji(j,i)-1 ) THEN cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & ( 0.5_wp * lad_s(k+1,j,i) * & ( zw(k+1) - zu(k+1) ) ) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & lad_s(k,j,i) ) + & lad_s(k+1,j,i) ) * & ( zu(k+1) - zw(k) ) ) ELSE cum_lai_hf(k,j,i) = cum_lai_hf(k+1,j,i) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+2,j,i) + & lad_s(k+1,j,i) ) + & lad_s(k+1,j,i) ) * & ( zw(k+1) - zu(k+1) ) ) + & ( 0.5_wp * ( 0.5_wp * ( lad_s(k+1,j,i) + & lad_s(k,j,i) ) + & lad_s(k+1,j,i) ) * & ( zu(k+1) - zw(k) ) ) ENDIF ENDDO ENDDO ENDDO ! !-- In areas with canopy the surface value of the canopy heat flux distribution overrides the !-- surface heat flux (shf), !-- Start with default surface type DO m = 1, surf_def_h(0)%ns i = surf_def_h(0)%i(m) j = surf_def_h(0)%j(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_def_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! !-- Natural surfaces DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_lsm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! !-- Urban surfaces DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) & surf_usm_h(0)%shf(m) = cthf * EXP( -ext_coef * cum_lai_hf(0,j,i) ) ENDDO ! ! !-- Calculation of the heating rate (K/s) within the different layers of the plant canopy. !-- Calculation is only necessary in areas covered with canopy. !-- Within the different canopy layers the plant-canopy heating rate (pcm_heating_rate) is !-- calculated as the vertical divergence of the canopy heat fluxes at the top and bottom of !-- the respective layer. DO i = nxlg, nxrg DO j = nysg, nyng DO k = 1, pch_index_ji(j,i) IF ( cum_lai_hf(0,j,i) /= 0.0_wp ) THEN pcm_heating_rate(k,j,i) = cthf * & ( EXP( -ext_coef * cum_lai_hf(k,j,i) ) - & EXP( -ext_coef * cum_lai_hf(k-1,j,i) ) ) / dzw(k) ENDIF ENDDO ENDDO ENDDO ENDIF IF ( debug_output ) CALL debug_message( 'pcm_init', 'end' ) END SUBROUTINE pcm_init !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Parin for &plant_canopy_parameters for plant canopy model !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_parin CHARACTER(LEN=100) :: line !< dummy string that contains the current line of the parameter file INTEGER(iwp) :: io_status !< status after reading the namelist file LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module !< although the respective module namelist appears in !< the namelist file NAMELIST /plant_canopy_parameters/ alpha_lad, & beta_lad, & canopy_drag_coeff, & canopy_mode, & cthf, & lad_surface, & lad_type_coef, & lad_vertical_gradient, & lad_vertical_gradient_level, & lai_beta, & leaf_scalar_exch_coeff, & leaf_surface_conc, & pch_index, & plant_canopy_transpiration, & switch_off_module ! !-- Move to the beginning of the namelist file and try to find and read the user-defined namelist !-- plant_canopy_parameters. REWIND( 11 ) READ( 11, plant_canopy_parameters, IOSTAT=io_status ) ! !-- Action depending on the READ status IF ( io_status == 0 ) THEN ! !-- plant_canopy_parameters namelist was found and read correctly. Set flag that indicates that !-- the plant-canopy model is switched on. IF ( .NOT. switch_off_module ) plant_canopy = .TRUE. ELSEIF ( io_status > 0 ) THEN ! !-- plant_canopy_parameters namelist was found but contained errors. Print an error message !-- including the line that caused the problem. BACKSPACE( 11 ) READ( 11 , '(A)' ) line CALL parin_fail_message( 'plant_canopy_parameters', line ) ENDIF END SUBROUTINE pcm_parin !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ ! !> Loads 3D plant canopy data from file. File format is as follows: !> !> num_levels !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> dtype,x,y,pctype,value(nzb),value(nzb+1), ... ,value(nzb+num_levels-1) !> ... !> !> i.e. first line determines number of levels and further lines represent plant canopy data, one !> line per column and variable. In each data line, dtype represents variable to be set: !> !> dtype=1: leaf area density (lad_s) !> dtype=2....n: some additional plant canopy input data quantity !