!> @file nesting_offl_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Offline nesting in larger-scale models. Boundary conditions for the simulation are read from !> NetCDF file and are prescribed onto the respective arrays. !> Further, a mass-flux correction is performed to maintain the mass balance. !--------------------------------------------------------------------------------------------------! MODULE nesting_offl_mod #if defined( __parallel ) USE MPI #endif USE arrays_3d, & ONLY: diss, & drho_air_zw, & dzw, & e, & pt, & pt_init, & q, & q_init, & rdf, & rdf_sc, & rho_air, & rho_air_zw, & s, & u, & u_init, & ug, & v, & v_init, & vg, & w, & zu, & zw USE basic_constants_and_equations_mod, & ONLY: g, & pi USE chem_modules, & ONLY: chem_species, nesting_offline_chem USE control_parameters, & ONLY: air_chemistry, & bc_dirichlet_l, & bc_dirichlet_n, & bc_dirichlet_r, & bc_dirichlet_s, & coupling_char, & constant_diffusion, & child_domain, & debug_output_timestep, & dt_3d, & dz, & end_time, & humidity, & initializing_actions, & message_string, & nesting_offline, & neutral, & passive_scalar, & rans_mode, & rans_tke_e, & rayleigh_damping_factor, & rayleigh_damping_height, & salsa, & spinup_time, & time_since_reference_point, & volume_flow USE cpulog, & ONLY: cpu_log, & log_point, & log_point_s USE grid_variables USE indices, & ONLY: nbgp, nx, nxl, nxlg, nxlu, nxr, nxrg, ny, nys, nysv, nysg, nyn, nyng, nzb, nz, nzt, & topo_top_ind, topo_flags USE kinds USE netcdf_data_input_mod, & ONLY: char_fill, & char_lod, & check_existence, & close_input_file, & get_attribute, & get_dimension_length, & get_variable, & get_variable_pr, & input_pids_dynamic, & inquire_num_variables, & inquire_variable_names, & input_file_dynamic, & num_var_pids, & open_read_file, & pids_id USE pegrid USE salsa_mod, & ONLY: salsa_nesting_offl_bc, & salsa_nesting_offl_init, & salsa_nesting_offl_input IMPLICIT NONE ! !-- Define data type for nesting in larger-scale models like COSMO. !-- Data type comprises u, v, w, pt, and q at lateral and top boundaries. TYPE nest_offl_type CHARACTER(LEN=16) :: char_l = 'ls_forcing_left_' !< leading substring for variables at left boundary CHARACTER(LEN=17) :: char_n = 'ls_forcing_north_' !< leading substring for variables at north boundary CHARACTER(LEN=17) :: char_r = 'ls_forcing_right_' !< leading substring for variables at right boundary CHARACTER(LEN=17) :: char_s = 'ls_forcing_south_' !< leading substring for variables at south boundary CHARACTER(LEN=15) :: char_t = 'ls_forcing_top_' !< leading substring for variables at top boundary CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names !< list of variable in dynamic input file CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_l !< names of mesoscale nested chemistry variables at left !< boundary CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_n !< names of mesoscale nested chemistry variables at north !< boundary CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_r !< names of mesoscale nested chemistry variables at right !< boundary CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_s !< names of mesoscale nested chemistry variables at south !< boundary CHARACTER(LEN=100), DIMENSION(:), ALLOCATABLE :: var_names_chem_t !< names of mesoscale nested chemistry variables at top !< boundary INTEGER(iwp) :: lod_east_pt = 2 !< level-of-detail of input data of potential temperature at the eastern boundary INTEGER(iwp) :: lod_east_qc = 2 !< level-of-detail of input data of cloud-water mixture fraction at the eastern boundary INTEGER(iwp) :: lod_east_qv = 2 !< level-of-detail of input data of specific humidity at the eastern boundary INTEGER(iwp) :: lod_east_u = 2 !< level-of-detail of input data of the u-component at the eastern boundary INTEGER(iwp) :: lod_east_v = 2 !< level-of-detail of input data of the v-component at the eastern boundary INTEGER(iwp) :: lod_east_w = 2 !< level-of-detail of input data of the w-component at the eastern boundary INTEGER(iwp) :: lod_north_pt = 2 !< level-of-detail of input data of potential temperature at the northern boundary INTEGER(iwp) :: lod_north_qc = 2 !< level-of-detail of input data of cloud-water mixture fraction at the northern boundary INTEGER(iwp) :: lod_north_qv = 2 !< level-of-detail of input data of specific humidity at the northern boundary INTEGER(iwp) :: lod_north_u = 2 !< level-of-detail of input data of the u-component at the northern boundary INTEGER(iwp) :: lod_north_v = 2 !< level-of-detail of input data of the v-component at the northern boundary INTEGER(iwp) :: lod_north_w = 2 !< level-of-detail of input data of the w-component at the northern boundary INTEGER(iwp) :: lod_south_pt = 2 !< level-of-detail of input data of potential temperature at the southern boundary INTEGER(iwp) :: lod_south_qc = 2 !< level-of-detail of input data of cloud-water mixture fraction at the southern boundary INTEGER(iwp) :: lod_south_qv = 2 !< level-of-detail of input data of specific humidity at the southern boundary INTEGER(iwp) :: lod_south_u = 2 !< level-of-detail of input data of the u-component at the southern boundary INTEGER(iwp) :: lod_south_v = 2 !< level-of-detail of input data of the v-component at the southern boundary INTEGER(iwp) :: lod_south_w = 2 !< level-of-detail of input data of the w-component at the southern boundary INTEGER(iwp) :: lod_top_pt = 2 !< level-of-detail of input data of potential temperature at the top boundary INTEGER(iwp) :: lod_top_qc = 2 !< level-of-detail of input data of cloud-water mixture fraction at the top boundary INTEGER(iwp) :: lod_top_qv = 2 !< level-of-detail of input data of specific humidity at the top boundary INTEGER(iwp) :: lod_top_u = 2 !< level-of-detail of input data of the u-component at the top boundary INTEGER(iwp) :: lod_top_v = 2 !< level-of-detail of input data of the v-component at the top boundary INTEGER(iwp) :: lod_top_w = 2 !< level-of-detail of input data of the w-component at the top boundary INTEGER(iwp) :: lod_west_pt = 2 !< level-of-detail of input data of potential temperature at the western boundary INTEGER(iwp) :: lod_west_qc = 2 !< level-of-detail of input data of cloud-water mixture fraction at the western boundary INTEGER(iwp) :: lod_west_qv = 2 !< level-of-detail of input data of specific humidity at the western boundary INTEGER(iwp) :: lod_west_u = 2 !< level-of-detail of input data of the u-component at the western boundary INTEGER(iwp) :: lod_west_v = 2 !< level-of-detail of input data of the v-component at the western boundary INTEGER(iwp) :: lod_west_w = 2 !< level-of-detail of input data of the w-component at the western boundary INTEGER(iwp) :: nt !< number of time levels in dynamic input file INTEGER(iwp) :: nzu !< number of vertical levels on scalar grid in dynamic input file INTEGER(iwp) :: nzw !< number of vertical levels on w grid in dynamic input file INTEGER(iwp) :: tind = 0 !< time index for reference time in mesoscale-offline nesting INTEGER(iwp) :: tind_p = 0 !< time index for following time in mesoscale-offline nesting LOGICAL :: init = .FALSE. !< flag indicating that offline nesting is already initialized LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_l !< flags inidicating whether left boundary data for chemistry is in !< dynamic input file LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_n !< flags inidicating whether north boundary data for chemistry is in !< dynamic input file LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_r !< flags inidicating whether right boundary data for chemistry is in !< dynamic input file LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_s !< flags inidicating whether south boundary data for chemistry is in !< dynamic input file LOGICAL, DIMENSION(:), ALLOCATABLE :: chem_from_file_t !< flags inidicating whether top boundary data for chemistry is in !< dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: surface_pressure !< time dependent surface pressure REAL(wp), DIMENSION(:), ALLOCATABLE :: time !< time levels in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zu_atmos !< vertical levels at scalar grid in dynamic input file REAL(wp), DIMENSION(:), ALLOCATABLE :: zw_atmos !< vertical levels at w grid in dynamic input file REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ug !< domain-averaged geostrophic component REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vg !< domain-averaged geostrophic component REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_l !< potentital temperautre at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_n !< potentital temperautre at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_r !< potentital temperautre at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_s !< potentital temperautre at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_top !< potentital temperautre at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_l !< mixing ratio at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_n !< mixing ratio at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_r !< mixing ratio at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_s !< mixing ratio at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: q_top !< mixing ratio at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_l !< u-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_n !< u-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_r !< u-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_s !< u-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_top !< u-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_l !< v-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_n !< v-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_r !< v-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_s !< v-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_top !< v-component at top boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_l !< w-component at left boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_n !< w-component at north boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_r !< w-component at right boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_s !< w-component at south boundary REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: w_top !< w-component at top boundary REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_l !< chemical species at left boundary REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_n !< chemical species at north boundary REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_r !< chemical species at right boundary REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_s !< chemical species at south boundary REAL(wp), DIMENSION(:,:,:,:), ALLOCATABLE :: chem_top !< chemical species at left boundary END TYPE nest_offl_type INTEGER(iwp) :: i_bound !< boundary grid point in x-direction for scalars, v, and w INTEGER(iwp) :: i_bound_u !< boundary grid point in x-direction for u INTEGER(iwp) :: i_end !< end index for array allocation along x-direction at norther/southern boundary INTEGER(iwp) :: i_start !< start index for array allocation along x-direction at norther/southern boundary (scalars, v, w) INTEGER(iwp) :: i_start_u !< start index for array allocation along x-direction at norther/southern boundary (u) INTEGER(iwp) :: j_bound !< boundary grid point in y-direction for scalars, u, and w INTEGER(iwp) :: j_bound_v !< boundary grid point in y-direction for v INTEGER(iwp) :: j_end !< end index for array allocation along y-direction at eastern/western boundary INTEGER(iwp) :: j_start !