!> @file multi_agent_system_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 2016-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Authors: ! -------- ! @author sward ! ! ! Description: ! ------------ !> Multi Agent System for the simulation of pedestrian movement in urban environments !--------------------------------------------------------------------------------------------------! MODULE multi_agent_system_mod USE, INTRINSIC :: ISO_C_BINDING #if defined( __parallel ) USE MPI #endif USE basic_constants_and_equations_mod, & ONLY: pi USE control_parameters, & ONLY: biometeorology, & debug_output_timestep, & dt_3d, & dt_write_agent_data, & message_string, & time_since_reference_point USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE grid_variables, & ONLY: ddx, ddy, dx, dy USE indices, & ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, topo_top_ind USE random_function_mod, & ONLY: random_function USE kinds USE pegrid INTEGER(iwp), PARAMETER :: max_number_of_agent_groups = 100 !< maximum allowed number of agent groups INTEGER(iwp), PARAMETER :: nr_2_direction_move = 10000 !< parameter for agent exchange INTEGER(iwp), PARAMETER :: phase_init = 1 !< phase parameter INTEGER(iwp), PARAMETER :: phase_release = 2 !< phase parameter CHARACTER(LEN=15) :: bc_mas_lr = 'absorb' !< left/right boundary condition CHARACTER(LEN=15) :: bc_mas_ns = 'absorb' !< north/south boundary condition INTEGER(iwp) :: agt_path_size = 15 !< size of agent path array INTEGER(iwp) :: deleted_agents = 0 !< number of deleted agents per time step INTEGER(iwp) :: dim_size_agtnum_manual = 9999999 !< namelist parameter (see documentation) INTEGER(iwp) :: heap_count !< number of items in binary heap (for pathfinding) INTEGER(iwp) :: ibc_mas_lr !< agent left/right boundary condition dummy INTEGER(iwp) :: ibc_mas_ns !< agent north/south boundary condition dummy ! INTEGER(iwp) :: ind_pm10 = -9 !< chemical species index of PM10 ! INTEGER(iwp) :: ind_pm25 = -9 !< chemical species index of PM2.5 INTEGER(iwp) :: iran_agent = -1234567 !< number for random generator INTEGER(iwp) :: min_nr_agent = 2 !< namelist parameter (see documentation) #if defined( __parallel ) INTEGER(iwp) :: ghla_count_recv !< number of agents in left ghost layer INTEGER(iwp) :: ghna_count_recv !< number of agents in north ghost layer INTEGER(iwp) :: ghra_count_recv !< number of agents in right ghost layer INTEGER(iwp) :: ghsa_count_recv !< number of agents in south ghost layer INTEGER(iwp) :: nr_move_north !< number of agts to move north during exchange_horiz INTEGER(iwp) :: nr_move_south !< number of agts to move south during exchange_horiz #endif INTEGER(iwp) :: maximum_number_of_agents = 0 !< maximum number of agents during run INTEGER(iwp) :: number_of_agents = 0 !< number of agents for each grid box (3d array is saved on agt_count) INTEGER(iwp) :: number_of_agent_groups = 1 !< namelist parameter (see documentation) INTEGER(iwp) :: sort_count_mas = 0 !< counter for sorting agents INTEGER(iwp) :: step_dealloc_mas = 100 !< namelist parameter (see documentation) INTEGER(iwp) :: total_number_of_agents !< total number of agents in the whole model domain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: agt_count !< 3d array of number of agents of every grid box INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: s_measure_height !< k-index(s-grid) for measurement INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_s !< k-index of first s-gridpoint above topography INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: top_top_w !< k-index of first v-gridpoint above topography INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: obstacle_flags !< flags to identify corners and edges of topography that cannot !< be crossed by agents LOGICAL :: deallocate_memory_mas = .TRUE. !< namelist parameter (see documentation) LOGICAL :: dt_3d_reached_mas !< flag: agent timestep has reached model timestep LOGICAL :: dt_3d_reached_l_mas !< flag: agent timestep has reached model timestep LOGICAL :: agents_active = .FALSE. !< flag for agent system LOGICAL :: random_start_position_agents = .TRUE. !< namelist parameter (see documentation) LOGICAL :: read_agents_from_restartfile = .FALSE. !< namelist parameter (see documentation) LOGICAL :: agent_own_timestep = .FALSE. !< namelist parameter (see documentation) LOGICAL, DIMENSION(max_number_of_agent_groups) :: a_rand_target = .FALSE. !< namelist parameter (see documentation) REAL(wp) :: agent_maximum_age = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp) :: agent_substep_time = 0.0_wp !< time measurement during one LES timestep REAL(wp) :: alloc_factor_mas = 20.0_wp !< namelist parameter (see documentation) REAL(wp) :: coll_t_0 = 3. !< namelist parameter (see documentation) REAL(wp) :: corner_gate_start = 0.5_wp !< namelist parameter (see documentation) REAL(wp) :: corner_gate_width = 1.0_wp !< namelist parameter (see documentation) REAL(wp) :: dim_size_factor_agtnum = 1.0_wp !< namelist parameter (see documentation) REAL(wp) :: d_sigma_rep_agent !< inverse of sigma_rep_agent REAL(wp) :: d_sigma_rep_wall !< inverse of sigma_rep_wall REAL(wp) :: d_tau_accel_agent !< inverse of tau_accel_agent REAL(wp) :: desired_speed = 1.2_wp !< namelist parameter (see documentation) REAL(wp) :: des_sp_sig = .2_wp !< namelist parameter (see documentation) REAL(wp) :: dist_target_reached = 2.0_wp !< distance at which target counts as reached REAL(wp) :: dist_to_int_target = .25_wp !< namelist parameter (see documentation) REAL(wp) :: dt_agent = 0.02_wp !< namelist parameter (see documentation) REAL(wp) :: dt_arel = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp) :: end_time_arel = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp) :: force_x !< dummy value for force on current agent in x-direction REAL(wp) :: force_y !< dummy value for force on current agent in y-direction REAL(wp) :: max_dist_from_path = 0.25_wp !< distance from current path at which a new path is calculated REAL(wp) :: radius_agent = .25_wp !< namelist parameter (see documentation) REAL(wp) :: repuls_agent = 1.5_wp !< namelist parameter (see documentation) REAL(wp) :: repuls_wall = 7.0_wp !< namelist parameter (see documentation) REAL(wp) :: scan_radius_agent = 3.0_wp !< namelist parameter (see documentation) REAL(wp) :: scan_radius_wall = 2.0_wp !< namelist parameter (see documentation) REAL(wp) :: sigma_rep_agent = 0.3_wp !< namelist parameter (see documentation) REAL(wp) :: sigma_rep_wall = 0.1_wp !< namelist parameter (see documentation) REAL(wp) :: tau_accel_agent = 0.5_wp !< namelist parameter (see documentation) REAL(wp) :: time_arel = 0.0_wp !< time for agent release REAL(wp) :: time_write_agent_data = 0.0_wp !< write agent data at current time on file REAL(wp) :: v_max_agent = 1.3_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_x !< dummy path (x-coordinate) REAL(wp), DIMENSION(:), ALLOCATABLE :: dummy_path_y !< dummy path (y-coordinate) REAL(wp), DIMENSION(max_number_of_agent_groups) :: adx = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: ady = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: asl = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: asn = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: asr = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: ass = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_x = 9999999.9_wp !< namelist parameter (see documentation) REAL(wp), DIMENSION(max_number_of_agent_groups) :: at_y = 9999999.9_wp !< namelist parameter (see documentation) ! !-- Type for the definition of an agent TYPE agent_type INTEGER(iwp) :: block_nr !< number for sorting INTEGER(iwp) :: group !< number of agent group INTEGER(idp) :: id !< particle ID (64 bit integer) INTEGER(iwp) :: path_counter !< current target along path (path_x/y) LOGICAL :: agent_mask !< if this parameter is set to false the agent will be deleted REAL(wp) :: age !< age of agent REAL(wp) :: age_m !< age of agent REAL(wp) :: dt_sum !< sum of agents subtimesteps REAL(wp) :: clo !< clothing index REAL(wp) :: energy_storage !< energy stored by agent REAL(wp) :: clothing_temp !< energy stored by agent REAL(wp) :: actlev !< metabolic + work energy of the person REAL(wp) :: age_years !< physical age of the person REAL(wp) :: weight !< total weight of the person (kg) REAL(wp) :: height !< height of the person (m) REAL(wp) :: work !< workload of the agent (W) INTEGER(iwp) :: sex !< agents gender: 1 = male, 2 = female REAL(wp) :: force_x !< force term x-direction REAL(wp) :: force_y !< force term y-direction REAL(wp) :: origin_x !< origin x-position of agent REAL(wp) :: origin_y !< origin y-position of agent REAL(wp) :: pm10 !< PM10 concentration at agent position REAL(wp) :: pm25 !< PM25 concentration at agent position REAL(wp) :: speed_abs !< absolute value of agent speed REAL(wp) :: speed_e_x !< normalized speed of agent in x REAL(wp) :: speed_e_y !< normalized speed of agent in y REAL(wp) :: speed_des !< agent's desired speed REAL(wp) :: speed_x !< speed of agent in x REAL(wp) :: speed_y !< speed of agent in y REAL(wp) :: ipt !< instationary thermal index iPT (degree_C) REAL(wp) :: windspeed !< absolute value of windspeed at agent position REAL(wp) :: x !< x-position REAL(wp) :: y !< y-position REAL(wp) :: t !< temperature REAL(wp) :: t_x !< x-position REAL(wp) :: t_y !< y-position REAL(wp), DIMENSION(0:15) :: path_x !< agent path to target (x) REAL(wp), DIMENSION(0:15) :: path_y !< agent path to target (y) END TYPE agent_type TYPE(agent_type) :: zero_agent !< zero agent to avoid weird thing TYPE(agent_type), DIMENSION(:), POINTER :: agents !< Agent array for this grid cell #if defined( __parallel ) TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_l !< ghost layer left of pe domain TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_n !< ghost layer north of pe domain TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_r !< ghost layer right of pe domain TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: agt_gh_s !< ghost layer south of pe domain TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_north !< for agent exchange between PEs TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: move_also_south !< for agent exchange between PEs #endif ! !-- Type for 2D grid on which agents are stored TYPE grid_agent_def INTEGER(iwp), DIMENSION(0:3) :: start_index !< start agent index for current block INTEGER(iwp), DIMENSION(0:3) :: end_index !< end agent index for current block INTEGER(iwp) :: id_counter !< agent id counter (removeable?) LOGICAL :: time_loop_done !< timestep loop for agent advection TYPE(agent_type), POINTER, DIMENSION(:) :: agents !< Particle array for this grid cell END TYPE grid_agent_def TYPE(grid_agent_def), DIMENSION(:,:), ALLOCATABLE, TARGET :: grid_agents !< 2D grid on which agents are stored ! !-- Item in a priority queue (binary heap) TYPE heap_item INTEGER(iwp) :: mesh_id !< id of the submitted mesh point REAL(wp) :: priority !< priority of the mesh point (= distance so far + heuristic to goal) END TYPE heap_item TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: queue !< priority queue realized as binary heap ! !-- Type for mesh point in visibility graph TYPE mesh_point INTEGER(iwp) :: polygon_id !< Polygon the point belongs to INTEGER(iwp) :: vertex_id !< Vertex in the polygon INTEGER(iwp) :: noc !< number of connections INTEGER(iwp) :: origin_id !< ID of previous mesh point on path (A*) INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: connected_vertices !< Index of connected vertices REAL(wp) :: cost_so_far !< Cost to reach this mesh point (A*) REAL(wp) :: x !< x-coordinate REAL(wp) :: y !< y-coordinate REAL(wp) :: x_s !< corner shifted outward from building by 1m (x) REAL(wp) :: y_s !< corner shifted outward from building by 1m (y) REAL(wp), DIMENSION(:), ALLOCATABLE :: distance_to_vertex !< Distance to each vertex END TYPE mesh_point TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: mesh !< navigation mesh TYPE(mesh_point), DIMENSION(:), ALLOCATABLE :: tmp_mesh !< temporary navigation mesh ! !-- Vertex of a polygon TYPE vertex_type LOGICAL :: delete !< Flag to mark vertex for deletion REAL(wp) :: x !< x-coordinate REAL(wp) :: y !< y-coordinate END TYPE vertex_type ! !-- Polygon containing a number of vertices TYPE polygon_type INTEGER(iwp) :: nov !< Number of vertices in this polygon TYPE(vertex_type), DIMENSION(:), ALLOCATABLE :: vertices !< Array of vertices END TYPE polygon_type TYPE(polygon_type), DIMENSION(:), ALLOCATABLE :: polygons !< Building data in polygon form SAVE PRIVATE ! !-- Public functions PUBLIC mas_init, mas_last_actions, mas_parin, multi_agent_system ! !-- Public parameters, constants and initial values PUBLIC agents_active INTERFACE mas_parin MODULE PROCEDURE mas_parin END INTERFACE mas_parin INTERFACE mas_init MODULE PROCEDURE mas_init END INTERFACE mas_init INTERFACE mas_last_actions MODULE PROCEDURE mas_last_actions END INTERFACE mas_last_actions INTERFACE multi_agent_system MODULE PROCEDURE multi_agent_system END INTERFACE multi_agent_system CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Multi Agent System: !> executes a number of agents sub-timesteps until the model timestep is reached. !> The agent timestep is usually smaller than the model timestep. !--------------------------------------------------------------------------------------------------! SUBROUTINE multi_agent_system USE biometeorology_mod, & ONLY: bio_calc_ipt, & bio_calculate_mrt_grid, & bio_get_thermal_index_input_ij IMPLICIT NONE INTEGER(iwp) :: i !< counter INTEGER(iwp) :: ie !< counter INTEGER(iwp) :: is !< counter INTEGER(iwp) :: j !< counter INTEGER(iwp) :: je !< counter INTEGER(iwp) :: js !< counter INTEGER(iwp), SAVE :: mas_count = 0 !< counts the mas-calls INTEGER(iwp) :: a !< agent iterator ! !-- local meteorological conditions REAL(wp) :: pair !< air pressure (hPa) REAL(wp) :: ta !< air temperature (degree_C) REAL(wp) :: tmrt !< mean radiant temperature (degree_C) REAL(wp) :: v !< wind speed (local level) (m/s) REAL(wp) :: vp !< vapour pressure (hPa) LOGICAL :: first_loop_stride !< flag for first loop stride of agent sub-timesteps LOGICAL, SAVE :: first_call = .TRUE. !< first call of mas flag for output IF ( debug_output_timestep ) CALL debug_message( 'multi_agent_system', 'start' ) CALL cpu_log( log_point(9), 'mas', 'start' ) ! !-- Initialize variables for the next (sub-) timestep, i.e., for marking those agents to be deleted !-- after the timestep deleted_agents = 0 agent_substep_time = 0.0_wp ! !