> !> Zeros are added automatically above num_levels until top of domain. Any non-specified (x,y) !> columns have zero values as default. !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_read_plant_canopy_3d USE exchange_horiz_mod, & ONLY: exchange_horiz INTEGER(iwp) :: dtype !< type of input data (1=lad) INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: kk !< INTEGER(iwp) :: nzp !< number of vertical layers of plant canopy INTEGER(iwp) :: nzpltop !< INTEGER(iwp) :: nzpl !< INTEGER(iwp) :: pctype !< type of plant canopy (deciduous,non-deciduous,...) REAL(wp), DIMENSION(:), ALLOCATABLE :: col !< vertical column of input data ! !-- Initialize lad_s array lad_s = 0.0_wp ! !-- Open and read plant canopy input data OPEN( 152, FILE='PLANT_CANOPY_DATA_3D' // TRIM( coupling_char ), ACCESS='SEQUENTIAL', & ACTION='READ', STATUS='OLD', FORM='FORMATTED', ERR=515 ) READ( 152, *, ERR=516, END=517 ) nzp !< read first line = number of vertical layers nzpltop = MIN(nzt+1, nzb+nzp-1) nzpl = nzpltop - nzb + 1 !< no. of layers to assign ALLOCATE( col(0:nzp-1) ) DO READ( 152, *, ERR=516, END=517 ) dtype, i, j, pctype, col(:) IF ( i < nxlg .OR. i > nxrg .OR. j < nysg .OR. j > nyng ) CYCLE SELECT CASE ( dtype ) CASE( 1 ) !< leaf area density ! !-- This is just the pure canopy layer assumed to be grounded to a flat domain surface. !-- At locations where plant canopy sits on top of any kind of topography, the vertical !-- plant column must be "lifted", which is done in SUBROUTINE pcm_tendency. IF ( pctype < 0 .OR. pctype > 10 ) THEN !< incorrect plant canopy type WRITE( message_string, * ) 'Incorrect type of plant canopy. ' // & 'Allowed values 0 <= pctype <= 10, ' // & 'but pctype is ', pctype CALL message( 'pcm_read_plant_canopy_3d', 'PA0349', 1, 2, 0, 6, 0 ) ENDIF kk = topo_top_ind(j,i,0) lad_s(nzb:nzpltop-kk, j, i) = col(kk:nzpl-1)*lad_type_coef(pctype) CASE DEFAULT WRITE( message_string, '(a,i2,a)' ) & 'Unknown record type in file PLANT_CANOPY_DATA_3D: "', dtype, '"' CALL message( 'pcm_read_plant_canopy_3d', 'PA0530', 1, 2, 0, 6, 0 ) END SELECT ENDDO 515 message_string = 'error opening file PLANT_CANOPY_DATA_3D' CALL message( 'pcm_read_plant_canopy_3d', 'PA0531', 1, 2, 0, 6, 0 ) 516 message_string = 'error reading file PLANT_CANOPY_DATA_3D' CALL message( 'pcm_read_plant_canopy_3d', 'PA0532', 1, 2, 0, 6, 0 ) 517 CLOSE( 152 ) DEALLOCATE( col ) CALL exchange_horiz( lad_s, nbgp ) END SUBROUTINE pcm_read_plant_canopy_3d !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Read module-specific global restart data (Fortran binary format). !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_rrd_global_ftn( found ) LOGICAL, INTENT(OUT) :: found found = .TRUE. SELECT CASE ( restart_string(1:length) ) CASE ( 'pch_index' ) READ( 13 ) pch_index CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE pcm_rrd_global_ftn !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Read module-specific global restart data (MPI-IO). !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_rrd_global_mpi CALL rrd_mpi_io( 'pch_index', pch_index ) END SUBROUTINE pcm_rrd_global_mpi !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Read module-specific local restart data arrays (Fortran binary format). !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_rrd_local_ftn( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, & nyn_on_file, nysf, nysc, nys_on_file, found ) INTEGER(iwp) :: k !< INTEGER(iwp) :: nxl_on_file !< INTEGER(iwp) :: nxlc !< INTEGER(iwp) :: nxlf !< INTEGER(iwp) :: nxr_on_file !< INTEGER(iwp) :: nxrc !< INTEGER(iwp) :: nxrf !< INTEGER(iwp) :: nyn_on_file !< INTEGER(iwp) :: nync !< INTEGER(iwp) :: nynf !< INTEGER(iwp) :: nys_on_file !< INTEGER(iwp) :: nysc !< INTEGER(iwp) :: nysf !< LOGICAL, INTENT(OUT) :: found REAL(wp), DIMENSION( 0:pch_index, & nys_on_file-nbgp:nyn_on_file+nbgp, & nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d2 !< temporary 3D array for entire vertical !