< start index for array allocation along y-direction at eastern/western boundary (scalars, u, w) INTEGER(iwp) :: j_start_v !< start index for array allocation along y-direction at eastern/western boundary (v) INTEGER(iwp) :: lod !< level-of-detail of lateral input data REAL(wp) :: fac_dt !< interpolation factor REAL(wp) :: zi_ribulk = 0.0_wp !< boundary-layer depth according to bulk Richardson criterion, i.e. the height where Ri_bulk !< exceeds the critical bulk Richardson number of 0.2 TYPE(nest_offl_type) :: nest_offl !< data structure for data input at lateral and top boundaries (provided by Inifor) SAVE PRIVATE ! !-- Public subroutines PUBLIC nesting_offl_bc, & nesting_offl_calc_zi, & nesting_offl_check_parameters, & nesting_offl_geostrophic_wind, & nesting_offl_header, & nesting_offl_init, & nesting_offl_input, & nesting_offl_interpolation_factor, & nesting_offl_mass_conservation, & nesting_offl_parin ! !-- Public variables PUBLIC zi_ribulk INTERFACE nesting_offl_bc MODULE PROCEDURE nesting_offl_bc END INTERFACE nesting_offl_bc INTERFACE nesting_offl_calc_zi MODULE PROCEDURE nesting_offl_calc_zi END INTERFACE nesting_offl_calc_zi INTERFACE nesting_offl_check_parameters MODULE PROCEDURE nesting_offl_check_parameters END INTERFACE nesting_offl_check_parameters INTERFACE nesting_offl_geostrophic_wind MODULE PROCEDURE nesting_offl_geostrophic_wind END INTERFACE nesting_offl_geostrophic_wind INTERFACE nesting_offl_header MODULE PROCEDURE nesting_offl_header END INTERFACE nesting_offl_header INTERFACE nesting_offl_init MODULE PROCEDURE nesting_offl_init END INTERFACE nesting_offl_init INTERFACE nesting_offl_input MODULE PROCEDURE nesting_offl_input END INTERFACE nesting_offl_input INTERFACE nesting_offl_interpolation_factor MODULE PROCEDURE nesting_offl_interpolation_factor END INTERFACE nesting_offl_interpolation_factor INTERFACE nesting_offl_mass_conservation MODULE PROCEDURE nesting_offl_mass_conservation END INTERFACE nesting_offl_mass_conservation INTERFACE nesting_offl_parin MODULE PROCEDURE nesting_offl_parin END INTERFACE nesting_offl_parin CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads data at lateral and top boundaries derived from larger-scale model. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_input INTEGER(iwp) :: n !< running index for chemistry variables ! !-- Initialize INIFOR forcing in first call. IF ( .NOT. nest_offl%init ) THEN #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // TRIM( coupling_char ), pids_id ) ! !-- At first, inquire all variable names. CALL inquire_num_variables( pids_id, num_var_pids ) ! !-- Allocate memory to store variable names. ALLOCATE( nest_offl%var_names(1:num_var_pids) ) CALL inquire_variable_names( pids_id, nest_offl%var_names ) ! !-- Read time dimension, allocate memory and finally read time array CALL get_dimension_length( pids_id, nest_offl%nt, 'time' ) IF ( check_existence( nest_offl%var_names, 'time' ) ) THEN ALLOCATE( nest_offl%time(0:nest_offl%nt-1) ) CALL get_variable( pids_id, 'time', nest_offl%time ) ENDIF ! !-- Read vertical dimension of scalar und w grid CALL get_dimension_length( pids_id, nest_offl%nzu, 'z' ) CALL get_dimension_length( pids_id, nest_offl%nzw, 'zw' ) IF ( check_existence( nest_offl%var_names, 'z' ) ) THEN ALLOCATE( nest_offl%zu_atmos(1:nest_offl%nzu) ) CALL get_variable( pids_id, 'z', nest_offl%zu_atmos ) ENDIF IF ( check_existence( nest_offl%var_names, 'zw' ) ) THEN ALLOCATE( nest_offl%zw_atmos(1:nest_offl%nzw) ) CALL get_variable( pids_id, 'zw', nest_offl%zw_atmos ) ENDIF ! !-- Read surface pressure IF ( check_existence( nest_offl%var_names, 'surface_forcing_surface_pressure' ) ) THEN ALLOCATE( nest_offl%surface_pressure(0:nest_offl%nt-1) ) CALL get_variable( pids_id, 'surface_forcing_surface_pressure', & nest_offl%surface_pressure ) ENDIF ! !-- Close input file CALL close_input_file( pids_id ) #endif ENDIF ! !-- Check if dynamic driver data input is required. IF ( nest_offl%time(nest_offl%tind_p) <= MAX( time_since_reference_point, 0.0_wp) .OR. & .NOT. nest_offl%init ) THEN CONTINUE ! !-- Return otherwise ELSE RETURN ENDIF ! !-- Start of CPU measurement CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'start' ) ! !-- Obtain time index for current point in time. Note, the time coordinate in the input file is !-- always relative to the initial time in UTC, i.e. the time coordinate always starts at 0.0 even !-- if the initial UTC is e.g. 7200.0. Further, since time_since_reference_point is negativ here !-- when spinup is applied, use MAX function to obtain correct time index. nest_offl%tind = MINLOC( ABS( nest_offl%time - MAX( time_since_reference_point, 0.0_wp ) ), & DIM = 1 ) - 1 ! !-- Note, in case of restart runs, the time index for the boundary data may indicate a time in !-- the future. This needs to be checked and corrected. IF ( TRIM( initializing_actions ) == 'read_restart_data' .AND. & nest_offl%time(nest_offl%tind) > time_since_reference_point ) THEN nest_offl%tind = nest_offl%tind - 1 ENDIF nest_offl%tind_p = nest_offl%tind + 1 ! !-- Open file in read-only mode #if defined ( __netcdf ) CALL open_read_file( TRIM( input_file_dynamic ) // TRIM( coupling_char ), pids_id ) ! !-- Read geostrophic wind components ! DO t = nest_offl%tind, nest_offl%tind_p ! CALL get_variable_pr( pids_id, 'ls_forcing_ug', t+1, & ! nest_offl%ug(t-nest_offl%tind,nzb+1:nzt) ) ! CALL get_variable_pr( pids_id, 'ls_forcing_vg', t+1, & ! nest_offl%vg(t-nest_offl%tind,nzb+1:nzt) ) ! ENDDO ! !-- Read data at lateral and top boundaries. Please note, at left and right domain boundary, !-- yz-layers are read for u, v, w, pt and q. !-- For the v-component, the data starts at nysv, while for the other quantities the data starts at !-- nys. This is equivalent at the north and south domain boundary for the u-component (nxlu). !-- Note, lateral data is also accessed by parallel IO, which is the reason why different arguments !-- are passed depending on the boundary control flags. Cores that do not belong to the respective !-- boundary only do a dummy read with count = 0, just in order to participate the collective !-- operation. This is because collective parallel access shows better performance than just a !-- conditional access. !-- Read data for LOD 2, i.e. time-dependent xz-, yz-, and xy-slices. IF ( lod == 2 ) THEN CALL get_variable( pids_id, 'ls_forcing_left_u', & nest_offl%u_l, & ! array to be read MERGE( nys+1, 1, bc_dirichlet_l), & ! start index y direction MERGE( nzb+1, 1, bc_dirichlet_l), & ! start index z direction MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & ! start index time dimension MERGE( nyn-nys+1, 0, bc_dirichlet_l), & ! number of elements along y MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & ! number of elements alogn z MERGE( 2, 0, bc_dirichlet_l), & ! number of time steps (2 or 0) .TRUE. ) ! parallel IO when compiled accordingly CALL get_variable( pids_id, 'ls_forcing_left_v', & nest_offl%v_l, & MERGE( nysv, 1, bc_dirichlet_l), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nyn-nysv+1, 0, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_left_w', & nest_offl%w_l, & MERGE( nys+1, 1, bc_dirichlet_l), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nyn-nys+1, 0, bc_dirichlet_l), & MERGE( nest_offl%nzw, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l), & .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_left_pt', & nest_offl%pt_l, & MERGE( nys+1, 1, bc_dirichlet_l), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nyn-nys+1, 0, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l), & .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_left_qv', & nest_offl%q_l, & MERGE( nys+1, 1, bc_dirichlet_l), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nyn-nys+1, 0, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l), & .TRUE. ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_l, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_l(n) ) ) THEN CALL get_variable( pids_id, & TRIM( nest_offl%var_names_chem_l(n) ), & nest_offl%chem_l(:,:,:,n), & MERGE( nys+1, 1, bc_dirichlet_l), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nyn-nys+1, 0, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l), & .TRUE. ) nest_offl%chem_from_file_l(n) = .TRUE. ENDIF ENDDO ENDIF ! !-- Read data for eastern boundary CALL get_variable( pids_id, 'ls_forcing_right_u', & nest_offl%u_r, & MERGE( nys+1, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nys+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_right_v', & nest_offl%v_r, & MERGE( nysv, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nysv+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_right_w', & nest_offl%w_r, & MERGE( nys+1, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nys+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzw, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_right_pt', & nest_offl%pt_r, & MERGE( nys+1, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nys+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_right_qv', & nest_offl%q_r, & MERGE( nys+1, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nys+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_r, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_r(n) ) ) THEN CALL get_variable( pids_id, & TRIM( nest_offl%var_names_chem_r(n) ), & nest_offl%chem_r(:,:,:,n), & MERGE( nys+1, 1, bc_dirichlet_r), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nyn-nys+1, 0, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r), & .TRUE. ) nest_offl%chem_from_file_r(n) = .TRUE. ENDIF ENDDO ENDIF ! !-- Read data for northern boundary CALL get_variable( pids_id, 'ls_forcing_north_u', & nest_offl%u_n, & MERGE( nxlu, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxlu+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_north_v', & nest_offl%v_n, & MERGE( nxl+1, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_north_w', & nest_offl%w_n, & MERGE( nxl+1, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzw, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_north_pt', & nest_offl%pt_n, & MERGE( nxl+1, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_north_qv', & nest_offl%q_n, & MERGE( nxl+1, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_n, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_n(n) ) ) THEN CALL get_variable( pids_id, & TRIM( nest_offl%var_names_chem_n(n) ), & nest_offl%chem_n(:,:,:,n), & MERGE( nxl+1, 1, bc_dirichlet_n ), & MERGE( nzb+1, 1, bc_dirichlet_n ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_n ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n ), & MERGE( 2, 0, bc_dirichlet_n ), & .TRUE. ) nest_offl%chem_from_file_n(n) = .TRUE. ENDIF ENDDO ENDIF ! !-- Read data for southern boundary CALL get_variable( pids_id, 'ls_forcing_south_u', & nest_offl%u_s, & MERGE( nxlu, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxlu+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_south_v', & nest_offl%v_s, & MERGE( nxl+1, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_south_w', & nest_offl%w_s, & MERGE( nxl+1, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzw, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_south_pt', & nest_offl%pt_s, & MERGE( nxl+1, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_south_qv', & nest_offl%q_s, & MERGE( nxl+1, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_s, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_s(n) ) ) THEN CALL get_variable( pids_id, & TRIM( nest_offl%var_names_chem_s(n) ), & nest_offl%chem_s(:,:,:,n), & MERGE( nxl+1, 1, bc_dirichlet_s ), & MERGE( nzb+1, 1, bc_dirichlet_s ), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s ), & MERGE( nxr-nxl+1, 0, bc_dirichlet_s ), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s ), & MERGE( 2, 0, bc_dirichlet_s ), & .TRUE. ) nest_offl%chem_from_file_s(n) = .TRUE. ENDIF ENDDO ENDIF ! !