-- If necessary, release new set of agents IF ( time_arel >= dt_arel .AND. end_time_arel > time_since_reference_point ) THEN CALL mas_create_agent( phase_release ) ! !-- The MOD function allows for changes in the output interval with restart runs. time_arel = MOD( time_arel, MAX( dt_arel, dt_3d ) ) ENDIF first_loop_stride = .TRUE. grid_agents(:,:)%time_loop_done = .TRUE. ! !-- Set timestep variable IF ( .NOT. agent_own_timestep ) dt_agent = dt_3d ! !-- Timestep loop for agent transport. !-- This loop has to be repeated until the transport time of every agent (within the total domain!) !-- has reached the LES timestep (dt_3d). !-- Timestep scheme is Euler-forward. DO ! !-- Write agent data at current time on file. time_write_agent_data = time_write_agent_data + dt_agent agent_substep_time = agent_substep_time + dt_agent IF ( time_write_agent_data >= dt_write_agent_data ) THEN #if defined( __netcdf ) IF ( first_loop_stride ) CALL mas_get_prognostic_quantities CALL mas_data_output_agents ( first_call ) #else WRITE( message_string, * ) 'NetCDF is needed for agent output. ', & 'Set __netcdf in compiler options' CALL message( 'multi_agent_system', 'PA0071', 1, 2, 0, 6, 0 ) #endif IF(first_call) first_call = .FALSE. time_write_agent_data = time_write_agent_data - dt_write_agent_data ENDIF ! !-- Flag is true by default, will be set to false if an agent has not yet reached the model !-- timestep. grid_agents(:,:)%time_loop_done = .TRUE. ! !-- First part of agent transport: !-- Evaluate social forces for all agents at current positions CALL cpu_log( log_point_s(9), 'mas_social_forces', 'start' ) DO i = nxl, nxr DO j = nys, nyn number_of_agents = agt_count(j,i) ! !-- If grid cell is empty, cycle IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(j,i)%agents(1:number_of_agents) ! !-- Evaluation of social forces CALL mas_timestep_forces_call(i,j) ENDDO ENDDO CALL cpu_log( log_point_s(9), 'mas_social_forces', 'stop' ) ! !-- Second part of agent transport: !-- timestep CALL cpu_log( log_point_s(16), 'mas_timestep', 'start' ) DO i = nxl, nxr DO j = nys, nyn number_of_agents = agt_count(j,i) ! !-- If grid cell is empty, flag must be true IF ( number_of_agents <= 0 ) THEN grid_agents(j,i)%time_loop_done = .TRUE. CYCLE ENDIF agents => grid_agents(j,i)%agents(1:number_of_agents) agents(1:number_of_agents)%agent_mask = .TRUE. ! !-- Initialize the variable storing the total time that an agent has advanced within the !-- timestep procedure. IF ( first_loop_stride ) THEN agents(1:number_of_agents)%dt_sum = 0.0_wp ENDIF ! !-- Initialize the switch used for the loop exit condition checked at the end of this loop. !-- If at least one agent has failed to reach the LES timestep, this switch will be set !-- false in mas_transport. dt_3d_reached_l_mas = .TRUE. ! !-- Timestep CALL mas_timestep ! !-- Delete agents that have been simulated longer than allowed. CALL mas_boundary_conds( 'max_sim_time' ) ! !-- Delete agents that have reached target area. CALL mas_boundary_conds( 'target_area' ) ! !-- If not all agents of the actual grid cell have reached the LES timestep, this cell has !-- to do another loop iteration. Due to the fact that agents can move into neighboring !-- grid cell, these neighbor cells also have to perform another loop iteration. IF ( .NOT. dt_3d_reached_l_mas ) THEN js = MAX(nys,j-1) je = MIN(nyn,j+1) is = MAX(nxl,i-1) ie = MIN(nxr,i+1) grid_agents(js:je,is:ie)%time_loop_done = .FALSE. ENDIF ENDDO ENDDO CALL cpu_log( log_point_s(16), 'mas_timestep', 'stop' ) ! !-- Find out, if all agents on each PE have completed the LES timestep and set the switch !-- corespondingly. dt_3d_reached_l_mas = ALL(grid_agents(:,:)%time_loop_done) #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( dt_3d_reached_l_mas, dt_3d_reached_mas, 1, MPI_LOGICAL, MPI_LAND, & comm2d, ierr ) #else dt_3d_reached_mas = dt_3d_reached_l_mas #endif ! !-- Increment time since last release IF ( dt_3d_reached_mas ) time_arel = time_arel + dt_3d ! !-- Move Agents local to PE to a different grid cell CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'start' ) CALL mas_eh_move_agent ! !-- Horizontal boundary conditions including exchange between subdmains CALL mas_eh_exchange_horiz ! !-- Pack agents (eliminate those marked for deletion), determine new number of agents CALL mas_ps_sort_in_subboxes CALL cpu_log( log_point_s(18), 'mas_move_exch_sort', 'stop' ) ! !-- Initialize variables for the next (sub-) timestep, i.e., for marking those agents to be !-- deleted after the timestep deleted_agents = 0 IF ( biometeorology ) THEN ! !-- Fill out the MRT 2D grid from appropriate source (RTM, RRTMG,...) CALL bio_calculate_mrt_grid ( .FALSE. ) ! !-- Call of human thermal comfort mod (and UV exposure) DO i = nxl, nxr DO j = nys, nyn number_of_agents = agt_count(j,i) ! !-- If grid cell gets empty, cycle IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(j,i)%agents(1:number_of_agents) ! !-- Evaluation of social forces ! CALL bio_dynamic( i, j ) ! !-- Determine local meteorological conditions CALL bio_get_thermal_index_input_ij ( .FALSE., i, j, ta, vp, v, pair, tmrt ) DO a = 1, number_of_agents ! !-- Calculate instationary thermal indices based on local tmrt CALL bio_calc_ipt ( ta, vp, v, pair, tmrt, & agents(a)%dt_sum, & agents(a)%energy_storage, & agents(a)%clothing_temp, & agents(a)%clo, & agents(a)%actlev, & agents(a)%age_years, & agents(a)%weight, & agents(a)%height, & agents(a)%work, & agents(a)%sex, & agents(a)%ipt ) END DO ENDDO ENDDO ENDIF IF ( dt_3d_reached_mas ) EXIT first_loop_stride = .FALSE. ENDDO ! timestep loop ! !-- Deallocate unused memory IF ( deallocate_memory_mas .AND. mas_count == step_dealloc_mas ) THEN CALL mas_eh_dealloc_agents_array mas_count = 0 ELSEIF ( deallocate_memory_mas ) THEN mas_count = mas_count + 1 ENDIF CALL cpu_log( log_point(9), 'mas', 'stop' ) IF ( debug_output_timestep ) CALL debug_message( 'multi_agent_system', 'end' ) END SUBROUTINE multi_agent_system !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the direction vector from each agent to its current intermittent target. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_agent_direction IMPLICIT NONE LOGICAL :: path_flag !< true if new path must be calculated INTEGER(iwp) :: n !< loop variable over all agents in a grid box INTEGER(iwp) :: pc !< agent path counter REAL(wp) :: abs_dir !< length of direction vector (for normalization) ! REAL(wp) :: d_curr_target !< rounding influence expressed as x speed component ! REAL(wp) :: d_prev_target !< rounding influence expressed as x speed component REAL(wp) :: dir_x !< direction of agent (x) REAL(wp) :: dir_y !< direction of agent (y) ! REAL(wp) :: dist_round = 3. !< distance at which agents start rounding a corner REAL(wp) :: dtit !< distance to intermittent target ! REAL(wp) :: round_fac = 0.2 !< factor for rounding influence ! REAL(wp) :: speed_round_x !< rounding influence expressed as x speed component ! REAL(wp) :: speed_round_y !< rounding influence expressed as x speed component ! !-- Loop over all agents in the current grid box DO n = 1, number_of_agents path_flag = .FALSE. pc = agents(n)%path_counter ! !-- If no path was calculated for agent yet, do it. IF ( pc >= 999 ) THEN CALL mas_nav_find_path(n) pc = agents(n)%path_counter ! !-- Check if new path must be calculated and if so, do it. ELSE ! !-- Case one: Agent has come close enough to intermittent target. !-- -> chose new int target and calculate rest of path if no !-- new intermittent targets are left dtit = SQRT( ( agents(n)%x - agents(n)%path_x(pc) )**2 & + ( agents(n)%y - agents(n)%path_y(pc) )**2 ) IF ( dtit < dist_to_int_target ) THEN agents(n)%path_counter = agents(n)%path_counter + 1 pc = agents(n)%path_counter ! !-- Path counter out of scope (each agent can store a maximum of 15 intermittent targets on !-- the way to its final target); new path must be calculated. IF ( pc >= SIZE( agents(n)%path_x) ) THEN path_flag = .TRUE. ENDIF ! !-- Case two: Agent too far from path !-- -> set flag for new path to be calculated ELSEIF ( dist_point_to_edge(agents(n)%path_x(pc-1), & agents(n)%path_y(pc-1), & agents(n)%path_x(pc), & agents(n)%path_y(pc), & agents(n)%x, agents(n)%y) & > max_dist_from_path ) & THEN path_flag = .TRUE. ENDIF ! !-- If one of the above two cases was true, calculate new path and reset 0th path point. !-- This point (the last target the agent had) is needed for the agent's rounding of corners !-- and the calculation of its deviation from its current path. IF ( path_flag ) THEN CALL mas_nav_find_path(n) pc = agents(n)%path_counter ENDIF ENDIF ! !-- Normalize direction vector abs_dir = 1.0d-12 dir_x = agents(n)%path_x(pc) - agents(n)%x dir_y = agents(n)%path_y(pc) - agents(n)%y abs_dir = SQRT( dir_x**2 + dir_y**2 )+1.0d-12 !-- needed later for corner rounding ! dir_x = dir_x/abs_dir ! dir_y = dir_y/abs_dir ! dir_x = dir_x + speed_round_x ! dir_y = dir_y + speed_round_y ! abs_dir = SQRT(dir_x**2 + dir_y**2)+1.0d-12 agents(n)%speed_e_x = dir_x/abs_dir agents(n)%speed_e_y = dir_y/abs_dir ENDDO ! !-- corner rounding; to be added ! !-- Calculate direction change due to rounding of corners ! speed_round_x = 0. ! speed_round_y = 0. ! ! d_curr_target = SQRT( (agents(n)%path_x(pc) - agents(n)%x)**2 + & ! (agents(n)%path_y(pc) - agents(n)%y)**2 ) ! d_prev_target = SQRT( (agents(n)%path_x(pc-1) - agents(n)%x)**2 + & ! (agents(n)%path_y(pc-1) - agents(n)%y)**2 ) ! ! ! !-- Agent is close to next target and that target is not the final one ! IF ( d_curr_target < dist_round .AND. dist_round < & ! SQRT( (agents(n)%path_x(pc) - agents(n)%t_x)**2 + & ! (agents(n)%path_y(pc) - agents(n)%t_y)**2 ) ) & ! THEN ! speed_round_x = (agents(n)%path_x(pc+1) - agents(n)%path_x(pc)) / & ! ABS( agents(n)%path_x(pc) & ! - agents(n)%path_x(pc+1)) * round_fac * & ! SIN( pi/dist_round*d_curr_target ) ! speed_round_y = (agents(n)%path_y(pc+1) - agents(n)%path_y(pc)) / & ! ABS( agents(n)%path_y(pc) & ! - agents(n)%path_y(pc+1)) * round_fac * & ! SIN( pi/dist_round*d_curr_target ) ! ENDIF ! ! IF ( d_prev_target < dist_round ) THEN ! IF ( agents(n)%path_x(pc) /= agents(n)%path_x(pc+1) ) THEN ! speed_round_x = speed_round_x + & ! (agents(n)%path_x(pc) - agents(n)%path_x(pc+1)) / & ! ABS( agents(n)%path_x(pc) & ! - agents(n)%path_x(pc+1)) * round_fac * & ! SIN( pi/dist_round*d_prev_target ) ! ENDIF ! ! IF ( agents(n)%path_y(pc) /= agents(n)%path_y(pc+1) ) THEN ! speed_round_y = speed_round_y + & ! (agents(n)%path_y(pc) - agents(n)%path_y(pc+1)) / & ! ABS( agents(n)%path_y(pc) & ! - agents(n)%path_y(pc+1)) * round_fac * & ! SIN( pi/dist_round*d_prev_target ) ! ENDIF ! ENDIF END SUBROUTINE mas_agent_direction !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Boundary conditions for maximum time, target reached and out of domain !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_boundary_conds( location ) IMPLICIT NONE CHARACTER (LEN=*) :: location !< Identifier INTEGER(iwp) :: grp !< agent group INTEGER(iwp) :: n !< agent number REAL(wp) :: dist_to_target !< distance to target IF ( location == 'max_sim_time' ) THEN ! !-- Delete agents that have been simulated longer than allowed DO n = 1, number_of_agents IF ( agents(n)%age > agent_maximum_age .AND. agents(n)%agent_mask ) THEN agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDDO ENDIF IF ( location == 'target_area' ) THEN ! !-- Delete agents that entered target region DO n = 1, number_of_agents grp = agents(n)%group dist_to_target = SQRT( ( agents(n)%x - at_x(grp) )**2 + ( agents(n)%y - at_y(grp) )**2 ) IF ( dist_to_target < dist_target_reached ) THEN agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDDO ENDIF END SUBROUTINE mas_boundary_conds !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Release new agents at their respective sources !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_create_agent ( phase ) IMPLICIT NONE INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for agents INTEGER(iwp) :: i !< loop variable ( agent groups ) INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: jp !< index variable along y INTEGER(iwp) :: loop_stride !< loop variable for initialization INTEGER(iwp) :: n !< loop variable ( number of agents ) INTEGER(iwp) :: new_size !< new size of allocated memory for agents INTEGER(iwp) :: rn_side !< index of agent path INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_count !< start address of new agent INTEGER(iwp), DIMENSION(nysg:nyng,nxlg:nxrg) :: local_start !< start address of new agent LOGICAL :: first_stride !< flag for initialization REAL(wp) :: pos_x !< increment for agent position in x REAL(wp) :: pos_y !< increment for agent position in y REAL(wp) :: rand_contr !< dummy argument for random position REAL(wp) :: rn_side_dum !< index of agent path TYPE(agent_type),TARGET :: tmp_agent !< temporary agent used for initialization ! !-- Calculate agent positions and store agent attributes, if agent is situated on this PE. DO loop_stride = 1, 2 first_stride = (loop_stride == 1) IF ( first_stride ) THEN local_count = 0 ! count number of agents ELSE local_count = agt_count ! Start address of new agents ENDIF DO i = 1, number_of_agent_groups pos_y = ass(i) DO WHILE ( pos_y <= asn(i) ) IF ( pos_y >= nys * dy .AND. pos_y < ( nyn + 1 ) * dy ) THEN pos_x = asl(i) xloop: DO WHILE ( pos_x <= asr(i) ) IF ( pos_x >= nxl * dx .AND. pos_x < ( nxr + 1) * dx ) THEN tmp_agent%agent_mask = .TRUE. tmp_agent%group = i tmp_agent%id = 0_idp tmp_agent%block_nr = -1 tmp_agent%path_counter = 999 !SIZE(tmp_agent%path_x) tmp_agent%age = 0.0_wp tmp_agent%age_m = 0.0_wp tmp_agent%dt_sum = 0.0_wp tmp_agent%clo = -999.0_wp tmp_agent%energy_storage= 0.0_wp tmp_agent%ipt = 99999.0_wp tmp_agent%clothing_temp = -999._wp !< energy stored by agent (W) tmp_agent%actlev = 134.6862_wp !< metabolic + work energy of the person tmp_agent%age_years = 35._wp !< physical age of the person tmp_agent%weight = 75._wp !< total weight of the person (kg) tmp_agent%height = 1.75_wp !< height of the person (m) tmp_agent%work = 134.6862_wp !< workload of the agent (W) tmp_agent%sex = 1 !< agents gender: 1 = male, 2 = female tmp_agent%force_x = 0.0_wp tmp_agent%force_y = 0.0_wp tmp_agent%origin_x = pos_x tmp_agent%origin_y = pos_y tmp_agent%speed_abs = 0.0_wp tmp_agent%speed_e_x = 0.0_wp tmp_agent%speed_e_y = 0.0_wp tmp_agent%speed_des = random_normal(desired_speed,des_sp_sig) tmp_agent%speed_x = 0.0_wp tmp_agent%speed_y = 0.0_wp tmp_agent%x = pos_x tmp_agent%y = pos_y tmp_agent%path_x = -1.0_wp tmp_agent%path_y = -1.0_wp tmp_agent%t_x = - pi tmp_agent%t_y = - pi ! !-- Determine the grid indices of the agent position ip = tmp_agent%x * ddx jp = tmp_agent%y * ddy ! !-- Give each agent its target IF ( a_rand_target(i) ) THEN ! !