< extension of canopy layer found = .TRUE. SELECT CASE ( restart_string(1:length) ) CASE ( 'pcm_heatrate_av' ) IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN ALLOCATE( pcm_heatrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_heatrate_av = 0.0_wp ENDIF IF ( k == 1 ) READ( 13 ) tmp_3d2 pcm_heatrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'pcm_latentrate_av' ) IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN ALLOCATE( pcm_latentrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_latentrate_av = 0.0_wp ENDIF IF ( k == 1 ) READ( 13 ) tmp_3d2 pcm_latentrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE ( 'pcm_transpirationrate_av' ) IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN ALLOCATE( pcm_transpirationrate_av(0:pch_index,nysg:nyng,nxlg:nxrg) ) pcm_transpirationrate_av = 0.0_wp ENDIF IF ( k == 1 ) READ( 13 ) tmp_3d2 pcm_transpirationrate_av(0:pch_index,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & tmp_3d2(0:pch_index,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE pcm_rrd_local_ftn !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Read module-specific local restart data arrays (MPI-IO). !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_rrd_local_mpi IMPLICIT NONE LOGICAL :: array_found !< REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with !< non-standard vertical index bounds ! !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored after reading. CALL rd_mpi_io_check_array( 'pcm_heatrate_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( pcm_heatrate_av ) ) THEN ALLOCATE( pcm_heatrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) pcm_heatrate_av = tmp_3d(nzb:pch_index,:,:) DEALLOCATE( tmp_3d ) ENDIF CALL rd_mpi_io_check_array( 'pcm_latentrate_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( pcm_latentrate_av ) ) THEN ALLOCATE( pcm_latentrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) pcm_latentrate_av = tmp_3d(nzb:pch_index,:,:) DEALLOCATE( tmp_3d ) ENDIF CALL rd_mpi_io_check_array( 'pcm_transpirationrate_av' , found = array_found ) IF ( array_found ) THEN IF ( .NOT. ALLOCATED( pcm_transpirationrate_av ) ) THEN ALLOCATE( pcm_transpirationrate_av(nzb:pch_index,nysg:nyng,nxlg:nxrg) ) ENDIF ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL rrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) pcm_transpirationrate_av = tmp_3d(nzb:pch_index,:,:) DEALLOCATE( tmp_3d ) ENDIF END SUBROUTINE pcm_rrd_local_mpi !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and !> scalar quantities. !> !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as !> initialized in subroutine pcm_init. !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. !> !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is !> physically impossible that the canopy drag alone can locally change the sign of a velocity !> component. This limitation is realized by calculating preliminary tendencies and velocities. It !> is subsequently checked if the preliminary new velocity has a different sign than the current !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to !> zero by the canopy drag. !> !> !> Call for all grid points !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_tendency( component ) INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: kk !< running index for flat lad arrays LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge REAL(wp) :: bad_local !< local bad value REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) REAL(wp) :: lad_local !< local lad value REAL(wp) :: pre_tend !< preliminary tendency REAL(wp) :: pre_u !< preliminary u-value REAL(wp) :: pre_v !< preliminary v-value REAL(wp) :: pre_w !< preliminary w-value ddt_3d = 1.0_wp / dt_3d ! !-- Compute drag for the three velocity components and the SGS-TKE: SELECT CASE ( component ) ! !-- u-component CASE ( 1 ) DO i = nxlu, nxr DO j = nys, nyn ! !-- Set control flags indicating east- and westward-orientated building edges. Note, !