-- Top boundary CALL get_variable( pids_id, 'ls_forcing_top_u', & nest_offl%u_top(0:1,nys:nyn,nxlu:nxr), & nxlu, nys+1, nest_offl%tind+1, & nxr-nxlu+1, nyn-nys+1, 2, .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_top_v', & nest_offl%v_top(0:1,nysv:nyn,nxl:nxr), & nxl+1, nysv, nest_offl%tind+1, & nxr-nxl+1, nyn-nysv+1, 2, .TRUE. ) CALL get_variable( pids_id, 'ls_forcing_top_w', & nest_offl%w_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_top_pt', & nest_offl%pt_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_top_qv', & nest_offl%q_top(0:1,nys:nyn,nxl:nxr), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, & TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_top(0:1,nys:nyn,nxl:nxr,n), & nxl+1, nys+1, nest_offl%tind+1, & nxr-nxl+1, nyn-nys+1, 2, .TRUE. ) nest_offl%chem_from_file_t(n) = .TRUE. ENDIF ENDDO ENDIF ! !-- Read data for LOD 1, i.e. time-dependent profiles. In constrast to LOD 2 where the amount of IO !-- is larger, only the respective boundary processes read the data. ELSE IF ( bc_dirichlet_l ) THEN CALL get_variable( pids_id, 'ls_forcing_left_u', & nest_offl%u_l(0:1,:,1:1), & ! array to be read MERGE( nzb+1, 1, bc_dirichlet_l), & ! start index z direction MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & ! start index time dimension MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & ! number of elements along z MERGE( 2, 0, bc_dirichlet_l) ) ! number of time steps (2 or 0) CALL get_variable( pids_id, 'ls_forcing_left_v', & nest_offl%v_l(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l) ) CALL get_variable( pids_id, 'ls_forcing_left_w', & nest_offl%w_l(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nest_offl%nzw, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l) ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_left_pt', & nest_offl%pt_l(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l) ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_left_qv', & nest_offl%q_l(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l) ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_l(0:1,:,1:1,n), & MERGE( nzb+1, 1, bc_dirichlet_l), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_l), & MERGE( nest_offl%nzu, 0, bc_dirichlet_l), & MERGE( 2, 0, bc_dirichlet_l) ) nest_offl%chem_from_file_l(n) = .TRUE. ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_r ) THEN CALL get_variable( pids_id, 'ls_forcing_right_u', & nest_offl%u_r(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) CALL get_variable( pids_id, 'ls_forcing_right_v', & nest_offl%v_r(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) CALL get_variable( pids_id, 'ls_forcing_right_w', & nest_offl%w_r(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzw, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_right_pt', & nest_offl%pt_r(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_right_qv', & nest_offl%q_r(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_r(0:1,:,1:1,n), & MERGE( nzb+1, 1, bc_dirichlet_r), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_r), & MERGE( nest_offl%nzu, 0, bc_dirichlet_r), & MERGE( 2, 0, bc_dirichlet_r) ) nest_offl%chem_from_file_r(n) = .TRUE. ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_n ) THEN CALL get_variable( pids_id, 'ls_forcing_north_u', & nest_offl%u_n(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) CALL get_variable( pids_id, 'ls_forcing_north_v', & nest_offl%v_n(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) CALL get_variable( pids_id, 'ls_forcing_north_w', & nest_offl%w_n(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzw, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_north_pt', & nest_offl%pt_n(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_north_qv', & nest_offl%q_n(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_n(0:1,:,1:1,n), & MERGE( nzb+1, 1, bc_dirichlet_n), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_n), & MERGE( nest_offl%nzu, 0, bc_dirichlet_n), & MERGE( 2, 0, bc_dirichlet_n) ) nest_offl%chem_from_file_n(n) = .TRUE. ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_s ) THEN CALL get_variable( pids_id, 'ls_forcing_south_u', & nest_offl%u_s(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) CALL get_variable( pids_id, 'ls_forcing_south_v', & nest_offl%v_s(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) CALL get_variable( pids_id, 'ls_forcing_south_w', & nest_offl%w_s(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzw, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_south_pt', & nest_offl%pt_s(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_south_qv', & nest_offl%q_s(0:1,:,1:1), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_s(0:1,:,1:1,n), & MERGE( nzb+1, 1, bc_dirichlet_s), & MERGE( nest_offl%tind+1, 1, bc_dirichlet_s), & MERGE( nest_offl%nzu, 0, bc_dirichlet_s), & MERGE( 2, 0, bc_dirichlet_s) ) nest_offl%chem_from_file_s(n) = .TRUE. ENDIF ENDDO ENDIF ENDIF ! !-- Read top boundary data, which is actually only a scalar value in the LOD 1 case. CALL get_variable( pids_id, 'ls_forcing_top_u', & nest_offl%u_top(0:1,1,1), & ! array to be read nest_offl%tind+1, & ! start index in time 2 ) ! number of elements to be read CALL get_variable( pids_id, 'ls_forcing_top_v', & nest_offl%v_top(0:1,1,1), & nest_offl%tind+1, & 2 ) CALL get_variable( pids_id, 'ls_forcing_top_w', & nest_offl%w_top(0:1,1,1), & nest_offl%tind+1, & 2 ) IF ( .NOT. neutral ) THEN CALL get_variable( pids_id, 'ls_forcing_top_pt', & nest_offl%pt_top(0:1,1,1), & nest_offl%tind+1, & 2 ) ENDIF IF ( humidity ) THEN CALL get_variable( pids_id, 'ls_forcing_top_qv', & nest_offl%q_top(0:1,1,1), & nest_offl%tind+1, & 2 ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( nest_offl%var_names_chem_t, 1 ) IF ( check_existence( nest_offl%var_names, nest_offl%var_names_chem_t(n) ) ) THEN CALL get_variable( pids_id, TRIM( nest_offl%var_names_chem_t(n) ), & nest_offl%chem_top(0:1,1,1,n), & nest_offl%tind+1, & 2 ) nest_offl%chem_from_file_t(n) = .TRUE. ENDIF ENDDO ENDIF ENDIF ! !-- Close input file CALL close_input_file( pids_id ) #endif ! !-- Set control flag to indicate that boundary data has been initially input. nest_offl%init = .TRUE. ! !-- Call offline nesting for salsa IF ( salsa ) CALL salsa_nesting_offl_input ! !-- End of CPU measurement CALL cpu_log( log_point_s(86), 'NetCDF input forcing', 'stop' ) END SUBROUTINE nesting_offl_input !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> In this subroutine a constant mass within the model domain is guaranteed. !> Larger-scale models may be based on a compressible equation system, which is not consistent with !> PALMs incompressible equation system. In order to avoid a decrease or increase of mass during the !> simulation, non-divergent flow through the lateral and top boundaries is compensated by the !> vertical wind component at the top boundary. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_mass_conservation INTEGER(iwp) :: i !< grid index in x-direction INTEGER(iwp) :: j !< grid index in y-direction INTEGER(iwp) :: k !< grid index in z-direction REAL(wp) :: d_area_t !< inverse of the total area of the horizontal model domain REAL(wp) :: w_correct !< vertical velocity increment required to compensate non-divergent flow through the boundaries REAL(wp), DIMENSION(1:3) :: volume_flow_l !< local volume flow IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'start' ) CALL cpu_log( log_point(58), 'offline nesting', 'start' ) volume_flow = 0.0_wp volume_flow_l = 0.0_wp d_area_t = 1.0_wp / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) IF ( bc_dirichlet_l ) THEN i = nxl DO j = nys, nyn DO k = nzb+1, nzt volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy * rho_air(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 1 ) ) ENDDO ENDDO ENDIF IF ( bc_dirichlet_r ) THEN i = nxr+1 DO j = nys, nyn DO k = nzb+1, nzt volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy * rho_air(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 1 ) ) ENDDO ENDDO ENDIF IF ( bc_dirichlet_s ) THEN j = nys DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx * rho_air(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 2 ) ) ENDDO ENDDO ENDIF IF ( bc_dirichlet_n ) THEN j = nyn+1 DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx * rho_air(k) & * MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 2 ) ) ENDDO ENDDO ENDIF ! !-- Top boundary k = nzt DO i = nxl, nxr DO j = nys, nyn volume_flow_l(3) = volume_flow_l(3) - rho_air_zw(k) * w(k,j,i) * dx * dy ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow = volume_flow_l #endif w_correct = SUM( volume_flow ) * d_area_t * drho_air_zw(nzt) DO i = nxl, nxr DO j = nys, nyn DO k = nzt, nzt + 1 w(k,j,i) = w(k,j,i) + w_correct & * MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 3 ) ) ENDDO ENDDO ENDDO CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_mass_conservation', 'end' ) END SUBROUTINE nesting_offl_mass_conservation !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Set the lateral and top boundary conditions in case the PALM domain is nested offline in a !> mesoscale model. Further, average boundary data and determine mean profiles, further used for !> correct damping in the sponge layer. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_bc USE exchange_horiz_mod, & ONLY: exchange_horiz INTEGER(iwp) :: i !< running index x-direction INTEGER(iwp) :: j !< running index y-direction INTEGER(iwp) :: k !< running index z-direction INTEGER(iwp) :: n !< running index for chemical species REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref !< reference profile for potential temperature REAL(wp), DIMENSION(nzb:nzt+1) :: pt_ref_l !< reference profile for potential temperature on subdomain REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref !< reference profile for mixing ratio REAL(wp), DIMENSION(nzb:nzt+1) :: q_ref_l !< reference profile for mixing ratio on subdomain REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref !< reference profile for u-component REAL(wp), DIMENSION(nzb:nzt+1) :: u_ref_l !< reference profile for u-component on subdomain REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref !< reference profile for v-component REAL(wp), DIMENSION(nzb:nzt+1) :: v_ref_l !< reference profile for v-component on subdomain REAL(wp), DIMENSION(nzb:nzt+1) :: var_1d !< pre-interpolated profile for LOD1 mode REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ref_chem !< reference profile for chemical species REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ref_chem_l !< reference profile for chemical species on subdomain IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'start' ) CALL cpu_log( log_point(58), 'offline nesting', 'start' ) ! !-- Initialize mean profiles, derived from boundary data, to zero. pt_ref = 0.0_wp q_ref = 0.0_wp u_ref = 0.0_wp v_ref = 0.0_wp pt_ref_l = 0.0_wp q_ref_l = 0.0_wp u_ref_l = 0.0_wp v_ref_l = 0.0_wp ! !-- If required, allocate temporary arrays to compute chemistry mean profiles IF ( air_chemistry .AND. nesting_offline_chem ) THEN ALLOCATE( ref_chem(nzb:nzt+1,1:UBOUND( chem_species, 1 ) ) ) ALLOCATE( ref_chem_l(nzb:nzt+1,1:UBOUND( chem_species, 1 ) ) ) ref_chem = 0.0_wp ref_chem_l = 0.0_wp ENDIF ! !