-- Agent shall receive random target just outside simulated area rn_side_dum = random_function(iran_agent) rn_side = FLOOR( 4.*rn_side_dum ) IF ( rn_side < 2 ) THEN IF ( rn_side == 0 ) THEN tmp_agent%t_y = -2 * dy ELSE tmp_agent%t_y = ( ny + 3 ) * dy ENDIF tmp_agent%t_x = random_function(iran_agent) * ( nx + 1 ) * dx ELSE IF ( rn_side == 2 ) THEN tmp_agent%t_x = -2 * dx ELSE tmp_agent%t_x = ( nx + 3 ) * dx ENDIF tmp_agent%t_y = random_function(iran_agent) * ( ny + 1 ) * dy ENDIF ! !-- Agent gets target of her group ELSE tmp_agent%t_x = at_x(i) tmp_agent%t_y = at_y(i) ENDIF local_count(jp,ip) = local_count(jp,ip) + 1 IF ( .NOT. first_stride ) THEN grid_agents(jp,ip)%agents(local_count(jp,ip)) = tmp_agent ENDIF ENDIF pos_x = pos_x + adx(i) ENDDO xloop ENDIF pos_y = pos_y + ady(i) ENDDO ENDDO ! !-- Allocate or reallocate agents array to new size IF ( first_stride ) THEN DO ip = nxlg, nxrg DO jp = nysg, nyng IF ( phase == phase_init ) THEN IF ( local_count(jp,ip) > 0 ) THEN alloc_size = MAX( INT( local_count(jp,ip) * & ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ), & min_nr_agent ) ELSE alloc_size = min_nr_agent ENDIF ALLOCATE( grid_agents(jp,ip)%agents(1:alloc_size) ) DO n = 1, alloc_size grid_agents(jp,ip)%agents(n) = zero_agent ENDDO ELSEIF ( phase == phase_release ) THEN IF ( local_count(jp,ip) > 0 ) THEN new_size = local_count(jp,ip) + agt_count(jp,ip) alloc_size = MAX( INT( new_size * & ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ), & min_nr_agent ) IF( alloc_size > SIZE( grid_agents(jp,ip)%agents) ) THEN CALL mas_eh_realloc_agents_array(ip,jp,alloc_size) ENDIF ENDIF ENDIF ENDDO ENDDO ENDIF ENDDO local_start = agt_count+1 agt_count = local_count ! !-- Calculate agent IDs DO ip = nxl, nxr DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = local_start(jp,ip), number_of_agents !only new agents agents(n)%id = 10000_idp**2 * grid_agents(jp,ip)%id_counter + 10000_idp * jp + ip ! !-- Count the number of agents that have been released before grid_agents(jp,ip)%id_counter = grid_agents(jp,ip)%id_counter + 1 ENDDO ENDDO ENDDO ! !-- Add random fluctuation to agent positions. IF ( random_start_position_agents ) THEN DO ip = nxl, nxr DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) ! !-- Move only new agents. Moreover, limit random fluctuation in order to prevent that !-- agents move more than one grid box, which would lead to problems concerning agent !-- exchange between processors in case adx/ady are larger than dx/dy, respectively. DO n = local_start(jp,ip), number_of_agents IF ( asl(agents(n)%group) /= asr(agents(n)%group) ) THEN rand_contr = ( random_function( iran_agent ) - 0.5_wp ) * adx(agents(n)%group) agents(n)%x = agents(n)%x + MERGE( rand_contr, SIGN( dx, rand_contr ), & ABS( rand_contr ) < dx & ) ENDIF IF ( ass(agents(n)%group) /= asn(agents(n)%group) ) THEN rand_contr = ( random_function( iran_agent ) - 0.5_wp ) * ady(agents(n)%group) agents(n)%y = agents(n)%y + & MERGE( rand_contr, SIGN( dy, rand_contr ), ABS( rand_contr ) < dy ) ENDIF ENDDO ! !-- Delete agents that have been simulated longer than allowed CALL mas_boundary_conds( 'max_sim_time' ) ! !-- Delete agents that have reached target area CALL mas_boundary_conds( 'target_area' ) ENDDO ENDDO ! !-- Exchange agents between grid cells and processors CALL mas_eh_move_agent CALL mas_eh_exchange_horiz ENDIF ! !-- In case of random_start_position_agents, delete agents identified by mas_eh_exchange_horiz and !-- mas_boundary_conds. Then sort agents into blocks, which is needed for a fast interpolation of !-- the LES fields on the agent position. CALL mas_ps_sort_in_subboxes ! !-- Determine the current number of agents number_of_agents = 0 DO ip = nxl, nxr DO jp = nys, nyn number_of_agents = number_of_agents + agt_count(jp,ip) ENDDO ENDDO ! !-- Calculate the number of agents of the total domain #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( number_of_agents, total_number_of_agents, 1, MPI_INTEGER, MPI_SUM, comm2d, & ierr ) #else total_number_of_agents = number_of_agents #endif RETURN END SUBROUTINE mas_create_agent !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Creates flags that indicate if a gridbox contains edges or corners. These flags are used for !> agents to check if obstacles are close to them. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_create_obstacle_flags USE arrays_3d, & ONLY: zw IMPLICIT NONE INTEGER(iwp) :: il INTEGER(iwp) :: jl ALLOCATE( obstacle_flags(nysg:nyng,nxlg:nxrg) ) obstacle_flags = 0 DO il = nxlg, nxrg DO jl = nysg, nyng ! !-- Exclude cyclic topography boundary IF ( il < 0 .OR. il > nx .OR. jl < 0 .OR. jl > ny ) CYCLE ! !-- North edge IF ( jl < nyng ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 0 ) ENDIF ENDIF ! !-- North right corner IF ( jl < nyng .AND. il < nxrg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl+1,il+1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il+1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 1 ) ENDIF ENDIF ! !-- Right edge IF ( il < nxrg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl,il+1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 2 ) ENDIF ENDIF ! !-- South right corner IF ( jl > nysg .AND. il < nxrg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl,il+1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl-1,il+1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & ( zw(top_top_w(jl,il) ) - zw( top_top_w(jl-1,il+1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 3 ) ENDIF ENDIF ! !-- South edge IF ( jl > nysg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl-1,il) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 4 ) ENDIF ENDIF ! !-- South left corner IF ( jl > nysg .AND. il > nxlg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl-1,il) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl-1,il-1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw(top_top_w(jl-1,il-1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 5 ) ENDIF ENDIF ! !-- Left edge IF ( il > nxlg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & ( zw(top_top_w(jl,il) ) - zw(top_top_w(jl,il-1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 6 ) ENDIF ENDIF ! !-- North left corner IF ( jl < nyng .AND. il > nxlg ) THEN IF ( ( top_top_s(jl,il) - top_top_s(jl,il-1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl+1,il-1) ) > 1 .AND. & ( top_top_s(jl,il) - top_top_s(jl+1,il) ) > 1 .AND. & ( zw( top_top_w(jl,il) ) - zw( top_top_w(jl+1,il-1) ) ) > 0.51_wp ) & THEN obstacle_flags(jl,il) = IBSET( obstacle_flags(jl,il), 7 ) ENDIF ENDIF ENDDO ENDDO END SUBROUTINE mas_create_obstacle_flags !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Write agent data in netCDF format !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_data_output_agents( ftest ) USE control_parameters, & ONLY: agt_time_count, biometeorology, end_time, message_string, multi_agent_system_end, & multi_agent_system_start USE netcdf_interface, & ONLY: nc_stat, id_set_agt, id_var_time_agt, id_var_agt, netcdf_handle_error USE pegrid #if defined( __netcdf ) USE NETCDF #endif USE mas_global_attributes, & ONLY: dim_size_agtnum IMPLICIT NONE #if defined( __parallel ) INTEGER(iwp) :: agt_size !< Agent size in bytes INTEGER(iwp) :: n !< counter (number of PEs) INTEGER(iwp) :: noa_rcv !< received number of agents #endif INTEGER(iwp) :: dummy !< dummy INTEGER(iwp) :: ii !< counter (x) INTEGER(iwp) :: ip !< counter (x) INTEGER(iwp) :: jp !< counter (y) INTEGER(iwp) :: noa !< number of agents INTEGER(iwp) :: out_noa !< number of agents for output #if defined( __parallel ) INTEGER(iwp), DIMENSION(0:numprocs-1) :: noa_arr !< number of agents on each PE #endif ! !-- SAVE attribute required to avoid compiler warning about pointer outlive the pointer target TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET, SAVE :: trf_agents !< all agents on current PE #if defined( __parallel ) TYPE(agent_type), DIMENSION(:), ALLOCATABLE, TARGET, SAVE :: out_agents !< all agents in entire domain #endif LOGICAL, INTENT (INOUT) :: ftest LOGICAL, SAVE :: agt_dimension_exceeded = .FALSE. CALL cpu_log( log_point_s(17), 'mas_data_output', 'start' ) ! !-- Get total number of agents and put all agents on one PE in one array noa = 0 DO ip = nxl, nxr DO jp = nys, nyn noa = noa + agt_count(jp,ip) ENDDO ENDDO IF ( noa > 0 ) THEN ALLOCATE( trf_agents(1:noa) ) dummy = 1 DO ip = nxl, nxr DO jp = nys, nyn IF ( agt_count(jp,ip) == 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:agt_count(jp,ip)) trf_agents(dummy:(dummy-1+agt_count(jp,ip))) = agents dummy = dummy + agt_count(jp,ip) ENDDO ENDDO ENDIF #if defined( __parallel ) ! !-- Gather all agents on PE0 for output IF ( myid == 0 ) THEN noa_arr(0) = noa ! !-- Receive data from all other PEs. DO n = 1, numprocs-1 CALL MPI_RECV( noa_arr(n), 1, MPI_INTEGER, n, 0, comm2d, status, ierr ) ENDDO ELSE CALL MPI_SEND( noa, 1, MPI_INTEGER, 0, 0, comm2d, ierr ) ENDIF CALL MPI_BARRIER( comm2d, ierr ) agt_size = STORAGE_SIZE( zero_agent ) / 8 IF ( myid == 0 ) THEN ! !-- Receive data from all other PEs. out_noa = SUM( noa_arr ) IF ( out_noa > 0 ) THEN ALLOCATE( out_agents(1:out_noa) ) IF ( noa > 0 ) THEN out_agents(1:noa) = trf_agents ENDIF noa_rcv = noa DO n = 1, numprocs-1 IF ( noa_arr(n) > 0 ) THEN CALL MPI_RECV( out_agents(noa_rcv+1), noa_arr(n) * agt_size, MPI_BYTE, n, 0, & comm2d, status, ierr ) noa_rcv = noa_rcv + noa_arr(n) ENDIF ENDDO ELSE ALLOCATE( out_agents(1:2) ) out_agents = zero_agent out_noa = 2 ENDIF ELSE IF ( noa > 0 ) THEN CALL MPI_SEND( trf_agents(1), noa*agt_size, MPI_BYTE, 0, 0, comm2d, ierr ) ENDIF ENDIF ! !-- A barrier has to be set, because otherwise some PEs may proceed too fast so that PE0 may receive !-- wrong data on tag 0. CALL MPI_BARRIER( comm2d, ierr ) #endif IF ( myid == 0 ) THEN #if defined( __parallel ) agents => out_agents #else agents => trf_agents #endif #if defined( __netcdf ) ! !-- Update maximum number of agents maximum_number_of_agents = MAX(maximum_number_of_agents, out_noa) ! !-- Output in netCDF format IF ( ftest ) THEN ! !-- First, define size of agent number dimension from amount of agents released, release !-- interval, time of agent simulation and max age of agents. dim_size_agtnum = MIN( MIN( multi_agent_system_end, end_time ) & - multi_agent_system_start, & agent_maximum_age) DO ii = 1, number_of_agent_groups dim_size_agtnum = dim_size_agtnum & + ( FLOOR( ( asr(ii)-asl(ii) ) / adx(ii) ) + 1 ) & * ( FLOOR( ( asn(ii)-ass(ii) ) / ady(ii) ) + 1 ) & * ( FLOOR( dim_size_agtnum / dt_arel ) + 1 ) & * dim_size_factor_agtnum dim_size_agtnum = MIN( dim_size_agtnum, dim_size_agtnum_manual ) ENDDO CALL check_open( 118 ) ENDIF ! !-- Update the NetCDF time axis agt_time_count = agt_time_count + 1 IF ( .NOT. agt_dimension_exceeded ) THEN ! !-- If number of agents to be output exceeds dimension, set flag and print warning. IF ( out_noa > dim_size_agtnum ) THEN agt_dimension_exceeded = .TRUE. WRITE( message_string, '(A,F11.1,2(A,I8))' ) & 'Number of agents exceeds agent dimension.' // & '&Starting at time_since_reference_point = ', & time_since_reference_point, & ' s, &data may be missing.'// & '&Number of agents: ', out_noa, & '&Agent dimension size: ', dim_size_agtnum CALL message( 'mas_data_output_agents', 'PA0420', 0, 1, 0, 6, 0 ) ENDIF ENDIF ! !-- Reduce number of output agents to dimension size, if necessary. IF ( agt_dimension_exceeded ) THEN out_noa = MIN( out_noa, dim_size_agtnum ) ENDIF nc_stat = NF90_PUT_VAR( id_set_agt, id_var_time_agt, & (/ time_since_reference_point + agent_substep_time /), & start = (/ agt_time_count /), & count = (/ 1 /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 1 ) ! !-- Output agent attributes nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(1), agents%id, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 2 ) nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(2), agents%x, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 3 ) nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(3), agents%y, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 4 ) nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(4), agents%windspeed, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 5 ) nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(5), agents%t, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 6 ) nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(6), agents%group, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 7 ) IF ( biometeorology ) THEN nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(7), agents%ipt, & start = (/ 1, agt_time_count /), & count = (/ out_noa /) ) CALL netcdf_handle_error( 'mas_data_output_agents', 8 ) ENDIF ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(8), agents%pm10, & ! start = (/ 1, agt_time_count /), & ! count = (/ out_noa /) ) ! CALL netcdf_handle_error( 'mas_data_output_agents', 9 ) ! ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(9), agents%pm25, & ! start = (/ 1, agt_time_count /), & ! count = (/ out_noa /) ) ! CALL netcdf_handle_error( 'mas_data_output_agents', 10 ) ! ! ! nc_stat = NF90_PUT_VAR( id_set_agt, id_var_agt(9), agents%uv, & ! start = (/ 1, agt_time_count /), & ! count = (/ out_noa /) ) ! CALL netcdf_handle_error( 'mas_data_output_agents', 10 ) CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) #endif #if defined( __parallel ) IF ( ALLOCATED( out_agents ) ) DEALLOCATE( out_agents ) #endif ELSE CALL cpu_log( log_point_s(17), 'mas_data_output', 'stop' ) ENDIF IF ( ALLOCATED( trf_agents ) ) DEALLOCATE( trf_agents ) END SUBROUTINE mas_data_output_agents #if defined( __parallel ) !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> If an agent moves from one processor to another, this subroutine moves the corresponding elements !> from the agent arrays of the old grid cells to the agent arrays of the new grid cells. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_add_agents_to_gridcell (agent_array) IMPLICIT NONE INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box INTEGER(iwp) :: ip !< grid index (x) of agent INTEGER(iwp) :: jp !< grid index (x) of agent INTEGER(iwp) :: n !< index variable of agent LOGICAL :: pack_done !