-- building_egde_w is set from the perspective of the potential rooftop grid point, !-- while building_edge_e is set from the perspective of the non-building grid point. building_edge_w = ANY( BTEST( topo_flags(:,j,i), 6 ) ) & .AND. .NOT. ANY( BTEST( topo_flags(:,j,i-1), 6 ) ) building_edge_e = ANY( BTEST( topo_flags(:,j,i-1), 6 ) ) & .AND. .NOT. ANY( BTEST( topo_flags(:,j,i), 6 ) ) ! !-- Determine topography-top index on u-grid DO k = topo_top_ind(j,i,1)+1, topo_top_ind(j,i,1) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from !-- the surrounding lad_s, because this would yield smaller lad at the canopy !-- boundaries than inside of the canopy. !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the !-- u-grid equals lad_s(k,j,i), which is considered in the next if-statement. !-- Note, at left-sided building edges this is not applied, here the LAD equals !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped !-- on top of a roof where (usually) no LAD is defined. The same is also valid for !-- bad_s. lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp & .AND. .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) bad_local = bad_s(kk,j,i) IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp & .AND. .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) ! !-- In order to avoid that LAD is mistakenly considered at right-sided building !-- edges (here the topography-top index for the u-component at index j,i is still !-- on the building while the topography top for the scalar isn't), LAD is taken !-- from grid point (j,i-1). The same is also valid for bad_s. IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp & .AND. building_edge_e ) lad_local = lad_s(kk,j,i-1) IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp & .AND. building_edge_e ) bad_local = bad_s(kk,j,i-1) pre_tend = 0.0_wp pre_u = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( lad_local + bad_local ) * & SQRT( u(k,j,i)**2 + & ( 0.25_wp * ( v(k,j,i-1) + & v(k,j,i) + & v(k,j+1,i) + & v(k,j+1,i-1) ) & )**2 + & ( 0.25_wp * ( w(k-1,j,i-1) + & w(k-1,j,i) + & w(k,j,i-1) + & w(k,j,i) ) & )**2 & ) * & u(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_u = u(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN pre_tend = - u(k,j,i) * ddt_3d ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- v-component CASE ( 2 ) DO i = nxl, nxr DO j = nysv, nyn ! !-- Set control flags indicating north- and southward-orientated building edges. !-- Note, building_egde_s is set from the perspective of the potential rooftop grid !-- point, while building_edge_n is set from the perspective of the non-building grid !-- point. building_edge_s = ANY( BTEST( topo_flags(:,j,i), 6 ) ) & .AND. .NOT. ANY( BTEST( topo_flags(:,j-1,i), 6 ) ) building_edge_n = ANY( BTEST( topo_flags(:,j-1,i), 6 ) ) & .AND. .NOT. ANY( BTEST( topo_flags(:,j,i), 6 ) ) ! !-- Determine topography-top index on v-grid DO k = topo_top_ind(j,i,2)+1, topo_top_ind(j,i,2) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid !-- at index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from !-- the surrounding lad_s, because this would yield smaller lad at the canopy !-- boundaries than inside of the canopy. !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the !-- v-grid equals lad_s(k,j,i), which is considered in the next if-statement. !-- Note, at left-sided building edges this is not applied, here the LAD equals !-- the LAD at grid point (k,j,i), in order to avoid that LAD is mistakenly mapped !-- on top of a roof where (usually) no LAD is defined. !-- The same is also valid for bad_s. lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp & .AND. .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) bad_local = bad_s(kk,j,i) IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp & .AND. .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) ! !-- In order to avoid that LAD is mistakenly considered at right-sided building !-- edges (here the topography-top index for the u-component at index j,i is still !