-- Set boundary conditions of u-, v-, w-component, as well as q, and pt. !-- Note, boundary values at the left boundary: i=-1 (v,w,pt,q) and i=0 (u), at the right boundary: !-- i=nxr+1 (all), at the south boundary: j=-1 (u,w,pt,q) and j=0 (v), at the north boundary: !-- j=nyn+1 (all). !-- Please note, at the left (for u) and south (for v) boundary, values for u and v are set also at !-- i/j=-1, since these values are used in boundary_conditions() to restore prognostic values. !-- Further, sum up data to calculate mean profiles from boundary data, used for Rayleigh damping. IF ( bc_dirichlet_l ) THEN ! !-- u-component IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt u(k,j,i_bound_u) = interpolate_in_time( nest_offl%u_l(0,k,j), & nest_offl%u_l(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound_u), 1 ) ) ENDDO u(:,j,i_bound_u-1) = u(:,j,i_bound_u) u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,i_bound_u) ENDDO ELSE ! !-- Pre-interpolate profile before mapping onto the boundaries. DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%u_l(0,k,1), & nest_offl%u_l(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn u(nzb+1:nzt,j,i_bound_u) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j,i_bound_u), 1 ) ) u(:,j,i_bound_u-1) = u(:,j,i_bound_u) u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,i_bound_u) ENDDO ENDIF ! !-- w-component IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt-1 w(k,j,i_bound) = interpolate_in_time( nest_offl%w_l(0,k,j), & nest_offl%w_l(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound), 3 ) ) ENDDO w(nzt,j,i_bound) = w(nzt-1,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt-1 var_1d(k) = interpolate_in_time( nest_offl%w_l(0,k,1), & nest_offl%w_l(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn w(nzb+1:nzt-1,j,i_bound) = var_1d(nzb+1:nzt-1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt-1,j,i_bound), 3 ) ) w(nzt,j,i_bound) = w(nzt-1,j,i_bound) ENDDO ENDIF ! !-- v-component IF ( lod == 2 ) THEN DO j = nysv, nyn DO k = nzb+1, nzt v(k,j,i_bound) = interpolate_in_time( nest_offl%v_l(0,k,j), & nest_offl%v_l(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound), 2 ) ) ENDDO v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%v_l(0,k,1), & nest_offl%v_l(1,k,1), & fac_dt ) ENDDO DO j = nysv, nyn v(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j,i_bound), 2 ) ) v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,i_bound) ENDDO ENDIF ! !-- Potential temperature IF ( .NOT. neutral ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt pt(k,j,i_bound) = interpolate_in_time( nest_offl%pt_l(0,k,j), & nest_offl%pt_l(1,k,j), & fac_dt ) ENDDO pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%pt_l(0,k,1), & nest_offl%pt_l(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn pt(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ! !-- Humidity IF ( humidity ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt q(k,j,i_bound) = interpolate_in_time( nest_offl%q_l(0,k,j), & nest_offl%q_l(1,k,j), & fac_dt ) ENDDO q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%q_l(0,k,1), & nest_offl%q_l(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn q(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ! !-- Chemistry IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_l(n) ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt chem_species(n)%conc(k,j,i_bound) = interpolate_in_time( & nest_offl%chem_l(0,k,j,n), & nest_offl%chem_l(1,k,j,n), & fac_dt ) ENDDO ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%chem_l(0,k,1,n), & nest_offl%chem_l(1,k,1,n), & fac_dt ) ENDDO DO j = nys, nyn chem_species(n)%conc(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_r ) THEN ! !-- u-component IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt u(k,j,i_bound_u) = interpolate_in_time( nest_offl%u_r(0,k,j), & nest_offl%u_r(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound_u), 1 ) ) ENDDO u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,i_bound_u) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%u_r(0,k,1), & nest_offl%u_r(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn u(nzb+1:nzt,j,i_bound_u) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j,i_bound_u), 1 ) ) u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j,i_bound_u) ENDDO ENDIF ! !-- w-component IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt-1 w(k,j,i_bound) = interpolate_in_time( nest_offl%w_r(0,k,j), & nest_offl%w_r(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound), 3 ) ) ENDDO w(nzt,j,i_bound) = w(nzt-1,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt-1 var_1d(k) = interpolate_in_time( nest_offl%w_r(0,k,1), & nest_offl%w_r(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn w(nzb+1:nzt-1,j,i_bound) = var_1d(nzb+1:nzt-1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt-1,j,i_bound), 3 ) ) w(nzt,j,i_bound) = w(nzt-1,j,i_bound) ENDDO ENDIF ! !-- v-component IF ( lod == 2 ) THEN DO j = nysv, nyn DO k = nzb+1, nzt v(k,j,i_bound) = interpolate_in_time( nest_offl%v_r(0,k,j), & nest_offl%v_r(1,k,j), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i_bound), 2 ) ) ENDDO v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%v_r(0,k,1), & nest_offl%v_r(1,k,1), & fac_dt ) ENDDO DO j = nysv, nyn v(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j,i_bound), 2 ) ) v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j,i_bound) ENDDO ENDIF ! !-- Potential temperature IF ( .NOT. neutral ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt pt(k,j,i_bound) = interpolate_in_time( nest_offl%pt_r(0,k,j), & nest_offl%pt_r(1,k,j), & fac_dt ) ENDDO pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%pt_r(0,k,1), & nest_offl%pt_r(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn pt(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ! !-- Humidity IF ( humidity ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt q(k,j,i_bound) = interpolate_in_time( nest_offl%q_r(0,k,j), & nest_offl%q_r(1,k,j), & fac_dt ) ENDDO q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%q_r(0,k,1), & nest_offl%q_r(1,k,1), & fac_dt ) ENDDO DO j = nys, nyn q(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ! !-- Chemistry IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_r(n) ) THEN IF ( lod == 2 ) THEN DO j = nys, nyn DO k = nzb+1, nzt chem_species(n)%conc(k,j,i_bound) = interpolate_in_time( & nest_offl%chem_r(0,k,j,n), & nest_offl%chem_r(1,k,j,n), & fac_dt ) ENDDO ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j,i_bound) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%chem_r(0,k,1,n), & nest_offl%chem_r(1,k,1,n), & fac_dt ) ENDDO DO j = nys, nyn chem_species(n)%conc(nzb+1:nzt,j,i_bound) = var_1d(nzb+1:nzt) ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j,i_bound) ENDDO ENDIF ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_n ) THEN ! !-- v-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt v(k,j_bound_v,i) = interpolate_in_time( nest_offl%v_n(0,k,i), & nest_offl%v_n(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound_v,i), 2 ) ) ENDDO v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j_bound_v,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%v_n(0,k,1), & nest_offl%v_n(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr v(nzb+1:nzt,j_bound_v,i) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j_bound_v,i), 2 ) ) v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j_bound_v,i) ENDDO ENDIF ! !-- w-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt-1 w(k,j_bound,i) = interpolate_in_time( nest_offl%w_n(0,k,i), & nest_offl%w_n(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound,i), 3 ) ) ENDDO w(nzt,j_bound,i) = w(nzt-1,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt-1 var_1d(k) = interpolate_in_time( nest_offl%w_n(0,k,1), & nest_offl%w_n(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr w(nzb+1:nzt-1,j_bound,i) = var_1d(nzb+1:nzt-1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt-1,j_bound,i), 3 ) ) w(nzt,j_bound,i) = w(nzt-1,j_bound,i) ENDDO ENDIF ! !-- u-component IF ( lod == 2 ) THEN DO i = nxlu, nxr DO k = nzb+1, nzt u(k,j_bound,i) = interpolate_in_time( nest_offl%u_n(0,k,i), & nest_offl%u_n(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound,i), 1 ) ) ENDDO u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%u_n(0,k,1), & nest_offl%u_n(1,k,1), & fac_dt ) ENDDO DO i = nxlu, nxr u(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j_bound,i), 1 ) ) u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j_bound,i) ENDDO ENDIF ! !-- Potential temperature IF ( .NOT. neutral ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt pt(k,j_bound,i) = interpolate_in_time( nest_offl%pt_n(0,k,i), & nest_offl%pt_n(1,k,i), & fac_dt ) ENDDO pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%pt_n(0,k,1), & nest_offl%pt_n(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr pt(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ! !-- Humidity IF ( humidity ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt q(k,j_bound,i) = interpolate_in_time( nest_offl%q_n(0,k,i), & nest_offl%q_n(1,k,i), & fac_dt ) ENDDO q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%q_n(0,k,1), & nest_offl%q_n(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr q(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ! !-- Chemistry IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_n(n) ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt chem_species(n)%conc(k,j_bound,i) = interpolate_in_time( & nest_offl%chem_n(0,k,i,n), & nest_offl%chem_n(1,k,i,n), & fac_dt ) ENDDO ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%chem_n(0,k,1,n), & nest_offl%chem_n(1,k,1,n), & fac_dt ) ENDDO DO i = nxl, nxr chem_species(n)%conc(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) + & chem_species(n) & %conc(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_s ) THEN ! !-- v-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt v(k,j_bound_v,i) = interpolate_in_time( nest_offl%v_s(0,k,i), & nest_offl%v_s(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound_v,i), 2 ) ) ENDDO v(:,j_bound_v-1,i) = v(:,j_bound_v,i) v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j_bound_v,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%v_s(0,k,1), & nest_offl%v_s(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr v(nzb+1:nzt,j_bound_v,i) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j_bound_v,i), 2 ) ) v(:,j_bound_v-1,i) = v(:,j_bound_v,i) v_ref_l(nzb+1:nzt) = v_ref_l(nzb+1:nzt) + v(nzb+1:nzt,j_bound_v,i) ENDDO ENDIF ! !-- w-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt-1 w(k,j_bound,i) = interpolate_in_time( nest_offl%w_s(0,k,i), & nest_offl%w_s(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound,i), 3 ) ) ENDDO w(nzt,j_bound,i) = w(nzt-1,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt-1 var_1d(k) = interpolate_in_time( nest_offl%w_s(0,k,1), & nest_offl%w_s(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr w(nzb+1:nzt-1,j_bound,i) = var_1d(nzb+1:nzt-1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt-1,j_bound,i), 3 ) ) w(nzt,j_bound,i) = w(nzt-1,j_bound,i) ENDDO ENDIF ! !-- u-component IF ( lod == 2 ) THEN DO i = nxlu, nxr DO k = nzb+1, nzt u(k,j_bound,i) = interpolate_in_time( nest_offl%u_s(0,k,i), & nest_offl%u_s(1,k,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j_bound,i), 1 ) ) ENDDO u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%u_s(0,k,1), & nest_offl%u_s(1,k,1), & fac_dt ) ENDDO DO i = nxlu, nxr u(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzb+1:nzt,j_bound,i), 1 ) ) u_ref_l(nzb+1:nzt) = u_ref_l(nzb+1:nzt) + u(nzb+1:nzt,j_bound,i) ENDDO ENDIF ! !