< flag to indicate that packing is done TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary agent array for reallocation pack_done = .FALSE. DO n = 1, SIZE(agent_array) IF ( .NOT. agent_array(n)%agent_mask ) CYCLE ip = agent_array(n)%x * ddx jp = agent_array(n)%y * ddy IF ( ip >= nxl .AND. ip <= nxr .AND. jp >= nys .AND. jp <= nyn ) THEN ! agent stays on processor number_of_agents = agt_count(jp,ip) agents => grid_agents(jp,ip)%agents(1:number_of_agents) aindex = agt_count(jp,ip)+1 IF( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN IF ( pack_done ) THEN CALL mas_eh_realloc_agents_array (ip,jp) ELSE CALL mas_ps_pack agt_count(jp,ip) = number_of_agents aindex = agt_count(jp,ip)+1 IF ( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN CALL mas_eh_realloc_agents_array (ip,jp) ENDIF pack_done = .TRUE. ENDIF ENDIF grid_agents(jp,ip)%agents(aindex) = agent_array(n) agt_count(jp,ip) = aindex ELSE IF ( jp <= nys - 1 ) THEN nr_move_south = nr_move_south+1 ! !-- Before agent information is swapped to exchange-array, check if enough memory is !-- allocated. If required, reallocate exchange array. IF ( nr_move_south > SIZE( move_also_south ) ) THEN ! !-- At first, allocate further temporary array to swap agent information. ALLOCATE( temp_ns( SIZE( move_also_south ) + nr_2_direction_move ) ) temp_ns(1:nr_move_south-1) = move_also_south(1:nr_move_south-1) DEALLOCATE( move_also_south ) ALLOCATE( move_also_south( SIZE(temp_ns) ) ) move_also_south(1:nr_move_south-1) = temp_ns(1:nr_move_south-1) DEALLOCATE( temp_ns ) ENDIF move_also_south(nr_move_south) = agent_array(n) IF ( jp == -1 ) THEN ! !-- Apply boundary condition along y IF ( ibc_mas_ns == 0 ) THEN move_also_south(nr_move_south)%y = move_also_south(nr_move_south)%y & + ( ny + 1 ) * dy move_also_south(nr_move_south)%origin_y = & move_also_south(nr_move_south)%origin_y & + ( ny + 1 ) * dy ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption move_also_south(nr_move_south)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ELSEIF ( jp >= nyn+1 ) THEN nr_move_north = nr_move_north+1 ! !-- Before agent information is swapped to exchange-array, check if enough memory is !-- allocated. If required, reallocate exchange array. IF ( nr_move_north > SIZE( move_also_north ) ) THEN ! !-- At first, allocate further temporary array to swap agent information. ALLOCATE( temp_ns( SIZE( move_also_north ) + nr_2_direction_move ) ) temp_ns(1:nr_move_north-1) = move_also_south(1:nr_move_north-1) DEALLOCATE( move_also_north ) ALLOCATE( move_also_north(SIZE(temp_ns)) ) move_also_north(1:nr_move_north-1) = temp_ns(1:nr_move_north-1) DEALLOCATE( temp_ns ) ENDIF move_also_north(nr_move_north) = agent_array(n) IF ( jp == ny+1 ) THEN ! !-- Apply boundary condition along y IF ( ibc_mas_ns == 0 ) THEN move_also_north(nr_move_north)%y = move_also_north(nr_move_north)%y & - ( ny + 1 ) * dy move_also_north(nr_move_north)%origin_y = & move_also_north(nr_move_north)%origin_y & - ( ny + 1 ) * dy ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption move_also_north(nr_move_north)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ENDIF ENDIF ENDDO RETURN END SUBROUTINE mas_eh_add_agents_to_gridcell #endif #if defined( __parallel ) !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> After ghost layer agents have been received from neighboring PEs, this subroutine sorts them into !> the corresponding grid cells !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_add_ghost_agents_to_gridcell (agent_array) IMPLICIT NONE INTEGER(iwp) :: aindex !< dummy argument for new number of agents per grid box INTEGER(iwp) :: ip !< grid index (x) of agent INTEGER(iwp) :: jp !< grid index (x) of agent INTEGER(iwp) :: n !< index variable of agent LOGICAL :: pack_done !< flag to indicate that packing is done TYPE(agent_type), DIMENSION(:), INTENT(IN) :: agent_array !< new agents in a grid box pack_done = .FALSE. DO n = 1, SIZE(agent_array) IF ( .NOT. agent_array(n)%agent_mask ) CYCLE ip = agent_array(n)%x * ddx jp = agent_array(n)%y * ddy IF ( ip < nxl .OR. ip > nxr .OR. jp < nys .OR. jp > nyn ) THEN number_of_agents = agt_count(jp,ip) agents => grid_agents(jp,ip)%agents(1:number_of_agents) aindex = agt_count(jp,ip)+1 IF( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN IF ( pack_done ) THEN CALL mas_eh_realloc_agents_array (ip,jp) ELSE CALL mas_ps_pack agt_count(jp,ip) = number_of_agents aindex = agt_count(jp,ip)+1 IF ( aindex > SIZE( grid_agents(jp,ip)%agents ) ) THEN CALL mas_eh_realloc_agents_array (ip,jp) ENDIF pack_done = .TRUE. ENDIF ENDIF grid_agents(jp,ip)%agents(aindex) = agent_array(n) agt_count(jp,ip) = aindex ENDIF ENDDO END SUBROUTINE mas_eh_add_ghost_agents_to_gridcell #endif !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Resizing of agent arrays !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_dealloc_agents_array IMPLICIT NONE INTEGER(iwp) :: i !< grid index (x) of agent INTEGER(iwp) :: j !< grid index (y) of agent INTEGER(iwp) :: new_size !< new array size INTEGER(iwp) :: noa !< number of agents INTEGER(iwp) :: old_size !< old array size LOGICAL :: dealloc !< flag that indicates if reallocation is necessary TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array DO i = nxlg, nxrg DO j = nysg, nyng ! !-- Determine number of active agents noa = agt_count(j,i) ! !-- Determine allocated memory size old_size = SIZE( grid_agents(j,i)%agents ) ! !-- Check for large unused memory dealloc = ( ( noa < min_nr_agent .AND. old_size > min_nr_agent ) .OR. & ( noa > min_nr_agent .AND. & old_size - noa * ( 1.0_wp + 0.01_wp * alloc_factor_mas ) > 0.0_wp ) & ) ! !-- If large unused memory was found, resize the corresponding array IF ( dealloc ) THEN IF ( noa < min_nr_agent ) THEN new_size = min_nr_agent ELSE new_size = INT( noa * ( 1.0_wp + 0.01_wp * alloc_factor_mas ) ) ENDIF IF ( noa <= 10 ) THEN tmp_agents_s(1:noa) = grid_agents(j,i)%agents(1:noa) DEALLOCATE(grid_agents(j,i)%agents) ALLOCATE(grid_agents(j,i)%agents(1:new_size)) grid_agents(j,i)%agents(1:noa) = tmp_agents_s(1:noa) grid_agents(j,i)%agents(noa+1:new_size) = zero_agent ELSE ALLOCATE(tmp_agents_d(noa)) tmp_agents_d(1:noa) = grid_agents(j,i)%agents(1:noa) DEALLOCATE(grid_agents(j,i)%agents) ALLOCATE(grid_agents(j,i)%agents(new_size)) grid_agents(j,i)%agents(1:noa) = tmp_agents_d(1:noa) grid_agents(j,i)%agents(noa+1:new_size) = zero_agent DEALLOCATE(tmp_agents_d) ENDIF ENDIF ENDDO ENDDO END SUBROUTINE mas_eh_dealloc_agents_array !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Exchange between subdomains. !> As soon as one agent has moved beyond the boundary of the domain, it is included in the relevant !> transfer arrays and marked for subsequent deletion on this PE. !> First sweep for crossings in x direction. Find out first the number of agents to be transferred !> and allocate temporary arrays needed to store them. !> For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains !> on the PE, but the agent coordinate has to be adjusted. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_exchange_horiz IMPLICIT NONE INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: jp !< index variable along y INTEGER(iwp) :: n !< agent index variable #if defined( __parallel ) INTEGER(iwp) :: i !< grid index (x) of agent positition INTEGER(iwp) :: j !< grid index (y) of agent positition INTEGER(iwp) :: par_size !< Agent size in bytes INTEGER(iwp) :: trla_count !< number of agents send to left PE INTEGER(iwp) :: trla_count_recv !< number of agents receive from right PE INTEGER(iwp) :: trna_count !< number of agents send to north PE INTEGER(iwp) :: trna_count_recv !< number of agents receive from south PE INTEGER(iwp) :: trra_count !< number of agents send to right PE INTEGER(iwp) :: trra_count_recv !< number of agents receive from left PE INTEGER(iwp) :: trsa_count !< number of agents send to south PE INTEGER(iwp) :: trsa_count_recv !< number of agents receive from north PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvla !< agents received from right PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvna !< agents received from south PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvra !< agents received from left PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: rvsa !< agents received from north PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trla !< agents send to left PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trna !< agents send to north PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trra !< agents send to right PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: trsa !< agents send to south PE ! !-- Exchange between subdomains. !-- As soon as one agent has moved beyond the boundary of the domain, it is included in the relevant !-- transfer arrays and marked for subsequent deletion on this PE. !-- First sweep for crossings in x direction. Find out first the number of agents to be transferred !-- and allocate temporary arrays needed to store them. !-- For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains !-- on the PE, but the agent coordinate has to be adjusted. trla_count = 0 trra_count = 0 trla_count_recv = 0 trra_count_recv = 0 IF ( npex /= 1 ) THEN ! !-- First calculate the storage necessary for sending and receiving the data. !-- Compute only first (nxl) and last (nxr) loop iterration. DO ip = nxl, nxr, nxr - nxl DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents IF ( agents(n)%agent_mask ) THEN i = agents(n)%x * ddx ! !-- Above calculation does not work for indices less than zero IF ( agents(n)%x < 0.0_wp ) i = -1 IF ( i < nxl ) THEN trla_count = trla_count + 1 ELSEIF ( i > nxr ) THEN trra_count = trra_count + 1 ENDIF ENDIF ENDDO ENDDO ENDDO IF ( trla_count == 0 ) trla_count = 1 IF ( trra_count == 0 ) trra_count = 1 ALLOCATE( trla(trla_count), trra(trra_count) ) trla = zero_agent trra = zero_agent trla_count = 0 trra_count = 0 ENDIF ! !-- Compute only first (nxl) and last (nxr) loop iterration DO ip = nxl, nxr, nxr-nxl DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents ! !-- Only those agents that have not been marked as 'deleted' may be moved. IF ( agents(n)%agent_mask ) THEN i = agents(n)%x * ddx ! !-- Above calculation does not work for indices less than zero IF ( agents(n)%x < 0.0_wp ) i = -1 IF ( i < nxl ) THEN IF ( i < 0 ) THEN ! !-- Apply boundary condition along x IF ( ibc_mas_lr == 0 ) THEN ! !-- Cyclic condition IF ( npex == 1 ) THEN agents(n)%x = ( nx + 1 ) * dx + agents(n)%x agents(n)%origin_x = ( nx + 1 ) * dx + agents(n)%origin_x ELSE trla_count = trla_count + 1 trla(trla_count) = agents(n) trla(trla_count)%x = ( nx + 1 ) * dx + trla(trla_count)%x trla(trla_count)%origin_x = trla(trla_count)%origin_x + ( nx + 1 ) * dx agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 IF ( trla(trla_count)%x >= (nx + 1)* dx - 1.0E-12_wp ) THEN trla(trla_count)%x = trla(trla_count)%x - 1.0E-10_wp trla(trla_count)%origin_x = trla(trla_count)%origin_x - 1 ENDIF ENDIF ELSEIF ( ibc_mas_lr == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSE ! !-- Store agent data in the transfer array, which will be send to the neighbouring !-- PE. trla_count = trla_count + 1 trla(trla_count) = agents(n) agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( i > nxr ) THEN IF ( i > nx ) THEN ! !-- Apply boundary condition along x IF ( ibc_mas_lr == 0 ) THEN ! !-- Cyclic condition IF ( npex == 1 ) THEN agents(n)%x = agents(n)%x - ( nx + 1 ) * dx agents(n)%origin_x = agents(n)%origin_x - ( nx + 1 ) * dx ELSE trra_count = trra_count + 1 trra(trra_count) = agents(n) trra(trra_count)%x = trra(trra_count)%x - ( nx + 1 ) * dx trra(trra_count)%origin_x = trra(trra_count)%origin_x - ( nx + 1 ) * dx agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( ibc_mas_lr == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSE ! !-- Store agent data in the transfer array, which will be send to the neighbouring !-- PE. trra_count = trra_count + 1 trra(trra_count) = agents(n) agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ! !-- Allocate arrays required for north-south exchange, as these are used directly after agents are !-- exchange along x-direction. ALLOCATE( move_also_north(1:nr_2_direction_move) ) ALLOCATE( move_also_south(1:nr_2_direction_move) ) nr_move_north = 0 nr_move_south = 0 ! !-- Send left boundary, receive right boundary (but first exchange how many and check if agent !-- storage must be extended). IF ( npex /= 1 ) THEN CALL MPI_SENDRECV( trla_count, 1, MPI_INTEGER, pleft, 0, & trra_count_recv, 1, MPI_INTEGER, pright, 0, & comm2d, status, ierr ) ALLOCATE( rvra(MAX( 1,trra_count_recv )) ) ! !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure !-- agent_type (due to the calculation of par_size) par_size = STORAGE_SIZE( trla(1) ) / 8 CALL MPI_SENDRECV( trla, MAX( 1, trla_count ) * par_size, MPI_BYTE, pleft, 1, & rvra, MAX( 1, trra_count_recv )* par_size, MPI_BYTE, pright, 1, & comm2d, status, ierr ) IF ( trra_count_recv > 0 ) THEN CALL mas_eh_add_agents_to_gridcell(rvra(1:trra_count_recv)) ENDIF DEALLOCATE(rvra) ! !-- Send right boundary, receive left boundary CALL MPI_SENDRECV( trra_count, 1, MPI_INTEGER, pright, 0, & trla_count_recv, 1, MPI_INTEGER, pleft, 0, & comm2d, status, ierr ) ALLOCATE(rvla(MAX(1,trla_count_recv))) ! !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure !-- agent_type (due to the calculation of par_size) par_size = STORAGE_SIZE(trra(1))/8 CALL MPI_SENDRECV( trra, MAX( 1, trra_count ) * par_size, MPI_BYTE, pright, 1, & rvla, MAX(1,trla_count_recv) * par_size, MPI_BYTE, pleft, 1, & comm2d, status, ierr ) IF ( trla_count_recv > 0 ) THEN CALL mas_eh_add_agents_to_gridcell(rvla(1:trla_count_recv)) ENDIF DEALLOCATE( rvla ) DEALLOCATE( trla, trra ) ENDIF ! !-- Check whether agents have crossed the boundaries in y direction. Note that this case can also !-- apply to agents that have just been received from the adjacent right or left PE. !-- Find out first the number of agents to be transferred and allocate temporary arrays needed to !-- store them. !-- For a one-dimensional decomposition along y, no transfer is necessary, because the agent remains !-- on the PE. trsa_count = nr_move_south trna_count = nr_move_north trsa_count_recv = 0 trna_count_recv = 0 IF ( npey /= 1 ) THEN ! !-- First calculate the storage necessary for sending and receiving the data. DO ip = nxl, nxr DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents IF ( agents(n)%agent_mask ) THEN j = agents(n)%y * ddy ! !-- Above calculation does not work for indices less than zero IF ( agents(n)%y < 0.0_wp ) j = -1 IF ( j < nys ) THEN trsa_count = trsa_count + 1 ELSEIF ( j > nyn ) THEN trna_count = trna_count + 1 ENDIF ENDIF ENDDO ENDDO ENDDO IF ( trsa_count == 0 ) trsa_count = 1 IF ( trna_count == 0 ) trna_count = 1 ALLOCATE( trsa(trsa_count), trna(trna_count) ) trsa = zero_agent trna = zero_agent trsa_count = nr_move_south trna_count = nr_move_north trsa(1:nr_move_south) = move_also_south(1:nr_move_south) trna(1:nr_move_north) = move_also_north(1:nr_move_north) ENDIF DO ip = nxl, nxr DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents ! !