-- on the building while the topography top for the scalar isn't), LAD is taken !-- from grid point (j,i-1). The same is also valid for bad_s. IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp & .AND. building_edge_n ) lad_local = lad_s(kk,j-1,i) IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp & .AND. building_edge_n ) bad_local = bad_s(kk,j-1,i) pre_tend = 0.0_wp pre_v = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( lad_local + bad_local ) * & SQRT( ( 0.25_wp * ( u(k,j-1,i) + & u(k,j-1,i+1) + & u(k,j,i) + & u(k,j,i+1) ) & )**2 + & v(k,j,i)**2 + & ( 0.25_wp * ( w(k-1,j-1,i) + & w(k-1,j,i) + & w(k,j-1,i) + & w(k,j,i) ) & )**2 & ) * & v(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_v = v(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, and in case the !-- signs are different, limit the tendency. IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN pre_tend = - v(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- w-component CASE ( 3 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on w-grid DO k = topo_top_ind(j,i,3)+1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat pre_tend = 0.0_wp pre_w = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & SQRT( ( 0.25_wp * ( u(k,j,i) + & u(k,j,i+1) + & u(k+1,j,i) + & u(k+1,j,i+1) ) & )**2 + & ( 0.25_wp * ( v(k,j,i) + & v(k,j+1,i) + & v(k+1,j,i) + & v(k+1,j+1,i) ) & )**2 + & w(k,j,i)**2 & ) * & w(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_w = w(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, and in case the !-- signs are different, limit the tendency IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN pre_tend = - w(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ENDDO ENDDO ! !-- potential temperature CASE ( 4 ) IF ( humidity ) THEN DO i = nxl, nxr DO j = nys, nyn !-- Determine topography-top index on scalar-grid DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn !-- Determine topography-top index on scalar-grid DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) ENDDO ENDDO ENDDO ENDIF ! !-- humidity CASE ( 5 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat IF ( .NOT. plant_canopy_transpiration ) THEN ! pcm_transpiration_rate is calculated in radiation model ! in case of plant_canopy_transpiration = .T. ! to include also the dependecy to the radiation ! in the plant canopy box pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & * lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( q(k,j,i) - leaf_surface_conc ) ENDIF tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) ENDDO ENDDO ENDDO ! !-- sgs-tke CASE ( 6 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k,j,i) + & w(k+1,j,i) ) & )**2 & ) * & e(k,j,i) ENDDO ENDDO ENDDO ! !-- scalar concentration CASE ( 7 ) DO i = nxl, nxr DO j = nys, nyn ! !-- Determine topography-top index on scalar-grid DO k = topo_top_ind(j,i,0)+1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( s(k,j,i) - leaf_surface_conc ) ENDDO ENDDO ENDDO CASE DEFAULT WRITE( message_string, * ) 'wrong component: ', component CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE pcm_tendency !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the tendency terms, accounting for the effect of the plant canopy on momentum and !> scalar quantities. !> !> The canopy is located where the leaf area density lad_s(k,j,i) > 0.0 (defined on scalar grid), as !> initialized in subroutine pcm_init. !> The lad on the w-grid is vertically interpolated from the surrounding lad_s. The upper boundary !> of the canopy is defined on the w-grid at k = pch_index. Here, the lad is zero. !> !> The canopy drag must be limited (previously accounted for by calculation of a limiting canopy !> timestep for the determination of the maximum LES timestep in subroutine timestep), since it is !> physically impossible that the canopy drag alone can locally change the sign of a velocity !> component. This limitation is realized by calculating preliminary tendencies and velocities. It !