-- Potential temperature IF ( .NOT. neutral ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt pt(k,j_bound,i) = interpolate_in_time( nest_offl%pt_s(0,k,i), & nest_offl%pt_s(1,k,i), & fac_dt ) ENDDO pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%pt_s(0,k,1), & nest_offl%pt_s(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr pt(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) pt_ref_l(nzb+1:nzt) = pt_ref_l(nzb+1:nzt) + pt(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ! !-- Humidity IF ( humidity ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt q(k,j_bound,i) = interpolate_in_time( nest_offl%q_s(0,k,i), & nest_offl%q_s(1,k,i), & fac_dt ) ENDDO q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%q_s(0,k,1), & nest_offl%q_s(1,k,1), & fac_dt ) ENDDO DO i = nxl, nxr q(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) q_ref_l(nzb+1:nzt) = q_ref_l(nzb+1:nzt) + q(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ! !-- Chemistry IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_s(n) ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO k = nzb+1, nzt chem_species(n)%conc(k,j_bound,i) = interpolate_in_time( & nest_offl%chem_s(0,k,i,n), & nest_offl%chem_s(1,k,i,n), & fac_dt ) ENDDO ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) & + chem_species(n)%conc(nzb+1:nzt,j_bound,i) ENDDO ELSE DO k = nzb+1, nzt var_1d(k) = interpolate_in_time( nest_offl%chem_s(0,k,1,n), & nest_offl%chem_s(1,k,1,n), & fac_dt ) ENDDO DO i = nxl, nxr chem_species(n)%conc(nzb+1:nzt,j_bound,i) = var_1d(nzb+1:nzt) ref_chem_l(nzb+1:nzt,n) = ref_chem_l(nzb+1:nzt,n) + & chem_species(n) & %conc(nzb+1:nzt,j_bound,i) ENDDO ENDIF ENDIF ENDDO ENDIF ENDIF ! !-- Top boundary !-- u-component IF ( lod == 2 ) THEN DO i = nxlu, nxr DO j = nys, nyn u(nzt+1,j,i) = interpolate_in_time( nest_offl%u_top(0,j,i), & nest_offl%u_top(1,j,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(nzt+1,j,i), 1 ) ) u_ref_l(nzt+1) = u_ref_l(nzt+1) + u(nzt+1,j,i) ENDDO ENDDO ELSE var_1d(nzt+1) = interpolate_in_time( nest_offl%u_top(0,1,1), & nest_offl%u_top(1,1,1), & fac_dt ) u(nzt+1,nys:nyn,nxlu:nxr) = var_1d(nzt+1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzt+1,nys:nyn,nxlu:nxr), 1 ) ) u_ref_l(nzt+1) = u_ref_l(nzt+1) + SUM( u(nzt+1,nys:nyn,nxlu:nxr) ) ENDIF ! !-- For left boundary set boundary condition for u-component also at top grid point. !-- Note, this has no effect on the numeric solution, only for data output. IF ( bc_dirichlet_l ) u(nzt+1,:,nxl) = u(nzt+1,:,nxlu) ! !-- v-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO j = nysv, nyn v(nzt+1,j,i) = interpolate_in_time( nest_offl%v_top(0,j,i), & nest_offl%v_top(1,j,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(nzt+1,j,i), 2 ) ) v_ref_l(nzt+1) = v_ref_l(nzt+1) + v(nzt+1,j,i) ENDDO ENDDO ELSE var_1d(nzt+1) = interpolate_in_time( nest_offl%v_top(0,1,1), & nest_offl%v_top(1,1,1), & fac_dt ) v(nzt+1,nysv:nyn,nxl:nxr) = var_1d(nzt+1) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzt+1,nysv:nyn,nxl:nxr), 2 ) ) v_ref_l(nzt+1) = v_ref_l(nzt+1) + SUM( v(nzt+1,nysv:nyn,nxl:nxr) ) ENDIF ! !-- For south boundary set boundary condition for v-component also at top grid point. !-- Note, this has no effect on the numeric solution, only for data output. IF ( bc_dirichlet_s ) v(nzt+1,nys,:) = v(nzt+1,nysv,:) ! !-- w-component IF ( lod == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn w(nzt,j,i) = interpolate_in_time( nest_offl%w_top(0,j,i), & nest_offl%w_top(1,j,i), & fac_dt ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(nzt,j,i), 3 ) ) w(nzt+1,j,i) = w(nzt,j,i) ENDDO ENDDO ELSE var_1d(nzt) = interpolate_in_time( nest_offl%w_top(0,1,1), & nest_offl%w_top(1,1,1), & fac_dt ) w(nzt,nys:nyn,nxl:nxr) = var_1d(nzt) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(nzt,nys:nyn,nxl:nxr), 3 ) ) w(nzt+1,nys:nyn,nxl:nxr) = w(nzt,nys:nyn,nxl:nxr) ENDIF ! !-- Potential temperture IF ( .NOT. neutral ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn pt(nzt+1,j,i) = interpolate_in_time( nest_offl%pt_top(0,j,i), & nest_offl%pt_top(1,j,i), & fac_dt ) pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + pt(nzt+1,j,i) ENDDO ENDDO ELSE var_1d(nzt+1) = interpolate_in_time( nest_offl%pt_top(0,1,1), & nest_offl%pt_top(1,1,1), & fac_dt ) pt(nzt+1,nys:nyn,nxl:nxr) = var_1d(nzt+1) pt_ref_l(nzt+1) = pt_ref_l(nzt+1) + SUM( pt(nzt+1,nys:nyn,nxl:nxr) ) ENDIF ENDIF ! !-- humidity IF ( humidity ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn q(nzt+1,j,i) = interpolate_in_time( nest_offl%q_top(0,j,i), & nest_offl%q_top(1,j,i), & fac_dt ) q_ref_l(nzt+1) = q_ref_l(nzt+1) + q(nzt+1,j,i) ENDDO ENDDO ELSE var_1d(nzt+1) = interpolate_in_time( nest_offl%q_top(0,1,1), & nest_offl%q_top(1,1,1), & fac_dt ) q(nzt+1,nys:nyn,nxl:nxr) = var_1d(nzt+1) q_ref_l(nzt+1) = q_ref_l(nzt+1) + SUM( q(nzt+1,nys:nyn,nxl:nxr) ) ENDIF ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_t(n) ) THEN IF ( lod == 2 ) THEN DO i = nxl, nxr DO j = nys, nyn chem_species(n)%conc(nzt+1,j,i) = interpolate_in_time( & nest_offl%chem_top(0,j,i,n), & nest_offl%chem_top(1,j,i,n), & fac_dt ) ref_chem_l(nzt+1,n) = ref_chem_l(nzt+1,n) + chem_species(n)%conc(nzt+1,j,i) ENDDO ENDDO ELSE var_1d(nzt+1) = interpolate_in_time( nest_offl%chem_top(0,1,1,n), & nest_offl%chem_top(1,1,1,n), & fac_dt ) chem_species(n)%conc(nzt+1,nys:nyn,nxl:nxr) = var_1d(nzt+1) ref_chem_l(nzt+1,n) = ref_chem_l(nzt+1,n) + & SUM( chem_species(n)%conc(nzt+1,nys:nyn,nxl:nxr) ) ENDIF ENDIF ENDDO ENDIF ! !-- Moreover, set Neumann boundary condition for subgrid-scale TKE, passive scalar, dissipation, and !-- chemical species if required. IF ( rans_mode .AND. rans_tke_e ) THEN IF ( bc_dirichlet_l ) diss(:,:,nxl-1) = diss(:,:,nxl) IF ( bc_dirichlet_r ) diss(:,:,nxr+1) = diss(:,:,nxr) IF ( bc_dirichlet_s ) diss(:,nys-1,:) = diss(:,nys,:) IF ( bc_dirichlet_n ) diss(:,nyn+1,:) = diss(:,nyn,:) ENDIF ! IF ( .NOT. constant_diffusion ) THEN ! IF ( bc_dirichlet_l ) e(:,:,nxl-1) = e(:,:,nxl) ! IF ( bc_dirichlet_r ) e(:,:,nxr+1) = e(:,:,nxr) ! IF ( bc_dirichlet_s ) e(:,nys-1,:) = e(:,nys,:) ! IF ( bc_dirichlet_n ) e(:,nyn+1,:) = e(:,nyn,:) ! e(nzt+1,:,:) = e(nzt,:,:) ! ENDIF ! IF ( passive_scalar ) THEN ! IF ( bc_dirichlet_l ) s(:,:,nxl-1) = s(:,:,nxl) ! IF ( bc_dirichlet_r ) s(:,:,nxr+1) = s(:,:,nxr) ! IF ( bc_dirichlet_s ) s(:,nys-1,:) = s(:,nys,:) ! IF ( bc_dirichlet_n ) s(:,nyn+1,:) = s(:,nyn,:) ! ENDIF CALL exchange_horiz( u, nbgp ) CALL exchange_horiz( v, nbgp ) CALL exchange_horiz( w, nbgp ) IF ( .NOT. neutral ) CALL exchange_horiz( pt, nbgp ) IF ( humidity ) CALL exchange_horiz( q, nbgp ) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) ! !-- Do local exchange only when necessary, i.e. when data is coming from dynamic file. IF ( nest_offl%chem_from_file_t(n) ) CALL exchange_horiz( chem_species(n)%conc, nbgp ) ENDDO ENDIF ! !-- Set top boundary condition at all horizontal grid points, also at the lateral boundary grid !-- points. w(nzt+1,:,:) = w(nzt,:,:) ! !-- Offline nesting for salsa IF ( salsa ) CALL salsa_nesting_offl_bc ! !-- Calculate the mean profiles. These are later stored on u_init, v_init, etc., in order to adjust !-- the Rayleigh damping under time-evolving atmospheric conditions accordingly - damping against !-- the representative mean profiles, not against the initial profiles. Note, in LOD = 1 case no !-- averaging is required. #if defined( __parallel ) CALL MPI_ALLREDUCE( u_ref_l, u_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( v_ref_l, v_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( humidity ) THEN CALL MPI_ALLREDUCE( q_ref_l, q_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF IF ( .NOT. neutral ) THEN CALL MPI_ALLREDUCE( pt_ref_l, pt_ref, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN CALL MPI_ALLREDUCE( ref_chem_l, ref_chem, ( nzt+1-nzb+1 ) * SIZE( ref_chem(nzb,:) ), & MPI_REAL, MPI_SUM, comm2d, ierr ) ENDIF #else u_ref = u_ref_l v_ref = v_ref_l IF ( humidity ) q_ref = q_ref_l IF ( .NOT. neutral ) pt_ref = pt_ref_l IF ( air_chemistry .AND. nesting_offline_chem ) ref_chem = ref_chem_l #endif ! !-- Average data. Note, reference profiles up to nzt are derived from lateral boundaries, at the !-- model top it is derived from the top boundary. Thus, number of input data is different from !-- nzb:nzt compared to nzt+1. !-- Derived from lateral boundaries. u_ref(nzb:nzt) = u_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx ), KIND = wp ) v_ref(nzb:nzt) = v_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + nx + 1 ), KIND = wp ) IF ( humidity ) & q_ref(nzb:nzt) = q_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx + 1 ), KIND = wp ) IF ( .NOT. neutral ) & pt_ref(nzb:nzt) = pt_ref(nzb:nzt) / REAL( 2.0_wp * ( ny + 1 + nx + 1 ), KIND = wp ) IF ( air_chemistry .AND. nesting_offline_chem ) & ref_chem(nzb:nzt,:) = ref_chem(nzb:nzt,:) / REAL( 2.0_wp * ( ny + 1 + nx + 1 ), KIND = wp ) ! !-- Derived from top boundary. u_ref(nzt+1) = u_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx ), KIND = wp ) v_ref(nzt+1) = v_ref(nzt+1) / REAL( ( ny ) * ( nx + 1 ), KIND = wp ) IF ( humidity ) & q_ref(nzt+1) = q_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), KIND = wp ) IF ( .NOT. neutral ) & pt_ref(nzt+1) = pt_ref(nzt+1) / REAL( ( ny + 1 ) * ( nx + 1 ), KIND = wp ) IF ( air_chemistry .AND. nesting_offline_chem ) & ref_chem(nzt+1,:) = ref_chem(nzt+1,:) / REAL( ( ny + 1 ) * ( nx + 1 ),KIND = wp ) ! !-- Write onto init profiles, which are used for damping. Also set lower boundary condition for !-- scalars (not required for u and v as these are zero at k=nzb). u_init = u_ref v_init = v_ref IF ( humidity ) THEN q_init = q_ref q_init(nzb) = q_init(nzb+1) ENDIF IF ( .NOT. neutral ) THEN pt_init = pt_ref pt_init(nzb) = pt_init(nzb+1) ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF ( nest_offl%chem_from_file_t(n) ) THEN chem_species(n)%conc_pr_init(:) = ref_chem(:,n) chem_species(n)%conc_pr_init(nzb) = chem_species(n)%conc_pr_init(nzb+1) ENDIF ENDDO ENDIF IF ( ALLOCATED( ref_chem ) ) DEALLOCATE( ref_chem ) IF ( ALLOCATED( ref_chem_l ) ) DEALLOCATE( ref_chem_l ) ! !-- Further, adjust Rayleigh damping height in case of time-changing conditions. !-- Therefore, calculate boundary-layer depth first. CALL nesting_offl_calc_zi CALL adjust_sponge_layer CALL cpu_log( log_point(58), 'offline nesting', 'stop' ) IF ( debug_output_timestep ) CALL debug_message( 'nesting_offl_bc', 'end' ) END SUBROUTINE nesting_offl_bc !--------------------------------------------------------------------------------------------------! ! Description: !--------------------------------------------------------------------------------------------------! !> Update of the geostrophic wind components. Note, currently this routine is not invoked. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_geostrophic_wind INTEGER(iwp) :: k ! !-- Update geostrophic wind components from dynamic input file. DO k = nzb+1, nzt ug(k) = interpolate_in_time( nest_offl%ug(0,k), nest_offl%ug(1,k), fac_dt ) vg(k) = interpolate_in_time( nest_offl%vg(0,k), nest_offl%vg(1,k), fac_dt ) ENDDO ug(nzt+1) = ug(nzt) vg(nzt+1) = vg(nzt) END SUBROUTINE nesting_offl_geostrophic_wind !--------------------------------------------------------------------------------------------------! ! Description: !--------------------------------------------------------------------------------------------------! !> Determine the interpolation constant for time interpolation. The calculation is separated from !