-- Only those agents that have not been marked as 'deleted' may be moved. IF ( agents(n)%agent_mask ) THEN j = agents(n)%y * ddy ! !-- Above calculation does not work for indices less than zero IF ( agents(n)%y < 0.0_wp * dy ) j = -1 IF ( j < nys ) THEN IF ( j < 0 ) THEN ! !-- Apply boundary condition along y IF ( ibc_mas_ns == 0 ) THEN ! !-- Cyclic condition IF ( npey == 1 ) THEN agents(n)%y = ( ny + 1 ) * dy + agents(n)%y agents(n)%origin_y = ( ny + 1 ) * dy + agents(n)%origin_y ELSE trsa_count = trsa_count + 1 trsa(trsa_count) = agents(n) trsa(trsa_count)%y = ( ny + 1 ) * dy + trsa(trsa_count)%y trsa(trsa_count)%origin_y = trsa(trsa_count)%origin_y + ( ny + 1 ) * dy agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 IF ( trsa(trsa_count)%y >= (ny+1)* dy - 1.0E-12_wp ) THEN trsa(trsa_count)%y = trsa(trsa_count)%y - 1.0E-10_wp trsa(trsa_count)%origin_y = trsa(trsa_count)%origin_y - 1 ENDIF ENDIF ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSE ! !-- Store agent data in the transfer array, which will be send to the neighbouring !-- PE. trsa_count = trsa_count + 1 trsa(trsa_count) = agents(n) agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( j > nyn ) THEN IF ( j > ny ) THEN ! !-- Apply boundary condition along y IF ( ibc_mas_ns == 0 ) THEN ! !-- Cyclic condition IF ( npey == 1 ) THEN agents(n)%y = agents(n)%y - ( ny + 1 ) * dy agents(n)%origin_y = agents(n)%origin_y - ( ny + 1 ) * dy ELSE trna_count = trna_count + 1 trna(trna_count) = agents(n) trna(trna_count)%y = trna(trna_count)%y - ( ny + 1 ) * dy trna(trna_count)%origin_y = trna(trna_count)%origin_y - ( ny + 1 ) * dy agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSE ! !-- Store agent data in the transfer array, which will be send to the neighbouring !-- PE trna_count = trna_count + 1 trna(trna_count) = agents(n) agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO ! !-- Send front boundary, receive back boundary (but first exchange how many and check if agent !-- storage must be extended). IF ( npey /= 1 ) THEN CALL MPI_SENDRECV( trsa_count, 1, MPI_INTEGER, psouth, 0, & trna_count_recv, 1, MPI_INTEGER, pnorth, 0, & comm2d, status, ierr ) ALLOCATE( rvna( MAX( 1, trna_count_recv )) ) ! !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure !-- agent_type (due to the calculation of par_size) par_size = STORAGE_SIZE(trsa(1))/8 CALL MPI_SENDRECV( trsa, trsa_count * par_size, MPI_BYTE, psouth, 1, & rvna, trna_count_recv * par_size, MPI_BYTE, pnorth, 1, & comm2d, status, ierr ) IF ( trna_count_recv > 0 ) THEN CALL mas_eh_add_agents_to_gridcell(rvna(1:trna_count_recv)) ENDIF DEALLOCATE( rvna ) ! !-- Send back boundary, receive front boundary CALL MPI_SENDRECV( trna_count, 1, MPI_INTEGER, pnorth, 0, & trsa_count_recv, 1, MPI_INTEGER, psouth, 0, & comm2d, status, ierr ) ALLOCATE( rvsa( MAX( 1, trsa_count_recv )) ) ! !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit variables in structure !-- agent_type (due to the calculation of par_size) par_size = STORAGE_SIZE( trna(1) ) / 8 CALL MPI_SENDRECV( trna, trna_count * par_size, MPI_BYTE, pnorth, 1, & rvsa, trsa_count_recv * par_size, MPI_BYTE, psouth, 1, & comm2d, status, ierr ) IF ( trsa_count_recv > 0 ) THEN CALL mas_eh_add_agents_to_gridcell(rvsa(1:trsa_count_recv)) ENDIF DEALLOCATE( rvsa ) number_of_agents = number_of_agents + trsa_count_recv DEALLOCATE( trsa, trna ) ENDIF DEALLOCATE( move_also_north ) DEALLOCATE( move_also_south ) ! !-- Accumulate the number of agents transferred between the subdomains) CALL mas_eh_ghost_exchange #else DO ip = nxl, nxr, nxr-nxl DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents ! !-- Apply boundary conditions IF ( agents(n)%x < 0.0_wp ) THEN IF ( ibc_mas_lr == 0 ) THEN ! !-- Cyclic boundary. Relevant coordinate has to be changed. agents(n)%x = ( nx + 1 ) * dx + agents(n)%x agents(n)%origin_x = ( nx + 1 ) * dx + agents(n)%origin_x ELSEIF ( ibc_mas_lr == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( agents(n)%x >= ( nx + 1 ) * dx ) THEN IF ( ibc_mas_lr == 0 ) THEN ! !-- Cyclic boundary. Relevant coordinate has to be changed. agents(n)%x = agents(n)%x - ( nx + 1 ) * dx ELSEIF ( ibc_mas_lr == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ENDDO ENDDO ENDDO DO ip = nxl, nxr DO jp = nys, nyn, nyn-nys number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) DO n = 1, number_of_agents IF ( agents(n)%y < 0.0_wp ) THEN IF ( ibc_mas_ns == 0 ) THEN ! !-- Cyclic boundary. Relevant coordinate has to be changed. agents(n)%y = ( ny + 1 ) * dy + agents(n)%y agents(n)%origin_y = ( ny + 1 ) * dy + & agents(n)%origin_y ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ELSEIF ( agents(n)%y >= ( ny + 0.5_wp ) * dy ) THEN IF ( ibc_mas_ns == 0 ) THEN ! !-- Cyclic boundary. Relevant coordinate has to be changed. agents(n)%y = agents(n)%y - ( ny + 1 ) * dy ELSEIF ( ibc_mas_ns == 1 ) THEN ! !-- Agent absorption agents(n)%agent_mask = .FALSE. deleted_agents = deleted_agents + 1 ENDIF ENDIF ENDDO ENDDO ENDDO #endif END SUBROUTINE mas_eh_exchange_horiz #if defined( __parallel ) !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Sends the agents from the three gridcells closest to the north/south/left/right border of a PE to !> the corresponding neighbors ghost layer (which is three grid boxes deep) !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_ghost_exchange IMPLICIT NONE INTEGER(iwp) :: agt_size !< Bit size of agent datatype INTEGER(iwp) :: ghla_count !< ghost points left agent INTEGER(iwp) :: ghna_count !< ghost points north agent INTEGER(iwp) :: ghra_count !< ghost points right agent INTEGER(iwp) :: ghsa_count !< ghost points south agent INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: jp !< index variable along y LOGICAL :: ghla_empty !< ghost points left agent LOGICAL :: ghla_empty_rcv !< ghost points left agent LOGICAL :: ghna_empty !< ghost points north agent LOGICAL :: ghna_empty_rcv !< ghost points north agent LOGICAL :: ghra_empty !< ghost points right agent LOGICAL :: ghra_empty_rcv !< ghost points right agent LOGICAL :: ghsa_empty !< ghost points south agent LOGICAL :: ghsa_empty_rcv !< ghost points south agent TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghla !< agents received from right PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghna !< agents received from south PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghra !< agents received from left PE TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: ghsa !< agents received from north PE ghla_empty = .TRUE. ghna_empty = .TRUE. ghra_empty = .TRUE. ghsa_empty = .TRUE. ! !-- Reset ghost layer DO ip = nxlg, nxl-1 DO jp = nysg, nyng agt_count(jp,ip) = 0 ENDDO ENDDO DO ip = nxr+1, nxrg DO jp = nysg, nyng agt_count(jp,ip) = 0 ENDDO ENDDO DO ip = nxl, nxr DO jp = nysg, nys-1 agt_count(jp,ip) = 0 ENDDO ENDDO DO ip = nxl, nxr DO jp = nyn+1, nyng agt_count(jp,ip) = 0 ENDDO ENDDO ! !-- Transfer of agents from left to right and vice versa IF ( npex /= 1 ) THEN ! !-- Reset left and right ghost layers ghla_count = 0 ghra_count = 0 ! !-- First calculate the storage necessary for sending and receiving the data. ghla_count = SUM(agt_count(nys:nyn,nxl:nxl+2)) ghra_count = SUM(agt_count(nys:nyn,nxr-2:nxr)) ! !-- No cyclic boundaries for agents IF ( nxl == 0 .OR. ghla_count == 0 ) THEN ghla_count = 1 ELSE ghla_empty = .FALSE. ENDIF IF ( nxr == nx .OR. ghra_count == 0 ) THEN ghra_count = 1 ELSE ghra_empty = .FALSE. ENDIF ALLOCATE( ghla(1:ghla_count), ghra(1:ghra_count) ) ghla = zero_agent ghra = zero_agent ! !-- Get all agents that will be sent left into one array ghla_count = 0 IF ( nxl /= 0 ) THEN DO ip = nxl, nxl+2 DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE ghla(ghla_count+1:ghla_count+number_of_agents) & = grid_agents(jp,ip)%agents(1:number_of_agents) ghla_count = ghla_count + number_of_agents ENDDO ENDDO ENDIF IF ( ghla_count == 0 ) ghla_count = 1 ! !-- Get all agents that will be sent right into one array ghra_count = 0 IF ( nxr /= nx ) THEN DO ip = nxr-2, nxr DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE ghra(ghra_count+1:ghra_count+number_of_agents) & = grid_agents(jp,ip)%agents(1:number_of_agents) ghra_count = ghra_count + number_of_agents ENDDO ENDDO ENDIF IF ( ghra_count == 0 ) ghra_count = 1 ! !-- Send/receive number of agents that will be transferred to/from left/right neighbor. CALL MPI_SENDRECV( ghla_count, 1, MPI_INTEGER, pleft, 0, & ghra_count_recv, 1, MPI_INTEGER, pright, 0, & comm2d, status, ierr ) ALLOCATE ( agt_gh_r(1:ghra_count_recv) ) ! !-- Send/receive number of agents that will be transferred to/from right/left neighbor CALL MPI_SENDRECV( ghra_count, 1, MPI_INTEGER, pright, 0, & ghla_count_recv, 1, MPI_INTEGER, pleft, 0, & comm2d, status, ierr ) ! !-- Send/receive flag that indicates if there are actually any agents in ghost layer CALL MPI_SENDRECV( ghla_empty, 1, MPI_LOGICAL, pleft, 1, & ghra_empty_rcv, 1, MPI_LOGICAL, pright,1, & comm2d, status, ierr ) CALL MPI_SENDRECV( ghra_empty, 1, MPI_LOGICAL, pright,1, & ghla_empty_rcv, 1, MPI_LOGICAL, pleft, 1, & comm2d, status, ierr ) ALLOCATE ( agt_gh_l(1:ghla_count_recv) ) ! !-- Get bit size of one agent agt_size = STORAGE_SIZE(zero_agent)/8 ! !-- Send/receive agents to/from left/right neighbor CALL MPI_SENDRECV( ghla, ghla_count * agt_size, MPI_BYTE, pleft, 1, & agt_gh_r, ghra_count_recv * agt_size, MPI_BYTE, pright,1, & comm2d, status, ierr ) ! !-- Send/receive agents to/from left/right neighbor CALL MPI_SENDRECV( ghra, ghra_count * agt_size, MPI_BYTE, pright,1, & agt_gh_l, ghla_count_recv * agt_size, MPI_BYTE, pleft, 1, & comm2d, status, ierr ) ! !-- If agents were received, add them to the respective ghost layer cells IF ( .NOT. ghra_empty_rcv ) THEN CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_r) ENDIF IF ( .NOT. ghla_empty_rcv ) THEN CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_l) ENDIF DEALLOCATE( ghla, ghra, agt_gh_l, agt_gh_r ) ENDIF ! !-- Transfer of agents from south to north and vice versa IF ( npey /= 1 ) THEN ! !-- Reset south and north ghost layers ghsa_count = 0 ghna_count = 0 ! !-- First calculate the storage necessary for sending and receiving the data. ghsa_count = SUM( agt_count(nys:nys+2,nxlg:nxrg) ) ghna_count = SUM( agt_count(nyn-2:nyn,nxlg:nxrg) ) ! !-- No cyclic boundaries for agents IF ( nys == 0 .OR. ghsa_count == 0 ) THEN ghsa_count = 1 ELSE ghsa_empty = .FALSE. ENDIF IF ( nyn == ny .OR. ghna_count == 0 ) THEN ghna_count = 1 ELSE ghna_empty = .FALSE. ENDIF ALLOCATE( ghsa(1:ghsa_count), ghna(1:ghna_count) ) ghsa = zero_agent ghna = zero_agent ! !-- Get all agents that will be sent south into one array ghsa_count = 0 IF ( nys /= 0 ) THEN DO ip = nxlg, nxrg DO jp = nys, nys+2 number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE ghsa(ghsa_count+1:ghsa_count+number_of_agents) & = grid_agents(jp,ip)%agents(1:number_of_agents) ghsa_count = ghsa_count + number_of_agents ENDDO ENDDO ENDIF IF ( ghsa_count == 0 ) ghsa_count = 1 ! !-- Get all agents that will be sent north into one array ghna_count = 0 IF ( nyn /= ny ) THEN DO ip = nxlg, nxrg DO jp = nyn-2, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE ghna(ghna_count+1:ghna_count+number_of_agents) & = grid_agents(jp,ip)%agents(1:number_of_agents) ghna_count = ghna_count + number_of_agents ENDDO ENDDO ENDIF IF ( ghna_count == 0 ) ghna_count = 1 ! !-- Send/receive number of agents that will be transferred to/from south/north neighbor CALL MPI_SENDRECV( ghsa_count, 1, MPI_INTEGER, psouth, 0, & ghna_count_recv, 1, MPI_INTEGER, pnorth, 0, & comm2d, status, ierr ) ALLOCATE ( agt_gh_n(1:ghna_count_recv) ) ! !-- Send/receive number of agents that will be transferred to/from north/south neighbor CALL MPI_SENDRECV( ghna_count, 1, MPI_INTEGER, pnorth, 0, & ghsa_count_recv, 1, MPI_INTEGER, psouth, 0, & comm2d, status, ierr ) ! !-- Send/receive flag that indicates if there are actually any agents in ghost layer CALL MPI_SENDRECV( ghsa_empty, 1, MPI_LOGICAL, psouth, 1, & ghna_empty_rcv, 1, MPI_LOGICAL, pnorth, 1, & comm2d, status, ierr ) CALL MPI_SENDRECV( ghna_empty, 1, MPI_LOGICAL, pnorth, 1, & ghsa_empty_rcv, 1, MPI_LOGICAL, psouth, 1, & comm2d, status, ierr ) ALLOCATE ( agt_gh_s(1:ghsa_count_recv) ) ! !-- Get bit size of one agent agt_size = STORAGE_SIZE(zero_agent)/8 ! !-- Send/receive agents to/from south/north neighbor CALL MPI_SENDRECV( ghsa, ghsa_count * agt_size, MPI_BYTE, psouth,1, & agt_gh_n, ghna_count_recv * agt_size, MPI_BYTE, pnorth,1, & comm2d, status, ierr ) ! !-- Send/receive agents to/from south/north neighbor CALL MPI_SENDRECV( ghna, ghna_count * agt_size, MPI_BYTE, pnorth,1, & agt_gh_s, ghsa_count_recv * agt_size, MPI_BYTE, psouth,1, & comm2d, status, ierr ) ! !-- If agents were received, add them to the respective ghost layer cells IF ( .NOT. ghna_empty_rcv ) THEN CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_n) ENDIF IF ( .NOT. ghsa_empty_rcv ) THEN CALL mas_eh_add_ghost_agents_to_gridcell(agt_gh_s) ENDIF DEALLOCATE( ghna, ghsa, agt_gh_n, agt_gh_s ) ENDIF END SUBROUTINE mas_eh_ghost_exchange #endif !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> If an agent moves from one grid cell to another (on the current processor!), this subroutine !> moves the corresponding element from the agent array of the old grid cell to the agent array of !> the new grid cell. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_move_agent IMPLICIT NONE INTEGER(iwp) :: aindex !< dummy argument for number of new agent per grid box INTEGER(iwp) :: i !< grid index (x) of agent position INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: j !< grid index (y) of agent position INTEGER(iwp) :: jp !< index variable along y INTEGER(iwp) :: n !< index variable for agent array INTEGER(iwp) :: na_before_move !< number of agents per grid box before moving TYPE(agent_type), DIMENSION(:), POINTER :: agents_before_move !< agents before moving DO ip = nxl, nxr DO jp = nys, nyn na_before_move = agt_count(jp,ip) IF ( na_before_move <= 0 ) CYCLE agents_before_move => grid_agents(jp,ip)%agents(1:na_before_move) DO n = 1, na_before_move i = agents_before_move(n)%x * ddx j = agents_before_move(n)%y * ddy !-- For mas_eh_exchange_horiz to work properly agents need to be moved to the outermost !-- gridboxes of the respective processor. !-- If the agent index is inside the processor the following lines will not change the !-- index. i = MIN ( i , nxr ) i = MAX ( i , nxl ) j = MIN ( j , nyn ) j = MAX ( j , nys ) ! !-- Check if agent has moved to another grid cell. IF ( i /= ip .OR. j /= jp ) THEN ! !