> is subsequently checked if the preliminary new velocity has a different sign than the current !> velocity. If so, the tendency is limited in a way that the velocity can at maximum be reduced to !> zero by the canopy drag. !> !> !> Call for grid point i,j !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_tendency_ij( i, j, component ) INTEGER(iwp) :: component !< prognostic variable (u,v,w,pt,q,e) INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: kk !< running index for flat lad arrays LOGICAL :: building_edge_e !< control flag indicating an eastward-facing building edge LOGICAL :: building_edge_n !< control flag indicating a north-facing building edge LOGICAL :: building_edge_s !< control flag indicating a south-facing building edge LOGICAL :: building_edge_w !< control flag indicating a westward-facing building edge REAL(wp) :: bad_local !< local lad value REAL(wp) :: ddt_3d !< inverse of the LES timestep (dt_3d) REAL(wp) :: lad_local !< local lad value REAL(wp) :: pre_tend !< preliminary tendency REAL(wp) :: pre_u !< preliminary u-value REAL(wp) :: pre_v !< preliminary v-value REAL(wp) :: pre_w !< preliminary w-value ddt_3d = 1.0_wp / dt_3d ! !-- Compute drag for the three velocity components and the SGS-TKE SELECT CASE ( component ) ! !-- u-component CASE ( 1 ) ! !-- Set control flags indicating east- and westward-orientated building edges. Note, !-- building_egde_w is set from the perspective of the potential rooftop grid point, while !-- building_edge_e is set from the perspective of the non-building grid point. building_edge_w = ANY( BTEST( topo_flags(:,j,i), 6 ) ) .AND. & .NOT. ANY( BTEST( topo_flags(:,j,i-1), 6 ) ) building_edge_e = ANY( BTEST( topo_flags(:,j,i-1), 6 ) ) .AND. & .NOT. ANY( BTEST( topo_flags(:,j,i), 6 ) ) ! !-- Determine topography-top index on u-grid DO k = topo_top_ind(j,i,1) + 1, topo_top_ind(j,i,1) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,1) !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, the lad on the u-grid at !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries !-- than inside of the canopy. !-- For the same reason, the lad at the rightmost(i+1)canopy boundary on the u-grid !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at !-- left-sided building edges this is not applied, here the LAD is equals the LAD at !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof !-- where (usually) is no LAD is defined. !-- The same is also valid for bad_s. lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j,i-1) > 0.0_wp .AND. & .NOT. building_edge_w ) lad_local = lad_s(kk,j,i-1) bad_local = bad_s(kk,j,i) IF ( bad_local == 0.0_wp .AND. bad_s(kk,j,i-1) > 0.0_wp .AND. & .NOT. building_edge_w ) bad_local = bad_s(kk,j,i-1) ! !-- In order to avoid that LAD is mistakenly considered at right-sided building edges !-- (here the topography-top index for the u-component at index j,i is still on the !-- building while the topography top for the scalar isn't), LAD is taken from grid !-- point (j,i-1). The same is also valid for bad_s. IF ( lad_local > 0.0_wp .AND. lad_s(kk,j,i-1) == 0.0_wp .AND. & building_edge_e ) lad_local = lad_s(kk,j,i-1) IF ( bad_local > 0.0_wp .AND. bad_s(kk,j,i-1) == 0.0_wp .AND. & building_edge_e ) bad_local = bad_s(kk,j,i-1) pre_tend = 0.0_wp pre_u = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( lad_local + bad_local ) * & SQRT( u(k,j,i)**2 + & ( 0.25_wp * ( v(k,j,i-1) + & v(k,j,i) + & v(k,j+1,i) + & v(k,j+1,i-1) ) & )**2 + & ( 0.25_wp * ( w(k-1,j,i-1) + & w(k-1,j,i) + & w(k,j,i-1) + & w(k,j,i) ) & )**2 & ) * & u(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_u = u(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are !-- different, limit the tendency. IF ( SIGN( pre_u,u(k,j,i) ) /= pre_u ) THEN pre_tend = - u(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- v-component CASE ( 2 ) ! !-- Set control flags indicating north- and southward-orientated building edges. Note, !