> the nesting_offl_bc and nesting_offl_geostrophic_wind in order to be independent on the order of !> calls. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_interpolation_factor ! !-- Determine interpolation factor and limit it to 1. This is because t+dt can slightly exceed !-- time(tind_p) before boundary data is updated again. fac_dt = ( time_since_reference_point - nest_offl%time(nest_offl%tind) + dt_3d ) / & ( nest_offl%time(nest_offl%tind_p) - nest_offl%time(nest_offl%tind) ) fac_dt = MIN( 1.0_wp, fac_dt ) END SUBROUTINE nesting_offl_interpolation_factor !--------------------------------------------------------------------------------------------------! ! Description: !--------------------------------------------------------------------------------------------------! !> Calculates the boundary-layer depth from the boundary data, according to bulk-Richardson !> criterion. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_calc_zi INTEGER(iwp) :: i !< loop index in x-direction INTEGER(iwp) :: j !< loop index in y-direction INTEGER(iwp) :: k !< loop index in z-direction INTEGER(iwp) :: k_max_loc !< index of maximum wind speed along z-direction INTEGER(iwp) :: k_surface !< topography top index in z-direction INTEGER(iwp) :: num_boundary_gp_non_cyclic !< number of non-cyclic boundaries, used for averaging ABL depth INTEGER(iwp) :: num_boundary_gp_non_cyclic_l !< number of non-cyclic boundaries, used for averaging ABL depth REAL(wp) :: ri_bulk !< bulk Richardson number REAL(wp) :: ri_bulk_crit = 0.25_wp !< critical bulk Richardson number REAL(wp) :: topo_max !< maximum topography level in model domain REAL(wp) :: topo_max_l !< maximum topography level in subdomain REAL(wp) :: vpt_surface !< near-surface virtual potential temperature REAL(wp) :: zi_l !< mean boundary-layer depth on subdomain REAL(wp) :: zi_local !< local boundary-layer depth REAL(wp), DIMENSION(nzb:nzt+1) :: vpt_col !< vertical profile of virtual potential temperature at (j,i)-grid point REAL(wp), DIMENSION(nzb:nzt+1) :: uv_abs !< vertical profile of horizontal wind speed at (j,i)-grid point ! !-- Calculate mean boundary-layer height from boundary data. !-- Start with the left and right boundaries. zi_l = 0.0_wp num_boundary_gp_non_cyclic_l = 0 IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN ! !-- Sum-up and store number of boundary grid points used for averaging ABL depth num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + nxr - nxl + 1 ! !-- Determine index along x. Please note, index indicates boundary grid point for scalars. i = MERGE( -1, nxr + 1, bc_dirichlet_l ) DO j = nys, nyn ! !-- Determine topography top index at current (j,i) index k_surface = topo_top_ind(j,i,0) ! !-- Pre-compute surface virtual temperature. Therefore, use 2nd prognostic level according to !-- Heinze et al. (2017). IF ( humidity ) THEN vpt_surface = pt(k_surface+2,j,i) * ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) ELSE vpt_surface = pt(k_surface+2,j,i) vpt_col = pt(:,j,i) ENDIF ! !-- Calculate local boundary layer height from bulk Richardson number, i.e. the height where !-- the bulk Richardson number exceeds its critical value of 0.25 !-- (according to Heinze et al., 2017). !-- Note, no interpolation of u- and v-component is made, as both are mainly mean inflow !-- profiles with very small spatial variation. !-- Add a safety factor in case the velocity term becomes zero. This may happen if overhanging !-- 3D structures are directly located at the boundary, where velocity inside the building is !-- zero (k_surface is the index of the lowest upward-facing surface). uv_abs(:) = SQRT( MERGE( u(:,j,i+1), u(:,j,i), bc_dirichlet_l )**2 + v(:,j,i)**2 ) ! !-- Determine index of the maximum wind speed k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 zi_local = 0.0_wp DO k = k_surface+1, nzt ri_bulk = zu(k) * g / vpt_surface * & ( vpt_col(k) - vpt_surface ) / ( uv_abs(k) + 1E-5_wp ) ! !-- Check if critical Richardson number is exceeded. Further, check if there is a maxium in !-- the wind profile in order to detect also ABL heights in the stable boundary layer. IF ( zi_local == 0.0_wp .AND. ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & zi_local = zu(k) ENDDO ! !-- Assure that the minimum local boundary-layer depth is at least at the second vertical grid !-- level. zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) ENDDO ENDIF ! !-- Do the same at the north and south boundaries. IF ( bc_dirichlet_s .OR. bc_dirichlet_n ) THEN num_boundary_gp_non_cyclic_l = num_boundary_gp_non_cyclic_l + nxr - nxl + 1 j = MERGE( -1, nyn + 1, bc_dirichlet_s ) DO i = nxl, nxr k_surface = topo_top_ind(j,i,0) IF ( humidity ) THEN vpt_surface = pt(k_surface+2,j,i) * ( 1.0_wp + 0.61_wp * q(k_surface+2,j,i) ) vpt_col = pt(:,j,i) * ( 1.0_wp + 0.61_wp * q(:,j,i) ) ELSE vpt_surface = pt(k_surface+2,j,i) vpt_col = pt(:,j,i) ENDIF uv_abs(:) = SQRT( u(:,j,i)**2 + MERGE( v(:,j+1,i), v(:,j,i), bc_dirichlet_s )**2 ) ! !-- Determine index of the maximum wind speed k_max_loc = MAXLOC( uv_abs(:), DIM = 1 ) - 1 zi_local = 0.0_wp DO k = k_surface+1, nzt ri_bulk = zu(k) * g / vpt_surface * & ( vpt_col(k) - vpt_surface ) / ( uv_abs(k) + 1E-5_wp ) ! !-- Check if critical Richardson number is exceeded. Further, check if there is a maxium in !-- the wind profile in order to detect also ABL heights in the stable boundary layer. IF ( zi_local == 0.0_wp .AND. ( ri_bulk > ri_bulk_crit .OR. k == k_max_loc ) ) & zi_local = zu(k) ENDDO zi_l = zi_l + MAX( zi_local, zu(k_surface+2) ) ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( zi_l, zi_ribulk, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( num_boundary_gp_non_cyclic_l, num_boundary_gp_non_cyclic, & 1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else zi_ribulk = zi_l num_boundary_gp_non_cyclic = num_boundary_gp_non_cyclic_l #endif zi_ribulk = zi_ribulk / REAL( num_boundary_gp_non_cyclic, KIND = wp ) ! !-- Finally, check if boundary layer depth is not below the any topography. !-- zi_ribulk will be used to adjust rayleigh damping height, i.e. the lower level of the sponge !-- layer, as well as to adjust the synthetic turbulence generator accordingly. If Rayleigh damping !-- would be applied near buildings, etc., this would spoil the simulation results. topo_max_l = zw(MAXVAL( topo_top_ind(nys:nyn,nxl:nxr,0) )) #if defined( __parallel ) CALL MPI_ALLREDUCE( topo_max_l, topo_max, 1, MPI_REAL, MPI_MAX, comm2d, ierr ) #else topo_max = topo_max_l #endif ! zi_ribulk = MAX( zi_ribulk, topo_max ) END SUBROUTINE nesting_offl_calc_zi !--------------------------------------------------------------------------------------------------! ! Description: !--------------------------------------------------------------------------------------------------! !> Adjust the height where the rayleigh damping starts, i.e. the lower level of the sponge layer. !--------------------------------------------------------------------------------------------------! SUBROUTINE adjust_sponge_layer INTEGER(iwp) :: k !< loop index in z-direction REAL(wp) :: rdh !< updated Rayleigh damping height IF ( rayleigh_damping_height > 0.0_wp .AND. rayleigh_damping_factor > 0.0_wp ) THEN ! !-- Update Rayleigh-damping height and re-calculate height-depending damping coefficients. !-- Assure that rayleigh damping starts well above the boundary layer. rdh = MIN( MAX( zi_ribulk * 1.3_wp, 10.0_wp * dz(1) ), & 0.8_wp * zu(nzt), rayleigh_damping_height ) ! !-- Update Rayleigh damping factor DO k = nzb+1, nzt IF ( zu(k) >= rdh ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( zu(k) - rdh ) / ( zu(nzt) - rdh ) ) )**2 ENDIF ENDDO rdf_sc = rdf ENDIF END SUBROUTINE adjust_sponge_layer !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Performs consistency checks !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_check_parameters ! !-- Check if offline nesting is applied in nested child domain. IF ( nesting_offline .AND. child_domain ) THEN message_string = 'Offline nesting is only applicable in root model.' CALL message( 'offline_nesting_check_parameters', 'PA0622', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE nesting_offl_check_parameters !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads the parameter list nesting_offl_parameters !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_parin CHARACTER(LEN=100) :: line !< dummy string that contains the current line of the parameter file INTEGER(iwp) :: io_status !< status after reading the namelist file LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module !< although the respective module namelist appears in !< the namelist file NAMELIST /nesting_offl_parameters/ switch_off_module ! !-- Move to the beginning of the namelist file and try to find and read the namelist. REWIND( 11 ) READ( 11, nesting_offl_parameters, IOSTAT=io_status ) ! !-- Action depending on the READ status IF ( io_status == 0 ) THEN ! !-- nesting_offl_parameters namelist was found and read correctly. Enable the !-- offline nesting. IF ( .NOT. switch_off_module ) nesting_offline = .TRUE. ELSEIF ( io_status > 0 ) THEN ! !-- nesting_offl_parameters namelist was found but contained errors. Print an error message !-- including the line that caused the problem. BACKSPACE( 11 ) READ( 11 , '(A)' ) line CALL parin_fail_message( 'nesting_offl_parameters', line ) ENDIF END SUBROUTINE nesting_offl_parin !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Writes information about offline nesting into HEADER file !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_header ( io ) INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file WRITE ( io, 1 ) IF ( nesting_offline ) THEN WRITE ( io, 3 ) ELSE WRITE ( io, 2 ) ENDIF 1 FORMAT (//' Offline nesting in COSMO model:'/' -------------------------------'/) 2 FORMAT (' --> No offlince nesting is used (default) ') 3 FORMAT (' --> Offlince nesting is used. Boundary data is read from dynamic input file ') END SUBROUTINE nesting_offl_header !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Allocate arrays used to read boundary data from NetCDF file and initialize boundary data. !--------------------------------------------------------------------------------------------------! SUBROUTINE nesting_offl_init INTEGER(iwp) :: i !< loop index for x-direction INTEGER(iwp) :: j !< loop index for y-direction INTEGER(iwp) :: n !< running index for chemical species ! !-- Before arrays for the boundary data are allocated, the LOD of the dynamic input data at the !-- boundaries is read. #if defined ( __netcdf ) ! !-- Open file in read-only mode CALL open_read_file( TRIM( input_file_dynamic ) // TRIM( coupling_char ), pids_id ) ! !-- Read attributes for LOD. In order to gurantee that also older drivers, where attribute is not !