-- If the agent stays on the same processor, the agent will be added to the agent !-- array of the new processor. number_of_agents = agt_count(j,i) agents => grid_agents(j,i)%agents(1:number_of_agents) aindex = number_of_agents+1 IF ( aindex > SIZE(grid_agents(j,i)%agents) ) THEN CALL mas_eh_realloc_agents_array(i,j) ENDIF grid_agents(j,i)%agents(aindex) = agents_before_move(n) agt_count(j,i) = aindex agents_before_move(n)%agent_mask = .FALSE. ENDIF ENDDO ENDDO ENDDO RETURN END SUBROUTINE mas_eh_move_agent !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> If the allocated memory for the agent array does not suffice to add arriving agents from !> neighbour grid cells, this subrouting reallocates the agent array to assure enough memory is !> available. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_eh_realloc_agents_array (i,j,size_in) IMPLICIT NONE INTEGER(iwp) :: new_size !< new array size INTEGER(iwp) :: old_size !< old array size INTEGER(iwp), INTENT(in) :: i !< grid index (y) INTEGER(iwp), INTENT(in) :: j !< grid index (y) INTEGER(iwp), INTENT(in), OPTIONAL :: size_in !< size of input array TYPE(agent_type), DIMENSION(10) :: tmp_agents_s !< temporary static agent array TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: tmp_agents_d !< temporary dynamic agent array old_size = SIZE(grid_agents(j,i)%agents) IF ( PRESENT( size_in ) ) THEN new_size = size_in ELSE new_size = old_size * ( 1.0_wp + alloc_factor_mas / 100.0_wp ) ENDIF new_size = MAX( new_size, min_nr_agent, old_size + 1 ) IF ( old_size <= 10 ) THEN tmp_agents_s(1:old_size) = grid_agents(j,i)%agents(1:old_size) DEALLOCATE( grid_agents(j,i)%agents ) ALLOCATE( grid_agents(j,i)%agents(new_size) ) grid_agents(j,i)%agents(1:old_size) = tmp_agents_s(1:old_size) grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent ELSE ALLOCATE( tmp_agents_d(new_size) ) tmp_agents_d(1:old_size) = grid_agents(j,i)%agents DEALLOCATE( grid_agents(j,i)%agents ) ALLOCATE( grid_agents(j,i)%agents(new_size) ) grid_agents(j,i)%agents(1:old_size) = tmp_agents_d(1:old_size) grid_agents(j,i)%agents(old_size+1:new_size) = zero_agent DEALLOCATE( tmp_agents_d ) ENDIF agents => grid_agents(j,i)%agents(1:number_of_agents) RETURN END SUBROUTINE mas_eh_realloc_agents_array !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Inquires prognostic model quantities at the position of each agent and stores them in that agent !> for later output !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_get_prognostic_quantities USE arrays_3d, & ONLY: exner, pt, u, v IMPLICIT NONE INTEGER(iwp) :: i_offset !< index offset for windspeed measurement INTEGER(iwp) :: il !< x-index INTEGER(iwp) :: is !< subgrid box counter INTEGER(iwp) :: j_offset !< index offset for windspeed measurement INTEGER(iwp) :: jl !< y-index INTEGER(iwp) :: kl !< z-index INTEGER(iwp) :: nl !< agent counter INTEGER(iwp) :: se !< subgrid box end index INTEGER(iwp) :: si !< subgrid box start index REAL(wp) :: u_a !< windspeed at agent position (x) REAL(wp) :: v_a !< windspeed at agent position (y) DO il = nxl, nxr DO jl = nys, nyn number_of_agents = agt_count(jl,il) ! !-- If grid cell is empty, cycle IF ( number_of_agents <= 0 ) CYCLE kl = s_measure_height(jl,il) agents => grid_agents(jl,il)%agents(1:number_of_agents) ! !-- Loop over the four subgrid boxes DO is = 0,3 ! !-- Set indices si = grid_agents(jl,il)%start_index(is) se = grid_agents(jl,il)%end_index(is) DO nl = si, se ! !-- Calculate index offset in x-direction: !-- Left value if wall right of grid box !-- Right value if wall left of grid box !-- Else the one that is closer to the agent IF ( BTEST( obstacle_flags( jl, il+1 ), 6 ) ) THEN i_offset = 0 ELSEIF ( BTEST( obstacle_flags( jl, il-1 ), 2 ) ) THEN i_offset = 1 ELSE i_offset = MERGE( 0, 1, BTEST(is,1) ) ENDIF u_a = u( kl, jl, il + i_offset ) ! !-- Calculate index offset in y-direction: !-- South value if wall north of grid box !-- North value if wall south of grid box !-- Else the one that is closer to the agent IF ( BTEST( obstacle_flags( jl+1, il ), 4 ) ) THEN j_offset = 0 ELSEIF ( BTEST( obstacle_flags( jl-1, il ), 0 ) ) THEN j_offset = 1 ELSE j_offset = MERGE( 0, 1, BTEST(is,0) ) ENDIF v_a = v( kl, jl + j_offset, il ) ! !-- Calculate windspeed at agent postion agents(nl)%windspeed = SQRT(u_a**2 + v_a**2) ! !-- Calculate temperature at agent position agents(nl)%t = pt(kl,jl,il) * exner(kl) ENDDO ENDDO ENDDO ENDDO END SUBROUTINE mas_get_prognostic_quantities !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Adds an item to the priority queue (binary heap) at the correct position !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_heap_insert_item( id, priority ) IMPLICIT NONE INTEGER(iwp) :: cur_pos !< current position INTEGER(iwp) :: id !< mesh ID of item REAL(wp) :: priority !< item priority TYPE(heap_item) :: item !< heap item item%mesh_id = id item%priority = priority ! !-- Extend heap, if necessary IF ( heap_count + 1 > SIZE( queue ) ) THEN CALL mas_heap_extend ENDIF ! !-- Insert item at first unoccupied postion (highest index) of heap cur_pos = heap_count queue(cur_pos) = item ! !-- Sort while inserted item is not at top of heap DO WHILE ( cur_pos /= 0 ) ! !-- If priority < its parent's priority, swap them. !-- Else, sorting is done. IF ( queue(cur_pos)%priority < queue(FLOOR( (cur_pos) / 2.0_wp ))%priority ) THEN item = queue(cur_pos) queue(cur_pos) = queue(FLOOR( ( cur_pos ) / 2.0_wp )) queue(FLOOR( ( cur_pos ) / 2.0_wp )) = item cur_pos = FLOOR( ( cur_pos ) / 2.0_wp ) ELSE EXIT ENDIF ENDDO ! !-- Item was added to heap, so the heap count increases heap_count = heap_count + 1 END SUBROUTINE mas_heap_insert_item !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Extends the size of the priority queue (binary heap) !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_heap_extend IMPLICIT NONE INTEGER(iwp) :: soh !< size of heap TYPE(heap_item), DIMENSION(:), ALLOCATABLE :: dummy_heap !< dummy heap soh = SIZE( queue ) - 1 ALLOCATE( dummy_heap(0:soh) ) dummy_heap = queue DEALLOCATE( queue ) ALLOCATE( queue(0:2*soh+1) ) queue(0:soh) = dummy_heap(0:soh) END SUBROUTINE mas_heap_extend !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Removes first (smallest) element from the priority queue, reorders the rest and returns the ID of !> the removed mesh point !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_heap_extract_item ( id ) IMPLICIT NONE INTEGER(iwp) :: child !< child of item in heap INTEGER(iwp) :: cur_pos !< current position of item in heap INTEGER(iwp) :: id !< ID of item extracted item TYPE(heap_item) :: dummy ! !-- Get ID of mesh point with lowest priority (extracted item: top of heap) id = queue(0)%mesh_id ! !-- Put last item in heap at first position queue(0) = queue(heap_count-1) cur_pos = 0 DO ! !-- If current item has no children, sorting is done IF( 2*cur_pos+1 > heap_count - 1 ) THEN EXIT ! !-- If current item has only one child, check if item and its child are ordered correctly. Else, !-- swap them. ELSEIF ( 2*cur_pos+2 > heap_count - 1 ) THEN IF ( queue(cur_pos)%priority > queue(2*cur_pos+1)%priority ) THEN dummy = queue(cur_pos) queue(cur_pos) = queue(2*cur_pos+1) queue(2*cur_pos+1) = dummy cur_pos = 2*cur_pos+1 ELSE EXIT ENDIF ELSE ! !-- Determine the smaller child IF ( queue(2*cur_pos+1)%priority >= queue(2*cur_pos+2)%priority ) THEN child = 2 ELSE child = 1 ENDIF ! !-- Check if item and its smaller child are ordered falsely. If so, swap them. Else, sorting !-- is done. IF ( queue(cur_pos)%priority > queue(2*cur_pos+child )%priority ) THEN dummy = queue(cur_pos) queue(cur_pos) = queue(2*cur_pos+child) queue(2*cur_pos+child) = dummy cur_pos = 2*cur_pos+child ELSE EXIT ENDIF ENDIF ENDDO ! !-- Top item was removed from heap, thus, heap_cout decreases by one heap_count = heap_count-1 END SUBROUTINE mas_heap_extract_item !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of Multi Agent System !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_init USE control_parameters, & ONLY: coupling_char, initializing_actions, io_blocks, io_group USE arrays_3d, & ONLY: zu, zw USE indices, & ONLY: nzt IMPLICIT NONE INTEGER(iwp) :: i !< grid cell (x) INTEGER(iwp) :: ii !< io-block counter INTEGER(iwp) :: il !< io-block counter INTEGER(iwp) :: ioerr !< IOSTAT flag for IO-commands ( 0 = no error ) INTEGER(iwp) :: j !< grid cell (y) INTEGER(iwp) :: jl !< io-block counter INTEGER(iwp) :: kl !< io-block counter INTEGER(iwp) :: kdum !< io-block counter INTEGER(iwp) :: locdum !< io-block counter INTEGER(iwp) :: size_of_mesh !< temporary value for read INTEGER(iwp) :: size_of_pols !< temporary value for read LOGICAL :: navigation_data_present !< Flag: check for input file REAL(wp) :: zdum !< dummy for measurement height REAL(wp) :: avg_agt_height = 1.8_wp ! !-- Check the number of agent groups. IF ( number_of_agent_groups > max_number_of_agent_groups ) THEN WRITE( message_string, * ) 'max_number_of_agent_groups =', max_number_of_agent_groups , & '&number_of_agent_groups reset to ', max_number_of_agent_groups CALL message( 'mas_init', 'PA0072', 0, 1, 0, 6, 0 ) number_of_agent_groups = max_number_of_agent_groups ENDIF ! !-- Set some parameters d_sigma_rep_agent = 1.0_wp/sigma_rep_agent d_sigma_rep_wall = 1.0_wp/sigma_rep_wall d_tau_accel_agent = 1.0_wp/tau_accel_agent IF ( dt_agent /= 999.0_wp ) THEN agent_own_timestep = .TRUE. ENDIF ! !-- Get index of first grid box above topography ALLOCATE( top_top_s(nysg:nyng,nxlg:nxrg), & top_top_w(nysg:nyng,nxlg:nxrg), & s_measure_height(nys:nyn,nxl:nxr) ) ! !-- Get first index above topography for scalar grid and last index in topography for z-component of !-- wind. DO il = nxlg, nxrg DO jl = nysg, nyng top_top_s(jl,il) = topo_top_ind(jl,il,0) + 1 top_top_w(jl,il) = topo_top_ind(jl,il,3) ENDDO ENDDO ! !-- Create 2D array containing the index at which measurements are done by agents. The height of !-- this measurement is given by avg_agt_height. DO il = nxl, nxr DO jl = nys, nyn kdum = top_top_w(jl,il) zdum = zw(kdum) zdum = zdum + avg_agt_height locdum = 0 ! !-- Locate minimum distance from u-grid to measurement height (zdum) DO kl = 1, nzt IF ( ABS(zu(kl)-zdum) < ABS(zu(locdum)-zdum) ) locdum = kl ENDDO s_measure_height(jl,il) = locdum ENDDO ENDDO CALL mas_create_obstacle_flags ! !-- Set default start positions, if necessary IF ( asl(1) == 9999999.9_wp ) asl(1) = 0.0_wp IF ( asr(1) == 9999999.9_wp ) asr(1) = ( nx + 1 ) * dx IF ( ass(1) == 9999999.9_wp ) ass(1) = 0.0_wp IF ( asn(1) == 9999999.9_wp ) asn(1) = ( ny + 1 ) * dy IF ( adx(1) == 9999999.9_wp .OR. adx(1) == 0.0_wp ) adx(1) = dx IF ( ady(1) == 9999999.9_wp .OR. ady(1) == 0.0_wp ) ady(1) = dy DO j = 2, number_of_agent_groups IF ( asl(j) == 9999999.9_wp ) asl(j) = asl(j-1) IF ( asr(j) == 9999999.9_wp ) asr(j) = asr(j-1) IF ( ass(j) == 9999999.9_wp ) ass(j) = ass(j-1) IF ( asn(j) == 9999999.9_wp ) asn(j) = asn(j-1) IF ( adx(j) == 9999999.9_wp .OR. adx(j) == 0.0_wp ) adx(j) = adx(j-1) IF ( ady(j) == 9999999.9_wp .OR. ady(j) == 0.0_wp ) ady(j) = ady(j-1) ENDDO ! !-- Check boundary condition and set internal variables SELECT CASE ( bc_mas_lr ) CASE ( 'cyclic' ) ibc_mas_lr = 0 CASE ( 'absorb' ) ibc_mas_lr = 1 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_mas_lr = "', TRIM( bc_mas_lr ), '"' CALL message( 'mas_init', 'PA0073', 1, 2, 0, 6, 0 ) END SELECT SELECT CASE ( bc_mas_ns ) CASE ( 'cyclic' ) ibc_mas_ns = 0 CASE ( 'absorb' ) ibc_mas_ns = 1 CASE DEFAULT WRITE( message_string, * ) 'unknown boundary condition ', & 'bc_mas_ns = "', TRIM( bc_mas_ns ), '"' CALL message( 'mas_init', 'PA0074', 1, 2, 0, 6, 0 ) END SELECT ! !-- For the first model run of a possible job chain initialize the agents, otherwise read the agent !-- data from restart file. IF ( TRIM( initializing_actions ) == 'read_restart_data' .AND. read_agents_from_restartfile )& THEN ! CALL mas_read_restart_file ELSE ! !-- Read preprocessed data of navigation mesh and building polygons for agent pathfinding DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- Check for naviation input file and open it INQUIRE( FILE='NAVIGATION_DATA' // TRIM( coupling_char ), & EXIST=navigation_data_present ) IF ( .NOT. navigation_data_present ) THEN message_string = 'Input file NAVIGATION_DATA' // & TRIM( coupling_char ) // ' for MAS missing. ' // & '&Please run agent_preprocessing before the job to create it.' CALL message( 'mas_init', 'PA0525', 1, 2, 0, 6, 0 ) ENDIF OPEN ( 119, FILE='NAVIGATION_DATA'//TRIM( coupling_char ), FORM='UNFORMATTED', & IOSTAT=ioerr ) ! !-- Read mesh data READ( 119 ) size_of_mesh ALLOCATE( mesh(1:size_of_mesh) ) DO i = 1, size_of_mesh READ( 119 ) mesh(i)%polygon_id, mesh(i)%vertex_id, & mesh(i)%noc, mesh(i)%origin_id, & mesh(i)%cost_so_far, mesh(i)%x, & mesh(i)%y, mesh(i)%x_s, mesh(i)%y_s ALLOCATE( mesh(i)%connected_vertices(1:mesh(i)%noc), & mesh(i)%distance_to_vertex(1:mesh(i)%noc) ) DO j = 1, mesh(i)%noc READ( 119 ) mesh(i)%connected_vertices(j), & mesh(i)%distance_to_vertex(j) ENDDO ENDDO ! !-- Read polygon data READ( 119 ) size_of_pols ALLOCATE( polygons(1:size_of_pols) ) DO i = 1, size_of_pols READ( 119 ) polygons(i)%nov ALLOCATE( polygons(i)%vertices(0:polygons(i)%nov+1) ) DO j = 0, polygons(i)%nov+1 READ( 119 ) polygons(i)%vertices(j)%delete, & polygons(i)%vertices(j)%x, & polygons(i)%vertices(j)%y ENDDO ENDDO CLOSE(119) ENDIF #if defined( __parallel ) && ! defined ( __check ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- Allocate agent arrays and set attributes of the initial set of agents, which can be also !-- periodically released at later times. ALLOCATE( agt_count (nysg:nyng,nxlg:nxrg), & grid_agents(nysg:nyng,nxlg:nxrg) ) ! !-- Allocate dummy arrays for pathfinding ALLOCATE( dummy_path_x(0:agt_path_size), & dummy_path_y(0:agt_path_size) ) number_of_agents = 0 sort_count_mas = 0 agt_count = 0 ! !-- Initialize counter for agent IDs grid_agents%id_counter = 1 ! !-- Initialize all agents with dummy values (otherwise errors may occur within restart runs). !-- The reason for this is still not clear and may be presumably caused by errors in the !-- respective user-interface. zero_agent%agent_mask = .FALSE. zero_agent%block_nr = -1 zero_agent%group = 0 zero_agent%id = 0_idp zero_agent%path_counter = agt_path_size zero_agent%age = 0.0_wp zero_agent%age_m = 0.0_wp zero_agent%dt_sum = 0.0_wp zero_agent%clo = 0.0_wp zero_agent%energy_storage= 0.0_wp zero_agent%force_x = 0.0_wp zero_agent%force_y = 0.0_wp zero_agent%origin_x = 0.0_wp zero_agent%origin_y = 0.0_wp zero_agent%speed_abs = 0.0_wp zero_agent%speed_e_x = 0.0_wp zero_agent%speed_e_y = 0.0_wp zero_agent%speed_des = random_normal(desired_speed, des_sp_sig) zero_agent%speed_x = 0.0_wp zero_agent%speed_y = 0.0_wp zero_agent%ipt = 0.0_wp zero_agent%x = 0.0_wp zero_agent%y = 0.0_wp zero_agent%path_x = 0.0_wp zero_agent%path_y = 0.0_wp zero_agent%t_x = 0.0_wp zero_agent%t_y = 0.0_wp ! !