-- building_egde_s is set from the perspective of the potential rooftop grid point, while !-- building_edge_n is set from the perspective of the non-building grid point. building_edge_s = ANY( BTEST( topo_flags(:,j,i), 6 ) ) .AND. & .NOT. ANY( BTEST( topo_flags(:,j-1,i), 6 ) ) building_edge_n = ANY( BTEST( topo_flags(:,j-1,i), 6 ) ) .AND. & .NOT. ANY( BTEST( topo_flags(:,j,i), 6 ) ) ! !-- Determine topography-top index on v-grid DO k = topo_top_ind(j,i,2) + 1, topo_top_ind(j,i,2) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,2) !- lad arrays are defined flat ! !-- In order to create sharp boundaries of the plant canopy, the lad on the v-grid at !-- index (k,j,i) is equal to lad_s(k,j,i), rather than being interpolated from the !-- surrounding lad_s, because this would yield smaller lad at the canopy boundaries !-- than inside of the canopy. !-- For the same reason, the lad at the northmost (j+1) canopy boundary on the v-grid !-- equals lad_s(k,j,i), which is considered in the next if-statement. Note, at !-- left-sided building edges this is not applied, here the LAD is equals the LAD at !-- grid point (k,j,i), in order to avoid that LAD is mistakenly mapped on top of a roof !-- where (usually) is no LAD is defined. !-- The same is also valid for bad_s. lad_local = lad_s(kk,j,i) IF ( lad_local == 0.0_wp .AND. lad_s(kk,j-1,i) > 0.0_wp .AND. & .NOT. building_edge_s ) lad_local = lad_s(kk,j-1,i) bad_local = bad_s(kk,j,i) IF ( bad_local == 0.0_wp .AND. bad_s(kk,j-1,i) > 0.0_wp .AND. & .NOT. building_edge_s ) bad_local = bad_s(kk,j-1,i) ! !-- In order to avoid that LAD is mistakenly considered at right-sided building edges !-- (here the topography-top index for the u-component at index j,i is still on the !-- building while the topography top for the scalar isn't), LAD is taken from grid !-- point (j,i-1). The same is also valid for bad_s. IF ( lad_local > 0.0_wp .AND. lad_s(kk,j-1,i) == 0.0_wp .AND. & building_edge_n ) lad_local = lad_s(kk,j-1,i) IF ( bad_local > 0.0_wp .AND. bad_s(kk,j-1,i) == 0.0_wp .AND. & building_edge_n ) bad_local = bad_s(kk,j-1,i) pre_tend = 0.0_wp pre_v = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( lad_local + bad_local ) * & SQRT( ( 0.25_wp * ( u(k,j-1,i) + & u(k,j-1,i+1) + & u(k,j,i) + & u(k,j,i+1) ) & )**2 + & v(k,j,i)**2 + & ( 0.25_wp * ( w(k-1,j-1,i) + & w(k-1,j,i) + & w(k,j-1,i) + & w(k,j,i) ) & )**2 & ) * & v(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_v = v(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, !-- and in case the signs are different, limit the tendency IF ( SIGN( pre_v,v(k,j,i) ) /= pre_v ) THEN pre_tend = - v(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- w-component CASE ( 3 ) ! !-- Determine topography-top index on w-grid DO k = topo_top_ind(j,i,3) + 1, topo_top_ind(j,i,3) + pch_index_ji(j,i) - 1 kk = k - topo_top_ind(j,i,3) !- lad arrays are defined flat pre_tend = 0.0_wp pre_w = 0.0_wp ! !-- Calculate preliminary value (pre_tend) of the tendency pre_tend = - canopy_drag_coeff * & ( 0.5_wp * ( lad_s(kk+1,j,i) + lad_s(kk,j,i) ) + & 0.5_wp * ( bad_s(kk+1,j,i) + bad_s(kk,j,i) ) ) * & SQRT( ( 0.25_wp * ( u(k,j,i) + & u(k,j,i+1) + & u(k+1,j,i) + & u(k+1,j,i+1) ) & )**2 + & ( 0.25_wp * ( v(k,j,i) + & v(k,j+1,i) + & v(k+1,j,i) + & v(k+1,j+1,i) ) & )**2 + & w(k,j,i)**2 & ) * & w(k,j,i) ! !-- Calculate preliminary new velocity, based on pre_tend pre_w = w(k,j,i) + dt_3d * pre_tend ! !-- Compare sign of old velocity and new preliminary velocity, and in case the signs are !-- different, limit the tendency. IF ( SIGN( pre_w,w(k,j,i) ) /= pre_w ) THEN pre_tend = - w(k,j,i) * ddt_3d ELSE pre_tend = pre_tend ENDIF ! !-- Calculate final tendency tend(k,j,i) = tend(k,j,i) + pre_tend ENDDO ! !-- potential temperature CASE ( 4 ) ! !-- Determine topography-top index on scalar grid IF ( humidity ) THEN DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) - pcm_latent_rate(kk,j,i) ENDDO ELSE DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat tend(k,j,i) = tend(k,j,i) + pcm_heating_rate(kk,j,i) ENDDO ENDIF ! !