-- given, are working, do not abort the run but assume LOD2 forcing. CALL get_attribute( pids_id, char_lod, nest_offl%lod_east_pt, .FALSE., 'ls_forcing_left_pt', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_east_qv, .FALSE., 'ls_forcing_left_qv', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_east_u, .FALSE., 'ls_forcing_left_u', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_east_v, .FALSE., 'ls_forcing_left_v', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_east_w, .FALSE., 'ls_forcing_left_w', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_north_pt, .FALSE., 'ls_forcing_north_pt', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_north_qv, .FALSE., 'ls_forcing_north_qv', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_north_u, .FALSE., 'ls_forcing_north_u', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_north_v, .FALSE., 'ls_forcing_north_v', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_north_w, .FALSE., 'ls_forcing_north_w', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_south_pt, .FALSE., 'ls_forcing_south_pt', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_south_qv, .FALSE., 'ls_forcing_south_qv', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_south_u, .FALSE., 'ls_forcing_south_u', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_south_v, .FALSE., 'ls_forcing_south_v', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_south_w, .FALSE., 'ls_forcing_south_w', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_west_pt, .FALSE., 'ls_forcing_right_pt', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_west_qv, .FALSE., 'ls_forcing_right_qv', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_west_u, .FALSE., 'ls_forcing_right_u', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_west_v, .FALSE., 'ls_forcing_right_v', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_west_w, .FALSE., 'ls_forcing_right_w', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_top_pt, .FALSE., 'ls_forcing_top_pt', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_top_qv, .FALSE., 'ls_forcing_top_qv', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_top_u, .FALSE., 'ls_forcing_top_u', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_top_v, .FALSE., 'ls_forcing_top_v', .FALSE. ) CALL get_attribute( pids_id, char_lod, nest_offl%lod_top_w, .FALSE., 'ls_forcing_top_w', .FALSE. ) CALL close_input_file( pids_id ) #endif ! !-- Temporary workaround until most of the dynamic drivers contain a LOD attribute. So far INIFOR !-- did not provide the LOD attribute. In order to still use these older dynamic drivers, provide a !-- temporary workaround. If the LOD is not given, a NetCDF interal error will occur but the !-- simulation will not be aborted since the no_abort flag is passed. However, the respective !-- attribute value might be given an arbitrary number. Hence, check for valid LOD's and manually !-- set them to LOD 2 (as assumed so far). Note, this workaround should be removed later (date of !-- reference: 6. Oct. 2020). IF ( nest_offl%lod_east_pt /= 1 .AND. nest_offl%lod_east_pt /= 2 ) nest_offl%lod_east_pt = 2 IF ( nest_offl%lod_east_qv /= 1 .AND. nest_offl%lod_east_qv /= 2 ) nest_offl%lod_east_qv = 2 IF ( nest_offl%lod_east_u /= 1 .AND. nest_offl%lod_east_u /= 2 ) nest_offl%lod_east_u = 2 IF ( nest_offl%lod_east_v /= 1 .AND. nest_offl%lod_east_v /= 2 ) nest_offl%lod_east_v = 2 IF ( nest_offl%lod_east_w /= 1 .AND. nest_offl%lod_east_w /= 2 ) nest_offl%lod_east_w = 2 IF ( nest_offl%lod_north_pt /= 1 .AND. nest_offl%lod_north_pt /= 2 ) nest_offl%lod_north_pt = 2 IF ( nest_offl%lod_north_qv /= 1 .AND. nest_offl%lod_north_qv /= 2 ) nest_offl%lod_north_qv = 2 IF ( nest_offl%lod_north_u /= 1 .AND. nest_offl%lod_north_u /= 2 ) nest_offl%lod_north_u = 2 IF ( nest_offl%lod_north_v /= 1 .AND. nest_offl%lod_north_v /= 2 ) nest_offl%lod_north_v = 2 IF ( nest_offl%lod_north_w /= 1 .AND. nest_offl%lod_north_w /= 2 ) nest_offl%lod_north_w = 2 IF ( nest_offl%lod_south_pt /= 1 .AND. nest_offl%lod_south_pt /= 2 ) nest_offl%lod_south_pt = 2 IF ( nest_offl%lod_south_qv /= 1 .AND. nest_offl%lod_south_qv /= 2 ) nest_offl%lod_south_qv = 2 IF ( nest_offl%lod_south_u /= 1 .AND. nest_offl%lod_south_u /= 2 ) nest_offl%lod_south_u = 2 IF ( nest_offl%lod_south_v /= 1 .AND. nest_offl%lod_south_v /= 2 ) nest_offl%lod_south_v = 2 IF ( nest_offl%lod_south_w /= 1 .AND. nest_offl%lod_south_w /= 2 ) nest_offl%lod_south_w = 2 IF ( nest_offl%lod_west_pt /= 1 .AND. nest_offl%lod_west_pt /= 2 ) nest_offl%lod_west_pt = 2 IF ( nest_offl%lod_west_qv /= 1 .AND. nest_offl%lod_west_qv /= 2 ) nest_offl%lod_west_qv = 2 IF ( nest_offl%lod_west_u /= 1 .AND. nest_offl%lod_west_u /= 2 ) nest_offl%lod_west_u = 2 IF ( nest_offl%lod_west_v /= 1 .AND. nest_offl%lod_west_v /= 2 ) nest_offl%lod_west_v = 2 IF ( nest_offl%lod_west_w /= 1 .AND. nest_offl%lod_west_w /= 2 ) nest_offl%lod_west_w = 2 IF ( nest_offl%lod_top_pt /= 1 .AND. nest_offl%lod_top_pt /= 2 ) nest_offl%lod_top_pt = 2 IF ( nest_offl%lod_top_qv /= 1 .AND. nest_offl%lod_top_qv /= 2 ) nest_offl%lod_top_qv = 2 IF ( nest_offl%lod_top_u /= 1 .AND. nest_offl%lod_top_u /= 2 ) nest_offl%lod_top_u = 2 IF ( nest_offl%lod_top_v /= 1 .AND. nest_offl%lod_top_v /= 2 ) nest_offl%lod_top_v = 2 IF ( nest_offl%lod_top_w /= 1 .AND. nest_offl%lod_top_w /= 2 ) nest_offl%lod_top_w = 2 ! !-- For consistency, check if all boundary input variables have the same LOD. IF ( MAX( nest_offl%lod_east_pt, nest_offl%lod_east_qv, nest_offl%lod_east_u, & nest_offl%lod_east_v, nest_offl%lod_east_w, & nest_offl%lod_north_pt, nest_offl%lod_north_qv, nest_offl%lod_north_u, & nest_offl%lod_north_v, nest_offl%lod_north_w, & nest_offl%lod_south_pt, nest_offl%lod_south_qv, nest_offl%lod_south_u, & nest_offl%lod_south_v, nest_offl%lod_south_w, & nest_offl%lod_north_pt, nest_offl%lod_north_qv, nest_offl%lod_north_u, & nest_offl%lod_north_v, nest_offl%lod_north_w, & nest_offl%lod_top_pt, nest_offl%lod_top_qv, nest_offl%lod_top_u, & nest_offl%lod_top_v, nest_offl%lod_top_w ) & /= & MIN( nest_offl%lod_east_pt, nest_offl%lod_east_qv, nest_offl%lod_east_u, & nest_offl%lod_east_v, nest_offl%lod_east_w, & nest_offl%lod_north_pt, nest_offl%lod_north_qv, nest_offl%lod_north_u, & nest_offl%lod_north_v, nest_offl%lod_north_w, & nest_offl%lod_south_pt, nest_offl%lod_south_qv, nest_offl%lod_south_u, & nest_offl%lod_south_v, nest_offl%lod_south_w, & nest_offl%lod_north_pt, nest_offl%lod_north_qv, nest_offl%lod_north_u, & nest_offl%lod_north_v, nest_offl%lod_north_w, & nest_offl%lod_top_pt, nest_offl%lod_top_qv, nest_offl%lod_top_u, & nest_offl%lod_top_v, nest_offl%lod_top_w ) ) THEN message_string = 'A mixture of different LOD for the provided boundary data is not ' // & 'possible.' CALL message( 'nesting_offl_init', 'PA0504', 1, 2, 0, 6, 0 ) ENDIF ! !-- As all LODs are the same, store it. lod = nest_offl%lod_east_u ! !-- Allocate arrays for geostrophic wind components. Arrays will incorporate 2 time levels in order !-- to interpolate in between. ALLOCATE( nest_offl%ug(0:1,1:nzt) ) ALLOCATE( nest_offl%vg(0:1,1:nzt) ) ! !-- Set index range according to the given LOD in order to allocate the input arrays. IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN IF ( lod == 2 ) THEN j_start = nys j_start_v = nysv j_end = nyn ELSE j_start = 1 j_start_v = 1 j_end = 1 ENDIF ENDIF IF ( bc_dirichlet_n .OR. bc_dirichlet_s ) THEN IF( lod == 2 ) THEN i_start = nxl i_start_u = nxlu i_end = nxr ELSE i_start = 1 i_start_u = 1 i_end = 1 ENDIF ENDIF ! !-- Allocate arrays for reading left/right boundary values. Arrays will incorporate 2 time levels in !-- order to interpolate in between. Depending on the given LOD, the x-, or y-dimension will be !-- either nxl:nxr, or nys:nyn (for LOD=2), or it reduces to one element for LOD=1. If the core has !-- no lateral boundary, allocate a dummy array as well, in order to enable netcdf parallel access. !-- Dummy arrays will be allocated with dimension length zero. IF ( bc_dirichlet_l ) THEN ALLOCATE( nest_offl%u_l(0:1,nzb+1:nzt,j_start:j_end) ) ALLOCATE( nest_offl%v_l(0:1,nzb+1:nzt,j_start_v:j_end) ) ALLOCATE( nest_offl%w_l(0:1,nzb+1:nzt-1,j_start:j_end) ) IF ( humidity ) ALLOCATE( nest_offl%q_l(0:1,nzb+1:nzt,j_start:j_end) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_l(0:1,nzb+1:nzt,j_start:j_end) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_l(0:1,nzb+1:nzt,j_start:j_end,1:UBOUND( chem_species, 1 )) ) ELSE ALLOCATE( nest_offl%u_l(1:1,1:1,1:1) ) ALLOCATE( nest_offl%v_l(1:1,1:1,1:1) ) ALLOCATE( nest_offl%w_l(1:1,1:1,1:1) ) IF ( humidity ) ALLOCATE( nest_offl%q_l(1:1,1:1,1:1) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_l(1:1,1:1,1:1) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_l(1:1,1:1,1:1,1:UBOUND( chem_species, 1 )) ) ENDIF IF ( bc_dirichlet_r ) THEN ALLOCATE( nest_offl%u_r(0:1,nzb+1:nzt,j_start:j_end) ) ALLOCATE( nest_offl%v_r(0:1,nzb+1:nzt,j_start_v:j_end) ) ALLOCATE( nest_offl%w_r(0:1,nzb+1:nzt-1,j_start:j_end) ) IF ( humidity ) ALLOCATE( nest_offl%q_r(0:1,nzb+1:nzt,j_start:j_end) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_r(0:1,nzb+1:nzt,j_start:j_end) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_r(0:1,nzb+1:nzt,j_start:j_end,1:UBOUND( chem_species, 1 )) ) ELSE ALLOCATE( nest_offl%u_r(1:1,1:1,1:1) ) ALLOCATE( nest_offl%v_r(1:1,1:1,1:1) ) ALLOCATE( nest_offl%w_r(1:1,1:1,1:1) ) IF ( humidity ) ALLOCATE( nest_offl%q_r(1:1,1:1,1:1) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_r(1:1,1:1,1:1) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_r(1:1,1:1,1:1,1:UBOUND( chem_species, 1 )) ) ENDIF ! !-- Allocate arrays for reading north/south boundary values. Arrays will incorporate 2 time levels !-- in order to interpolate in between. If the core has no boundary, allocate a dummy array, in !-- order to enable netcdf parallel access. Dummy arrays will be allocated with dimension length !-- zero. IF ( bc_dirichlet_n ) THEN ALLOCATE( nest_offl%u_n(0:1,nzb+1:nzt,i_start_u:i_end) ) ALLOCATE( nest_offl%v_n(0:1,nzb+1:nzt,i_start:i_end) ) ALLOCATE( nest_offl%w_n(0:1,nzb+1:nzt-1,i_start:i_end) ) IF ( humidity ) ALLOCATE( nest_offl%q_n(0:1,nzb+1:nzt,i_start:i_end) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_n(0:1,nzb+1:nzt,i_start:i_end) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_n(0:1,nzb+1:nzt,i_start:i_end,1:UBOUND( chem_species, 1 )) ) ELSE ALLOCATE( nest_offl%u_n(1:1,1:1,1:1) ) ALLOCATE( nest_offl%v_n(1:1,1:1,1:1) ) ALLOCATE( nest_offl%w_n(1:1,1:1,1:1) ) IF ( humidity ) ALLOCATE( nest_offl%q_n(1:1,1:1,1:1) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_n(1:1,1:1,1:1) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_n(1:1,1:1,1:1,1:UBOUND( chem_species, 1 )) ) ENDIF IF ( bc_dirichlet_s ) THEN ALLOCATE( nest_offl%u_s(0:1,nzb+1:nzt,i_start_u:i_end) ) ALLOCATE( nest_offl%v_s(0:1,nzb+1:nzt,i_start:i_end) ) ALLOCATE( nest_offl%w_s(0:1,nzb+1:nzt-1,i_start:i_end) ) IF ( humidity ) ALLOCATE( nest_offl%q_s(0:1,nzb+1:nzt,i_start:i_end) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_s(0:1,nzb+1:nzt,i_start:i_end) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_s(0:1,nzb+1:nzt,i_start:i_end,1:UBOUND( chem_species, 1 )) ) ELSE ALLOCATE( nest_offl%u_s(1:1,1:1,1:1) ) ALLOCATE( nest_offl%v_s(1:1,1:1,1:1) ) ALLOCATE( nest_offl%w_s(1:1,1:1,1:1) ) IF ( humidity ) ALLOCATE( nest_offl%q_s(1:1,1:1,1:1) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_s(1:1,1:1,1:1) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_s(1:1,1:1,1:1,1:UBOUND( chem_species, 1 )) ) ENDIF ! !-- Allocate arrays for reading data at the top boundary. In contrast to the lateral boundaries, !-- each core reads these data so that no dummy arrays need to be allocated. IF ( lod == 2 ) THEN ALLOCATE( nest_offl%u_top(0:1,nys:nyn,nxlu:nxr) ) ALLOCATE( nest_offl%v_top(0:1,nysv:nyn,nxl:nxr) ) ALLOCATE( nest_offl%w_top(0:1,nys:nyn,nxl:nxr) ) IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,nys:nyn,nxl:nxr) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,nys:nyn,nxl:nxr) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_top(0:1,nys:nyn,nxl:nxr,1:UBOUND( chem_species, 1 )) ) ELSE ALLOCATE( nest_offl%u_top(0:1,1:1,1:1) ) ALLOCATE( nest_offl%v_top(0:1,1:1,1:1) ) ALLOCATE( nest_offl%w_top(0:1,1:1,1:1) ) IF ( humidity ) ALLOCATE( nest_offl%q_top(0:1,1:1,1:1) ) IF ( .NOT. neutral ) ALLOCATE( nest_offl%pt_top(0:1,1:1,1:1) ) IF ( air_chemistry .AND. nesting_offline_chem ) & ALLOCATE( nest_offl%chem_top(0:1,1:1,1:1,1:UBOUND( chem_species, 1 )) ) ENDIF ! !