-- Set a seed value for the random number generator to be exclusively used for the agent code. !-- The generated random numbers should be different on the different PEs. iran_agent = iran_agent + myid CALL mas_create_agent( phase_init ) ENDIF ! !-- To avoid programm abort, assign agents array to the local version of first grid cell. number_of_agents = agt_count(nys,nxl) agents => grid_agents(nys,nxl)%agents(1:number_of_agents) END SUBROUTINE mas_init !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Output of informative message about maximum agent number !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_last_actions USE control_parameters, & ONLY: message_string IMPLICIT NONE WRITE(message_string,'(A,I8,A)') 'The maximumn number of agents during this run was', & maximum_number_of_agents, & '&Consider adjusting the INPUT parameter'// & '&dim_size_agtnum_manual accordingly for the next run.' CALL message( 'mas_data_output_agents', 'PA0457', 0, 0, 0, 6, 0 ) END SUBROUTINE mas_last_actions !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Finds the shortest path from a start position to a target position using the A*-algorithm !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_a_star( start_x, start_y, target_x, target_y, nsteps ) IMPLICIT NONE INTEGER(iwp) :: cur_node !< current node of binary heap INTEGER(iwp) :: il !< counter (x) INTEGER(iwp) :: neigh_node !< neighbor node INTEGER(iwp) :: node_counter !< binary heap node counter INTEGER(iwp) :: nsteps !< number of steps INTEGER(iwp) :: path_ag !< index of agent path INTEGER(iwp) :: som !< size of mesh INTEGER(iwp) :: steps !< steps along the path LOGICAL :: target_reached !< flag REAL(wp) :: new_cost !< updated cost to reach node REAL(wp) :: new_priority !< priority of node to be added to queue REAL(wp) :: start_x !< x-coordinate agent REAL(wp) :: start_y !< y-coordinate agent REAL(wp) :: rn_gate !< random number for corner gate REAL(wp) :: target_x !< x-coordinate target REAL(wp) :: target_y !< y-coordinate target ! !-- Coordinate Type TYPE coord REAL(wp) :: x !< x-coordinate REAL(wp) :: x_s !< x-coordinate (shifted) REAL(wp) :: y !< y-coordinate REAL(wp) :: y_s !< y-coordinate (shifted) END TYPE coord TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: path !< path array TYPE(coord), DIMENSION(:), ALLOCATABLE, TARGET :: tmp_path !< temporary path for resizing node_counter = 0 ! !-- Create temporary navigation mesh including agent and target positions CALL mas_nav_create_tmp_mesh( start_x, start_y, target_x, target_y, som ) tmp_mesh(som)%cost_so_far = 0.0_wp ! !-- Initialize priority queue heap_count = 0_iwp ALLOCATE( queue(0:100) ) target_reached = .FALSE. ! !-- Add starting point (agent position) to frontier (the frontier consists of all the nodes that !-- are to be visited. The node with the smallest priority will be visited first. The priority !-- consists of the distance from the start node to this node plus a minimal guess (direct !-- distance) from this node to the goal). For the starting node, the priority is set to 0, as it's !-- the only node thus far. CALL mas_heap_insert_item( som, 0.0_wp ) cur_node = som DO WHILE ( heap_count > 0 ) ! !-- Step one: Pick lowest priority item from queue node_counter = node_counter + 1 CALL mas_heap_extract_item(cur_node) ! !-- Node 0 is the goal node IF ( cur_node == 0 ) THEN EXIT ENDIF ! !-- Loop over all of cur_node's neighbors DO il = 1, tmp_mesh(cur_node)%noc neigh_node = tmp_mesh(cur_node)%connected_vertices(il) ! !-- Check, if the way from the start node to this neigh_node via cur_node is shorter than the !-- previously found shortest path to it. !-- If so, replace said cost and add neigh_node to the frontier. !-- cost_so_far is initialized as 1.d12 so that all found distances should be smaller. new_cost = tmp_mesh(cur_node)%cost_so_far + tmp_mesh(cur_node)%distance_to_vertex(il) IF ( new_cost < tmp_mesh(neigh_node)%cost_so_far ) THEN tmp_mesh(neigh_node)%cost_so_far = new_cost tmp_mesh(neigh_node)%origin_id = cur_node ! !-- Priority in the queue is cost_so_far + heuristic to goal new_priority = new_cost & + heuristic(tmp_mesh(neigh_node)%x, & tmp_mesh(neigh_node)%y, tmp_mesh(0)%x, & tmp_mesh(0)%y) CALL mas_heap_insert_item(neigh_node,new_priority) ENDIF ENDDO ENDDO ! !-- Add nodes to a path array. To do this, we must backtrack from the target node to its origin and !-- so on until a node is reached that has no origin (%origin_id == -1). This is the starting node. DEALLOCATE( queue ) cur_node = 0 steps = 0 ALLOCATE( path(1:100) ) DO WHILE ( cur_node /= -1 ) steps = steps + 1 ! !-- Resize path array if necessary IF ( steps > SIZE(path) ) THEN ALLOCATE( tmp_path(1:steps-1) ) tmp_path(1:steps-1) = path(1:steps-1) DEALLOCATE( path ) ALLOCATE( path(1:2*(steps-1)) ) path(1:steps-1) = tmp_path(1:steps-1) DEALLOCATE( tmp_path ) ENDIF path(steps)%x = tmp_mesh(cur_node)%x path(steps)%y = tmp_mesh(cur_node)%y path(steps)%x_s = tmp_mesh(cur_node)%x_s path(steps)%y_s = tmp_mesh(cur_node)%y_s cur_node = tmp_mesh(cur_node)%origin_id ENDDO ! !-- Add calculated intermittent targets to the path until either the target or the maximum number of !-- intermittent targets is reached. !-- Ignore starting point (reduce index by one), it is agent position. dummy_path_x = -1 dummy_path_y = -1 path_ag = 1 steps = steps - 1 nsteps = 0 DO WHILE( steps > 0 .AND. path_ag <= agt_path_size ) ! !-- Each target point is randomly chosen along a line target along the bisector of the building !-- corner that starts at corner_gate_start and has a width of corner_gate_width. This is to !-- avoid clustering when opposing agent groups try to reach the same corner target. rn_gate = random_function(iran_agent) * corner_gate_width + corner_gate_start dummy_path_x(path_ag) = path(steps)%x + rn_gate * (path(steps)%x_s - path(steps)%x) dummy_path_y(path_ag) = path(steps)%y + rn_gate * (path(steps)%y_s - path(steps)%y) steps = steps - 1 path_ag = path_ag + 1 nsteps = nsteps + 1 ENDDO ! !-- Set current intermittent target of this agent DEALLOCATE( tmp_mesh, path ) END SUBROUTINE mas_nav_a_star !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Adds a connection between two points of the navigation mesh (one-way: in_mp1 to in_mp2) !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_add_connection ( in_mp1, id2, in_mp2 ) IMPLICIT NONE LOGICAL :: connection_established !< Flag to indicate if connection has already been established INTEGER(iwp) :: id2 !< ID of in_mp2 INTEGER(iwp) :: il !< local counter INTEGER(iwp) :: noc1 !< number of connections in in_mp1 INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy array for connected_vertices REAL(wp) :: dist !< Distance between the two points REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv TYPE(mesh_point) :: in_mp1 !< mesh point that gets a new connection TYPE(mesh_point) :: in_mp2 !< mesh point in_mp1 will be connected to connection_established = .FALSE. ! !-- Check if connection has already been established noc1 = SIZE( in_mp1%connected_vertices ) DO il = 1, in_mp1%noc IF ( in_mp1%connected_vertices(il) == id2 ) THEN connection_established = .TRUE. EXIT ENDIF ENDDO IF ( .NOT. connection_established ) THEN ! !-- Resize arrays, if necessary IF ( in_mp1%noc >= noc1 ) THEN ALLOCATE( dum_cv(1:noc1),dum_dtv(1:noc1) ) dum_cv = in_mp1%connected_vertices dum_dtv = in_mp1%distance_to_vertex DEALLOCATE( in_mp1%connected_vertices, in_mp1%distance_to_vertex ) ALLOCATE( in_mp1%connected_vertices(1:2*noc1), & in_mp1%distance_to_vertex(1:2*noc1) ) in_mp1%connected_vertices = -999 in_mp1%distance_to_vertex = -999. in_mp1%connected_vertices(1:noc1) = dum_cv in_mp1%distance_to_vertex(1:noc1) = dum_dtv ENDIF ! !-- Add connection in_mp1%noc = in_mp1%noc+1 dist = SQRT( (in_mp1%x - in_mp2%x)**2 + (in_mp1%y - in_mp2%y)**2 ) in_mp1%connected_vertices(in_mp1%noc) = id2 in_mp1%distance_to_vertex(in_mp1%noc) = dist ENDIF END SUBROUTINE mas_nav_add_connection !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Adds a vertex (curren position of agent or target) to the existing tmp_mesh !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_add_vertex_to_mesh ( in_mp, in_id ) IMPLICIT NONE INTEGER(iwp) :: in_id !< vertex id of tested mesh point INTEGER(iwp) :: jl !< mesh point counter INTEGER(iwp) :: pl !< polygon counter INTEGER(iwp) :: vl !< vertex counter INTEGER(iwp) :: pid_t !< polygon id of tested mesh point INTEGER(iwp) :: vid_t !< vertex id of tested mesh point LOGICAL :: intersection_found !< flag LOGICAL :: is_left_n !< local switch LOGICAL :: is_left_p !< local switch LOGICAL :: is_right_n !< local switch LOGICAL :: is_right_p !< local switch REAL(wp) :: v1x !< x-coordinate of test vertex 1 for intersection test REAL(wp) :: v1y !< y-coordinate of test vertex 1 for intersection test REAL(wp) :: v2x !< x-coordinate of test vertex 2 for intersection test REAL(wp) :: v2y !< y-coordinate of test vertex 2 for intersection test REAL(wp) :: x !< x-coordinate of current mesh point REAL(wp) :: x_t !< x-coordinate of tested mesh point REAL(wp) :: y !< y-coordinate of current mesh point REAL(wp) :: y_t !< y-coordinate of tested mesh point TYPE(mesh_point) :: in_mp !< Input mesh point ! !-- x = in_mp%x y = in_mp%y DO jl = 0, SIZE( tmp_mesh )-2 IF ( in_id == jl ) CYCLE ! !-- Ignore mesh points with 0 connections IF ( tmp_mesh(jl)%polygon_id /= -1 ) THEN IF ( tmp_mesh(jl)%noc == 0 ) CYCLE ENDIF x_t = tmp_mesh(jl)%x y_t = tmp_mesh(jl)%y pid_t = tmp_mesh(jl)%polygon_id vid_t = tmp_mesh(jl)%vertex_id ! !-- If the connecting line between the target and a mesh point points into the mesh point's !-- polygon, no connection will be established between the two points. This is the case if the !-- previous (next, n) vertex of the polygon is right of the connecting line and the next !-- (previous, p) vertex of the polygon is left of the connecting line. IF ( pid_t > 0 .AND. pid_t <= SIZE( polygons ) ) THEN is_left_p = is_left( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t-1)%x, & polygons(pid_t)%vertices(vid_t-1)%y ) is_left_n = is_left( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t+1)%x, & polygons(pid_t)%vertices(vid_t+1)%y ) is_right_p = is_right( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t-1)%x, & polygons(pid_t)%vertices(vid_t-1)%y ) is_right_n = is_right( x, y, x_t, y_t, polygons(pid_t)%vertices(vid_t+1)%x, & polygons(pid_t)%vertices(vid_t+1)%y ) IF ( ( is_left_p .AND. is_right_n ) .OR. ( is_right_p .AND. is_left_n ) ) CYCLE ENDIF ! !-- For each edge of each polygon, check if it intersects with the potential connection. If at !-- least one intersection is found, no connection can be made. intersection_found = .FALSE. DO pl = 1, SIZE( polygons ) DO vl = 1, polygons(pl)%nov v1x = polygons(pl)%vertices(vl)%x v1y = polygons(pl)%vertices(vl)%y v2x = polygons(pl)%vertices(vl+1)%x v2y = polygons(pl)%vertices(vl+1)%y intersection_found = intersect(x,y,x_t,y_t,v1x,v1y,v2x,v2y) IF ( intersection_found ) THEN EXIT ENDIF ENDDO IF ( intersection_found ) EXIT ENDDO IF ( intersection_found ) CYCLE ! !-- If neither of the above two tests was true, a connection will be established between the two !-- mesh points. CALL mas_nav_add_connection(in_mp,jl, tmp_mesh(jl)) CALL mas_nav_add_connection(tmp_mesh(jl),in_id, in_mp) ENDDO CALL mas_nav_reduce_connections(in_mp) END SUBROUTINE mas_nav_add_vertex_to_mesh !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Creates a temporary copy of the navigation mesh to be used for pathfinding !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_create_tmp_mesh( a_x, a_y, t_x, t_y, som ) IMPLICIT NONE INTEGER(iwp) :: im !< local mesh point counter INTEGER(iwp) :: noc !< number of connetions INTEGER(iwp) :: som !< size of mesh REAL(wp) :: a_x !< x-coordinate agent REAL(wp) :: a_y !< y-coordinate agent REAL(wp) :: t_x !< x-coordinate target REAL(wp) :: t_y !< y-coordinate target ! !-- Give tmp_mesh the size of mesh som = SIZE( mesh ) + 1 ALLOCATE( tmp_mesh(0:som) ) ! !-- Give the allocatable variables in tmp_mesh their respctive sizes DO im = 1, som-1 noc = mesh(im)%noc ALLOCATE( tmp_mesh(im)%connected_vertices(1:noc) ) ALLOCATE( tmp_mesh(im)%distance_to_vertex(1:noc) ) ENDDO ! !-- Copy mesh to tmp_mesh tmp_mesh(1:som-1) = mesh(1:som-1) ! !-- Add target point ... CALL mas_nav_init_mesh_point(tmp_mesh(0),-1_iwp,-1_iwp,t_x, t_y) CALL mas_nav_add_vertex_to_mesh(tmp_mesh(0),0_iwp) ! !-- ... and start point to temp mesh CALL mas_nav_init_mesh_point(tmp_mesh(som),-1_iwp,-1_iwp,a_x, a_y) CALL mas_nav_add_vertex_to_mesh(tmp_mesh(som),som) END SUBROUTINE mas_nav_create_tmp_mesh !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Finds the shortest path from an agents' position to her target. As the actual pathfinding !> algorithm uses the obstacle corners and then shifts them outward after pathfinding, cases can !> occur in which the connection between these intermittent targets then intersect with obstacles. !> To remedy this the pathfinding algorithm is then run on every two subsequent intermittent targets !> iteratively and new intermittent targets may be added to the path this way. !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_find_path( nl ) IMPLICIT NONE INTEGER(iwp) :: il !< local counter INTEGER(iwp) :: jl !< local counter INTEGER(iwp) :: kl !< local counter INTEGER(iwp) :: nl !< local agent counter INTEGER(iwp) :: nsteps_dummy !< number of steps on path INTEGER(iwp) :: nsteps_total !< number of steps on path REAL(wp), DIMENSION(0:30) :: ld_path_x !< local dummy agent path to target (x) REAL(wp), DIMENSION(0:30) :: ld_path_y !< local dummy agent path to target (y) ! !-- Initialize agent path arrays agents(nl)%path_x = -1 agents(nl)%path_y = -1 agents(nl)%path_x(0) = agents(nl)%x agents(nl)%path_y(0) = agents(nl)%y ! !-- Calculate initial path CALL mas_nav_a_star( agents(nl)%x, agents(nl)%y, agents(nl)%t_x, agents(nl)%t_y, nsteps_total ) ! !-- Set the rest of the agent path that was just calculated agents(nl)%path_x(1:nsteps_total) = dummy_path_x(1:nsteps_total) agents(nl)%path_y(1:nsteps_total) = dummy_path_y(1:nsteps_total) ! !-- Iterate through found path and check more intermittent targets need to be added. For this, run !-- pathfinding between every two consecutive intermittent targets. DO il = 0, MIN( agt_path_size-1, nsteps_total-1 ) ! !-- Pathfinding between two consecutive intermittent targets CALL mas_nav_a_star( agents(nl)%path_x(il), agents(nl)%path_y(il), & agents(nl)%path_x(il+1), agents(nl)%path_y(il+1), & nsteps_dummy ) nsteps_dummy = nsteps_dummy - 1 ! !