-- humidity CASE ( 5 ) ! !-- Determine topography-top index on scalar grid DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) !- lad arrays are defined flat IF ( .NOT. plant_canopy_transpiration ) THEN ! pcm_transpiration_rate is calculated in radiation model ! in case of plant_canopy_transpiration = .T. ! to include also the dependecy to the radiation ! in the plant canopy box pcm_transpiration_rate(kk,j,i) = - leaf_scalar_exch_coeff & * lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( q(k,j,i) - leaf_surface_conc ) ENDIF tend(k,j,i) = tend(k,j,i) + pcm_transpiration_rate(kk,j,i) ENDDO ! !-- sgs-tke CASE ( 6 ) ! !-- Determine topography-top index on scalar grid DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) tend(k,j,i) = tend(k,j,i) - 2.0_wp * canopy_drag_coeff * & ( lad_s(kk,j,i) + bad_s(kk,j,i) ) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k,j,i) + & w(k+1,j,i) ) & )**2 & ) * & e(k,j,i) ENDDO ! !-- scalar concentration CASE ( 7 ) ! !-- Determine topography-top index on scalar grid DO k = topo_top_ind(j,i,0) + 1, topo_top_ind(j,i,0) + pch_index_ji(j,i) kk = k - topo_top_ind(j,i,0) tend(k,j,i) = tend(k,j,i) - leaf_scalar_exch_coeff * & lad_s(kk,j,i) * & SQRT( ( 0.5_wp * ( u(k,j,i) + & u(k,j,i+1) ) & )**2 + & ( 0.5_wp * ( v(k,j,i) + & v(k,j+1,i) ) & )**2 + & ( 0.5_wp * ( w(k-1,j,i) + & w(k,j,i) ) & )**2 & ) * & ( s(k,j,i) - leaf_surface_conc ) ENDDO CASE DEFAULT WRITE( message_string, * ) 'wrong component: ', component CALL message( 'pcm_tendency', 'PA0279', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE pcm_tendency_ij !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine writes global restart data !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_wrd_global IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN CALL wrd_write_string( 'pch_index' ) WRITE( 14 ) pch_index ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN CALL wrd_mpi_io( 'pch_index', pch_index ) ENDIF END SUBROUTINE pcm_wrd_global !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine writes local (subdomain) restart data !--------------------------------------------------------------------------------------------------! SUBROUTINE pcm_wrd_local REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: tmp_3d !< temporary array to store pcm data with !< non-standard vertical index bounds IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN IF ( ALLOCATED( pcm_heatrate_av ) ) THEN CALL wrd_write_string( 'pcm_heatrate_av' ) WRITE( 14 ) pcm_heatrate_av ENDIF IF ( ALLOCATED( pcm_latentrate_av ) ) THEN CALL wrd_write_string( 'pcm_latentrate_av' ) WRITE( 14 ) pcm_latentrate_av ENDIF IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN CALL wrd_write_string( 'pcm_transpirationrate_av' ) WRITE( 14 ) pcm_transpirationrate_av ENDIF ELSE IF ( restart_data_format_output(1:3) == 'mpi' ) THEN ! !-- Plant canopy arrays have non standard reduced vertical index bounds. They are stored with !-- full vertical bounds (bzb:nzt+1) in the restart file and must be re-stored before writing. IF ( ALLOCATED( pcm_heatrate_av ) ) THEN ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) tmp_3d(nzb:pch_index,:,:) = pcm_heatrate_av tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp CALL wrd_mpi_io( 'pcm_heatrate_av', tmp_3d ) DEALLOCATE( tmp_3d ) ENDIF IF ( ALLOCATED( pcm_latentrate_av ) ) THEN ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) tmp_3d(nzb:pch_index,:,:) = pcm_latentrate_av tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp CALL wrd_mpi_io( 'pcm_latentrate_av', tmp_3d ) DEALLOCATE( tmp_3d ) ENDIF IF ( ALLOCATED( pcm_transpirationrate_av ) ) THEN ALLOCATE( tmp_3d(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) tmp_3d(nzb:pch_index,:,:) = pcm_transpirationrate_av tmp_3d(pch_index+1:nzt+1,:,:) = 0.0_wp CALL wrd_mpi_io( 'pcm_transpirationrate_av', tmp_3d ) DEALLOCATE( tmp_3d ) ENDIF ENDIF END SUBROUTINE pcm_wrd_local END MODULE plant_canopy_model_mod