-- For chemical species, create the names of the variables. This is necessary to identify the !-- respective variable and write it onto the correct array in the chem_species datatype. IF ( air_chemistry .AND. nesting_offline_chem ) THEN ALLOCATE( nest_offl%chem_from_file_l(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%chem_from_file_n(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%chem_from_file_r(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%chem_from_file_s(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%chem_from_file_t(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%var_names_chem_l(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%var_names_chem_n(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%var_names_chem_r(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%var_names_chem_s(1:UBOUND( chem_species, 1 )) ) ALLOCATE( nest_offl%var_names_chem_t(1:UBOUND( chem_species, 1 )) ) ! !-- Initialize flags that indicate whether the variable is on file or not. Please note, this is !-- only necessary for chemistry variables. nest_offl%chem_from_file_l(:) = .FALSE. nest_offl%chem_from_file_n(:) = .FALSE. nest_offl%chem_from_file_r(:) = .FALSE. nest_offl%chem_from_file_s(:) = .FALSE. nest_offl%chem_from_file_t(:) = .FALSE. DO n = 1, UBOUND( chem_species, 1 ) nest_offl%var_names_chem_l(n) = nest_offl%char_l // TRIM(chem_species(n)%name) nest_offl%var_names_chem_n(n) = nest_offl%char_n // TRIM(chem_species(n)%name) nest_offl%var_names_chem_r(n) = nest_offl%char_r // TRIM(chem_species(n)%name) nest_offl%var_names_chem_s(n) = nest_offl%char_s // TRIM(chem_species(n)%name) nest_offl%var_names_chem_t(n) = nest_offl%char_t // TRIM(chem_species(n)%name) ENDDO ENDIF ! !-- Offline nesting for salsa IF ( salsa ) CALL salsa_nesting_offl_init ! !-- Before initial data input is initiated, check if dynamic input file is present. IF ( .NOT. input_pids_dynamic ) THEN message_string = 'nesting_offline = .TRUE. requires dynamic ' // & 'input file ' // TRIM( input_file_dynamic ) // TRIM( coupling_char ) CALL message( 'nesting_offl_init', 'PA0546', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read COSMO data at lateral and top boundaries CALL nesting_offl_input ! !-- Check if sufficient time steps are provided to cover the entire simulation. Note, dynamic input !-- is only required for the 3D simulation, not for the soil/wall spinup. However, as the spinup !-- time is added to the end_time, this must be considered here. IF ( end_time - spinup_time > nest_offl%time(nest_offl%nt-1) ) THEN message_string = 'end_time of the simulation exceeds the ' // & 'time dimension in the dynamic input file.' CALL message( 'nesting_offl_init', 'PA0183', 1, 2, 0, 6, 0 ) ENDIF ! !-- Set indicies for boundary grid points IF ( bc_dirichlet_l .OR. bc_dirichlet_r ) THEN i_bound = MERGE( nxl - 1, nxr + 1, bc_dirichlet_l ) i_bound_u = MERGE( nxlu - 1, nxr + 1, bc_dirichlet_l ) ENDIF IF ( bc_dirichlet_n .OR. bc_dirichlet_s ) THEN j_bound = MERGE( nys - 1, nyn + 1, bc_dirichlet_s ) j_bound_v = MERGE( nysv - 1, nyn + 1, bc_dirichlet_s ) ENDIF ! !-- Initialize boundary data. Please note, do not initialize boundaries in case of restart runs. !-- This case the boundaries are already initialized and the boundary data from file would be on the !-- wrong time level. IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN ! !-- Distinguish between LOD = 1 and LOD = 2 inititialization IF ( lod == 2 ) THEN IF ( bc_dirichlet_l ) THEN u(nzb+1:nzt,nys:nyn,i_bound_u) = nest_offl%u_l(0,nzb+1:nzt,nys:nyn) v(nzb+1:nzt,nysv:nyn,i_bound) = nest_offl%v_l(0,nzb+1:nzt,nysv:nyn) w(nzb+1:nzt-1,nys:nyn,i_bound) = nest_offl%w_l(0,nzb+1:nzt-1,nys:nyn) IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,i_bound) = nest_offl%pt_l(0,nzb+1:nzt,nys:nyn) IF ( humidity ) q(nzb+1:nzt,nys:nyn,i_bound) = nest_offl%q_l(0,nzb+1:nzt,nys:nyn) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_l(n) ) THEN chem_species(n)%conc(nzb+1:nzt,nys:nyn,i_bound) = & nest_offl%chem_l(0,nzb+1:nzt,nys:nyn,n) ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_r ) THEN u(nzb+1:nzt,nys:nyn,i_bound_u) = nest_offl%u_r(0,nzb+1:nzt,nys:nyn) v(nzb+1:nzt,nysv:nyn,i_bound) = nest_offl%v_r(0,nzb+1:nzt,nysv:nyn) w(nzb+1:nzt-1,nys:nyn,i_bound) = nest_offl%w_r(0,nzb+1:nzt-1,nys:nyn) IF ( .NOT. neutral ) pt(nzb+1:nzt,nys:nyn,i_bound) = nest_offl%pt_r(0,nzb+1:nzt,nys:nyn) IF ( humidity ) q(nzb+1:nzt,nys:nyn,i_bound) = nest_offl%q_r(0,nzb+1:nzt,nys:nyn) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_r(n) ) THEN chem_species(n)%conc(nzb+1:nzt,nys:nyn,i_bound) = & nest_offl%chem_r(0,nzb+1:nzt,nys:nyn,n) ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_n) THEN u(nzb+1:nzt,j_bound,nxlu:nxr) = nest_offl%u_n(0,nzb+1:nzt,nxlu:nxr) v(nzb+1:nzt,j_bound_v,nxl:nxr) = nest_offl%v_n(0,nzb+1:nzt,nxl:nxr) w(nzb+1:nzt-1,j_bound,nxl:nxr) = nest_offl%w_n(0,nzb+1:nzt-1,nxl:nxr) IF ( .NOT. neutral ) pt(nzb+1:nzt,j_bound,nxl:nxr) = nest_offl%pt_n(0,nzb+1:nzt,nxl:nxr) IF ( humidity ) q(nzb+1:nzt,j_bound,nxl:nxr) = nest_offl%q_n(0,nzb+1:nzt,nxl:nxr) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_n(n) ) THEN chem_species(n)%conc(nzb+1:nzt,j_bound,nxl:nxr) = & nest_offl%chem_n(0,nzb+1:nzt,nxl:nxr,n) ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_s) THEN u(nzb+1:nzt,j_bound,nxlu:nxr) = nest_offl%u_s(0,nzb+1:nzt,nxlu:nxr) v(nzb+1:nzt,j_bound_v,nxl:nxr) = nest_offl%v_s(0,nzb+1:nzt,nxl:nxr) w(nzb+1:nzt-1,j_bound,nxl:nxr) = nest_offl%w_s(0,nzb+1:nzt-1,nxl:nxr) IF ( .NOT. neutral ) pt(nzb+1:nzt,j_bound,nxl:nxr) = nest_offl%pt_s(0,nzb+1:nzt,nxl:nxr) IF ( humidity ) q(nzb+1:nzt,j_bound,nxl:nxr) = nest_offl%q_s(0,nzb+1:nzt,nxl:nxr) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_s(n) ) THEN chem_species(n)%conc(nzb+1:nzt,j_bound,nxl:nxr) = & nest_offl%chem_s(0,nzb+1:nzt,nxl:nxr,n) ENDIF ENDDO ENDIF ENDIF u(nzt+1,nys:nyn,nxlu:nxr) = nest_offl%u_top(0,nys:nyn,nxlu:nxr) v(nzt+1,nysv:nyn,nxl:nxr) = nest_offl%v_top(0,nysv:nyn,nxl:nxr) w(nzt,nys:nyn,nxl:nxr) = nest_offl%w_top(0,nys:nyn,nxl:nxr) w(nzt+1,nys:nyn,nxl:nxr) = nest_offl%w_top(0,nys:nyn,nxl:nxr) IF ( .NOT. neutral ) pt(nzt+1,nys:nyn,nxl:nxr) = nest_offl%pt_top(0,nys:nyn,nxl:nxr) IF ( humidity ) q(nzt+1,nys:nyn,nxl:nxr) = nest_offl%q_top(0,nys:nyn,nxl:nxr) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_t(n) ) THEN chem_species(n)%conc(nzt+1,nys:nyn,nxl:nxr) = & nest_offl%chem_top(0,nys:nyn,nxl:nxr,n) ENDIF ENDDO ENDIF ! !-- LOD 1 ELSE IF ( bc_dirichlet_l ) THEN DO j = nys, nyn u(nzb+1:nzt,j,i_bound_u) = nest_offl%u_l(0,nzb+1:nzt,1) w(nzb+1:nzt-1,j,i_bound) = nest_offl%w_l(0,nzb+1:nzt-1,1) ENDDO DO j = nysv, nyn v(nzb+1:nzt,j,i_bound) = nest_offl%v_l(0,nzb+1:nzt,1) ENDDO IF ( .NOT. neutral ) THEN DO j = nys, nyn pt(nzb+1:nzt,j,i_bound) = nest_offl%pt_l(0,nzb+1:nzt,1) ENDDO ENDIF IF ( humidity ) THEN DO j = nys, nyn q(nzb+1:nzt,j,i_bound) = nest_offl%q_l(0,nzb+1:nzt,1) ENDDO ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_l(n) ) THEN DO j = nys, nyn chem_species(n)%conc(nzb+1:nzt,j,i_bound) = & nest_offl%chem_l(0,nzb+1:nzt,1,n) ENDDO ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_r ) THEN DO j = nys, nyn u(nzb+1:nzt,j,i_bound_u) = nest_offl%u_r(0,nzb+1:nzt,1) w(nzb+1:nzt-1,j,i_bound) = nest_offl%w_r(0,nzb+1:nzt-1,1) ENDDO DO j = nysv, nyn v(nzb+1:nzt,j,i_bound) = nest_offl%v_r(0,nzb+1:nzt,1) ENDDO IF ( .NOT. neutral ) THEN DO j = nys, nyn pt(nzb+1:nzt,j,i_bound) = nest_offl%pt_r(0,nzb+1:nzt,1) ENDDO ENDIF IF ( humidity ) THEN DO j = nys, nyn q(nzb+1:nzt,j,i_bound) = nest_offl%q_r(0,nzb+1:nzt,1) ENDDO ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_r(n) ) THEN DO j = nys, nyn chem_species(n)%conc(nzb+1:nzt,j,i_bound) = & nest_offl%chem_r(0,nzb+1:nzt,1,n) ENDDO ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_n ) THEN DO i = nxlu, nxr u(nzb+1:nzt,j_bound,i) = nest_offl%u_n(0,nzb+1:nzt,1) ENDDO DO i = nxl, nxr v(nzb+1:nzt,j_bound_v,i) = nest_offl%v_n(0,nzb+1:nzt,1) w(nzb+1:nzt-1,j_bound,i) = nest_offl%w_n(0,nzb+1:nzt-1,1) ENDDO IF ( .NOT. neutral ) THEN DO i = nxl, nxr pt(nzb+1:nzt,j_bound,i) = nest_offl%pt_n(0,nzb+1:nzt,1) ENDDO ENDIF IF ( humidity ) THEN DO i = nxl, nxr q(nzb+1:nzt,j_bound,i) = nest_offl%q_n(0,nzb+1:nzt,1) ENDDO ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_n(n) ) THEN DO i = nxl, nxr chem_species(n)%conc(nzb+1:nzt,j_bound,i) = & nest_offl%chem_n(0,nzb+1:nzt,1,n) ENDDO ENDIF ENDDO ENDIF ENDIF IF ( bc_dirichlet_s ) THEN DO i = nxlu, nxr u(nzb+1:nzt,j_bound,i) = nest_offl%u_s(0,nzb+1:nzt,1) ENDDO DO i = nxl, nxr v(nzb+1:nzt,j_bound_v,i) = nest_offl%v_s(0,nzb+1:nzt,1) w(nzb+1:nzt-1,j_bound,i) = nest_offl%w_s(0,nzb+1:nzt-1,1) ENDDO IF ( .NOT. neutral ) THEN DO i = nxl, nxr pt(nzb+1:nzt,j_bound,i) = nest_offl%pt_s(0,nzb+1:nzt,1) ENDDO ENDIF IF ( humidity ) THEN DO i = nxl, nxr q(nzb+1:nzt,j_bound,i) = nest_offl%q_s(0,nzb+1:nzt,1) ENDDO ENDIF IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_s(n) ) THEN DO i = nxl, nxr chem_species(n)%conc(nzb+1:nzt,j_bound,i) = & nest_offl%chem_s(0,nzb+1:nzt,1,n) ENDDO ENDIF ENDDO ENDIF ENDIF u(nzt+1,nys:nyn,nxlu:nxr) = nest_offl%u_top(0,1,1) v(nzt+1,nysv:nyn,nxl:nxr) = nest_offl%v_top(0,1,1) w(nzt,nys:nyn,nxl:nxr) = nest_offl%w_top(0,1,1) w(nzt+1,nys:nyn,nxl:nxr) = nest_offl%w_top(0,1,1) IF ( .NOT. neutral ) pt(nzt+1,nys:nyn,nxl:nxr) = nest_offl%pt_top(0,1,1) IF ( humidity ) q(nzt+1,nys:nyn,nxl:nxr) = nest_offl%q_top(0,1,1) IF ( air_chemistry .AND. nesting_offline_chem ) THEN DO n = 1, UBOUND( chem_species, 1 ) IF( nest_offl%chem_from_file_t(n) ) THEN chem_species(n)%conc(nzt+1,nys:nyn,nxl:nxr) = nest_offl%chem_top(0,1,1,n) ENDIF ENDDO ENDIF ENDIF ! !-- In case of offline nesting the pressure forms itself based on the prescribed lateral !-- boundary conditions. Hence, explicit forcing by pressure gradients via geostrophic wind !-- components is not necessary and would be canceled out by the perturbation pressure otherwise. !-- For this reason, set geostrophic wind components to zero. ug(nzb+1:nzt) = 0.0_wp vg(nzb+1:nzt) = 0.0_wp ENDIF ! !-- After boundary data is initialized, mask topography at the boundaries for the velocity !-- components. u = MERGE( u, 0.0_wp, BTEST( topo_flags, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( topo_flags, 2 ) ) w = MERGE( w, 0.0_wp, BTEST( topo_flags, 3 ) ) ! !-- Initial calculation of the boundary layer depth from the prescribed boundary data. This is !-- required for initialize the synthetic turbulence generator correctly. CALL nesting_offl_calc_zi ! !-- After boundary data is initialized, ensure mass conservation. Not necessary in restart runs. IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN CALL nesting_offl_mass_conservation ENDIF END SUBROUTINE nesting_offl_init !--------------------------------------------------------------------------------------------------! ! Description: !--------------------------------------------------------------------------------------------------! !> Interpolation function, used to interpolate boundary data in time. !--------------------------------------------------------------------------------------------------! FUNCTION interpolate_in_time( var_t1, var_t2, fac ) REAL(wp) :: fac !< interpolation factor REAL(wp) :: interpolate_in_time !< time-interpolated boundary value REAL(wp) :: var_t1 !< boundary value at t1 REAL(wp) :: var_t2 !< boundary value at t2 interpolate_in_time = ( 1.0_wp - fac ) * var_t1 + fac * var_t2 END FUNCTION interpolate_in_time END MODULE nesting_offl_mod