-- If additional intermittent targets are found, add them to the path IF ( nsteps_dummy > 0 ) THEN ld_path_x = -1 ld_path_y = -1 ld_path_x(il+1:il+nsteps_dummy) = dummy_path_x(1:nsteps_dummy) ld_path_y(il+1:il+nsteps_dummy) = dummy_path_y(1:nsteps_dummy) kl = 1 DO jl = il+1,nsteps_total ld_path_x( il+nsteps_dummy+kl ) = agents(nl)%path_x(jl) ld_path_y( il+nsteps_dummy+kl ) = agents(nl)%path_y(jl) kl = kl + 1 IF ( kl > agt_path_size ) EXIT ENDDO nsteps_total = MIN( nsteps_total + nsteps_dummy, agt_path_size ) agents(nl)%path_x(il+1:nsteps_total) = ld_path_x(il+1:nsteps_total) agents(nl)%path_y(il+1:nsteps_total) = ld_path_y(il+1:nsteps_total) ENDIF ENDDO ! !-- Reset path counter to first intermittent target agents(nl)%path_counter = 1 END SUBROUTINE mas_nav_find_path !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Reduces the size of connection array to the amount of actual connections after all connetions !> were added to a mesh point !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_reduce_connections ( in_mp ) IMPLICIT NONE INTEGER(iwp) :: noc !< number of connections INTEGER, DIMENSION(:), ALLOCATABLE :: dum_cv !< dummy connected_vertices REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_dtv !< dummy distance_to_vertex TYPE(mesh_point) :: in_mp noc = in_mp%noc ALLOCATE( dum_cv(1:noc),dum_dtv(1:noc) ) dum_cv = in_mp%connected_vertices(1:noc) dum_dtv = in_mp%distance_to_vertex(1:noc) DEALLOCATE( in_mp%connected_vertices, in_mp%distance_to_vertex ) ALLOCATE( in_mp%connected_vertices(1:noc), & in_mp%distance_to_vertex(1:noc) ) in_mp%connected_vertices(1:noc) = dum_cv(1:noc) in_mp%distance_to_vertex(1:noc) = dum_dtv(1:noc) END SUBROUTINE mas_nav_reduce_connections !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initializes a point of the navigation mesh !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_nav_init_mesh_point ( in_mp, pid, vid, x, y ) IMPLICIT NONE INTEGER(iwp) :: pid !< polygon ID INTEGER(iwp) :: vid !< vertex ID REAL(wp) :: x !< x-coordinate REAL(wp) :: y !< y-coordinate TYPE(mesh_point) :: in_mp !< mesh point to be initialized in_mp%origin_id = -1 in_mp%polygon_id = pid in_mp%vertex_id = vid in_mp%cost_so_far = 1.d12 in_mp%x = x in_mp%y = y in_mp%x_s = x in_mp%y_s = y ALLOCATE( in_mp%connected_vertices(1:100), & in_mp%distance_to_vertex(1:100) ) in_mp%connected_vertices = -999 in_mp%distance_to_vertex = -999. in_mp%noc = 0 END SUBROUTINE mas_nav_init_mesh_point !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Reading of namlist from parin file !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_parin USE control_parameters, & ONLY: agent_time_unlimited, multi_agent_system_end, multi_agent_system_start IMPLICIT NONE CHARACTER(LEN=100) :: line !< dummy string for current line in namelist file INTEGER(iwp) :: io_status !< status after reading the namelist file LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module !< although the respective module namelist appears in !< the namelist file NAMELIST /agent_parameters/ a_rand_target, & adx, & ady, & agent_maximum_age, & agent_time_unlimited, & alloc_factor_mas, & asl, & asn, & asr, & ass, & at_x, & at_y, & bc_mas_lr, & bc_mas_ns, & coll_t_0, & corner_gate_start, & corner_gate_width, & deallocate_memory_mas, & dim_size_agtnum_manual, & dim_size_factor_agtnum, & dist_to_int_target, & dt_agent, & dt_arel, & dt_write_agent_data, & end_time_arel, & max_dist_from_path, & min_nr_agent, & multi_agent_system_end, & multi_agent_system_start, & number_of_agent_groups, & radius_agent, & random_start_position_agents, & read_agents_from_restartfile, & repuls_agent, & repuls_wall, & scan_radius_agent, & sigma_rep_agent, & sigma_rep_wall, & step_dealloc_mas, & switch_off_module, & tau_accel_agent ! !-- Move to the beginning of the namelist file and try to find and read the namelist. REWIND ( 11 ) READ ( 11, agent_parameters, IOSTAT=io_status ) ! !-- Action depending on the READ status IF ( io_status == 0 ) THEN ! !-- agent_parameters namelist was found and read correctly. Set flag that indicates that agents !-- are switched on. IF ( .NOT. switch_off_module ) agents_active = .TRUE. ELSEIF ( io_status > 0 ) THEN ! !-- agent_parameters namelist was found but contained errors. Print an error message including !-- the line that caused the problem. BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'agent_parameters', line ) ENDIF END SUBROUTINE mas_parin !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Routine for the whole processor !> Sort all agents into the 4 respective subgrid boxes !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_ps_sort_in_subboxes IMPLICIT NONE INTEGER(iwp) :: i !< grid box (x) INTEGER(iwp) :: ip !< counter (x) INTEGER(iwp) :: is !< box counter INTEGER(iwp) :: j !< grid box (y) INTEGER(iwp) :: jp !< counter (y) INTEGER(iwp) :: m !< sorting index INTEGER(iwp) :: n !< agent index INTEGER(iwp) :: nn !< agent counter INTEGER(iwp) :: sort_index !< sorting index INTEGER(iwp), DIMENSION(0:3) :: sort_count !< number of agents in one subbox TYPE(agent_type), DIMENSION(:,:), ALLOCATABLE :: sort_agents !< sorted agent array DO ip = nxl, nxr DO jp = nys, nyn number_of_agents = agt_count(jp,ip) IF ( number_of_agents <= 0 ) CYCLE agents => grid_agents(jp,ip)%agents(1:number_of_agents) nn = 0 sort_count = 0 ALLOCATE( sort_agents(number_of_agents, 0:3) ) DO n = 1, number_of_agents sort_index = 0 IF ( agents(n)%agent_mask ) THEN nn = nn + 1 ! !-- Sorting agents with a binary scheme !-- sort_index=11_2=3_10 -> agent at the left,south subgridbox !-- sort_index=10_2=2_10 -> agent at the left,north subgridbox !-- sort_index=01_2=1_10 -> agent at the right,south subgridbox !-- sort_index=00_2=0_10 -> agent at the right,north subgridbox !-- For this the center of the gridbox is calculated i = (agents(n)%x + 0.5_wp * dx) * ddx j = (agents(n)%y + 0.5_wp * dy) * ddy IF ( i == ip ) sort_index = sort_index + 2 IF ( j == jp ) sort_index = sort_index + 1 sort_count(sort_index) = sort_count(sort_index) + 1 m = sort_count(sort_index) sort_agents(m,sort_index) = agents(n) sort_agents(m,sort_index)%block_nr = sort_index ENDIF ENDDO nn = 0 DO is = 0,3 grid_agents(jp,ip)%start_index(is) = nn + 1 DO n = 1,sort_count(is) nn = nn + 1 agents(nn) = sort_agents(n,is) ENDDO grid_agents(jp,ip)%end_index(is) = nn ENDDO number_of_agents = nn agt_count(jp,ip) = number_of_agents DEALLOCATE( sort_agents ) ENDDO ENDDO END SUBROUTINE mas_ps_sort_in_subboxes #if defined( __parallel ) !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Move all agents not marked for deletion to lowest indices (packing) !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_ps_pack IMPLICIT NONE INTEGER(iwp) :: n !< agent counter INTEGER(iwp) :: nn !< number of agents ! !-- Find out elements marked for deletion and move data from highest index values to these free !-- indices. nn = number_of_agents DO WHILE ( .NOT. agents(nn)%agent_mask ) nn = nn-1 IF ( nn == 0 ) EXIT ENDDO IF ( nn > 0 ) THEN DO n = 1, number_of_agents IF ( .NOT. agents(n)%agent_mask ) THEN agents(n) = agents(nn) nn = nn - 1 DO WHILE ( .NOT. agents(nn)%agent_mask ) nn = nn-1 IF ( n == nn ) EXIT ENDDO ENDIF IF ( n == nn ) EXIT ENDDO ENDIF ! !-- The number of deleted agents has been determined in routines mas_boundary_conds, !-- mas_droplet_collision, and mas_eh_exchange_horiz. number_of_agents = nn END SUBROUTINE mas_ps_pack #endif !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Sort agents in each sub-grid box into two groups: agents that already completed the LES !> timestep, and agents that need further timestepping to complete the LES timestep. !--------------------------------------------------------------------------------------------------! ! SUBROUTINE mas_ps_sort_timeloop_done ! ! IMPLICIT NONE ! ! INTEGER(iwp) :: end_index !< agent end index for each sub-box ! INTEGER(iwp) :: i !< index of agent grid box in x-direction ! INTEGER(iwp) :: j !< index of agent grid box in y-direction ! INTEGER(iwp) :: n !< running index for number of agents ! INTEGER(iwp) :: nb !< index of subgrid boux ! INTEGER(iwp) :: nf !< indices for agents in each sub-box that already finalized their substeps ! INTEGER(iwp) :: nnf !< indices for agents in each sub-box that need further treatment ! INTEGER(iwp) :: num_finalized !< number of agents in each sub-box that already finalized their substeps ! INTEGER(iwp) :: start_index !< agent start index for each sub-box ! ! TYPE(agent_type), DIMENSION(:), ALLOCATABLE :: sort_agents !< temporary agent array ! ! DO i = nxl, nxr ! DO j = nys, nyn ! ! number_of_agents = agt_count(j,i) ! IF ( number_of_agents <= 0 ) CYCLE ! ! agents => grid_agents(j,i)%agents(1:number_of_agents) ! ! DO nb = 0, 3 ! !-- Obtain start and end index for each subgrid box ! start_index = grid_agents(j,i)%start_index(nb) ! end_index = grid_agents(j,i)%end_index(nb) ! !-- Allocate temporary array used for sorting ! ALLOCATE( sort_agents(start_index:end_index) ) ! !-- Determine number of agents already completed the LES !-- timestep, and write them into a temporary array ! nf = start_index ! num_finalized = 0 ! DO n = start_index, end_index ! IF ( dt_3d - agents(n)%dt_sum < 1E-8_wp ) THEN ! sort_agents(nf) = agents(n) ! nf = nf + 1 ! num_finalized = num_finalized + 1 ! ENDIF ! ENDDO ! !-- Determine number of agents that not completed the LES !-- timestep, and write them into a temporary array ! nnf = nf ! DO n = start_index, end_index ! IF ( dt_3d - agents(n)%dt_sum > 1E-8_wp ) THEN ! sort_agents(nnf) = agents(n) ! nnf = nnf + 1 ! ENDIF ! ENDDO ! !-- Write back sorted agents ! agents(start_index:end_index) = & ! sort_agents(start_index:end_index) ! !-- Determine updated start_index, used to masked already !-- completed agents. ! grid_agents(j,i)%start_index(nb) = & ! grid_agents(j,i)%start_index(nb) & ! + num_finalized ! !-- Deallocate dummy array ! DEALLOCATE ( sort_agents ) ! !-- Finally, if number of non-completed agents is non zero !-- in any of the sub-boxes, set control flag appropriately. ! IF ( nnf > nf ) & ! grid_agents(j,i)%time_loop_done = .FALSE. ! ! ENDDO ! ENDDO ! ENDDO ! ! END SUBROUTINE mas_ps_sort_timeloop_done !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calls social forces calculations !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_timestep_forces_call ( ip, jp ) IMPLICIT NONE INTEGER(iwp) :: ip !< counter, x-direction INTEGER(iwp) :: jp !< counter, y-direction INTEGER(iwp) :: n !< loop variable over all agents in a grid box ! !-- Get direction for all agents in current grid cell CALL mas_agent_direction DO n = 1, number_of_agents force_x = 0.0_wp force_y = 0.0_wp CALL mas_timestep_social_forces ( 'acceleration', n, ip, jp ) CALL mas_timestep_social_forces ( 'other_agents', n, ip, jp ) CALL mas_timestep_social_forces ( 'walls', n, ip, jp ) ! !-- Update forces agents(n)%force_x = force_x agents(n)%force_y = force_y ENDDO END SUBROUTINE mas_timestep_forces_call !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Euler timestep of agent transport !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_timestep IMPLICIT NONE INTEGER(iwp) :: n !< loop variable over all agents in a grid box REAL(wp) :: abs_v !< absolute value of velocity REAL(wp) :: abs_f !< absolute value of force DO n = 1, number_of_agents ! !-- Limit absolute force to a maximum to prevent unrealistic acceleration abs_f = SQRT( ( agents(n)%force_x )**2 + ( agents(n)%force_y )**2 ) IF ( abs_f > 20. ) THEN agents(n)%force_x = agents(n)%force_x * 20. / abs_f agents(n)%force_y = agents(n)%force_y * 20. / abs_f ENDIF ! !-- Update agent speed agents(n)%speed_x = agents(n)%speed_x + agents(n)%force_x * dt_agent agents(n)%speed_y = agents(n)%speed_y + agents(n)%force_y * dt_agent ! !-- Reduction of agent speed to maximum agent speed abs_v = SQRT( ( agents(n)%speed_x )**2 + ( agents(n)%speed_y )**2 ) IF ( abs_v > v_max_agent ) THEN agents(n)%speed_x = agents(n)%speed_x * v_max_agent / abs_v agents(n)%speed_y = agents(n)%speed_y * v_max_agent / abs_v ENDIF ! !-- Update agent position agents(n)%x = agents(n)%x + agents(n)%speed_x * dt_agent agents(n)%y = agents(n)%y + agents(n)%speed_y * dt_agent ! !-- Update absolute value of agent speed agents(n)%speed_abs = abs_v ! !-- Increment the agent age and the total time that the agent has advanced within the agent !-- timestep procedure agents(n)%age_m = agents(n)%age agents(n)%age = agents(n)%age + dt_agent agents(n)%dt_sum = agents(n)%dt_sum + dt_agent ! !-- Check whether there is still an agent that has not yet completed the total LES timestep IF ( ( dt_3d - agents(n)%dt_sum ) > 1E-8_wp ) THEN dt_3d_reached_l_mas = .FALSE. ENDIF ENDDO END SUBROUTINE mas_timestep !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculates the Social Forces (Helbing and Molnar, 1995) that the agent experiences due to !> acceleration towards target and repulsion by obstacles !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_timestep_social_forces ( mode, nl, ip, jp ) IMPLICIT NONE REAL(wp), PARAMETER :: k_pl = 1.5 !< factor for collision avoidance CHARACTER (LEN=*) :: mode !< identifier for the mode of calculation INTEGER(iwp) :: ij_dum !< index of nearest wall INTEGER(iwp) :: il !< index variable along x INTEGER(iwp) :: ip !< index variable along x INTEGER(iwp) :: jl !< index variable along y INTEGER(iwp) :: jp !< index variable along y INTEGER(iwp) :: nl !< loop variable over all agents in a grid box INTEGER(iwp) :: no !< loop variable over all agents in a grid box INTEGER(iwp) :: noa !< amount of agents in a grid box INTEGER(iwp) :: sc_x_end !< index for scan for topography/other agents INTEGER(iwp) :: sc_x_start !< index for scan for topography/other agents INTEGER(iwp) :: sc_y_end !< index for scan for topography/other agents INTEGER(iwp) :: sc_y_start !< index for scan for topography/other agents LOGICAL :: corner_found !< flag that indicates a corner has been found near agent REAL(wp) :: a_pl !< factor for collision avoidance REAL(wp) :: ax_semimaj !< semiminor axis of repulsive ellipse REAL(wp) :: b_pl !< factor for collision avoidance REAL(wp) :: c_pl !< factor for collision avoidance REAL(wp) :: coll_t !< time at which the next collision would happen REAL(wp) :: d_coll_t_0 !< inverse of collision cutoff time REAL(wp) :: d_pl !< factor for collision avoidance REAL(wp) :: ddum_f !< dummy devisor collision avoidance REAL(wp) :: dist !< distance to obstacle REAL(wp) :: dist_sq !< distance to obstacle squared REAL(wp) :: pos_rel_x !< relative position of two agents (x) REAL(wp) :: pos_rel_y !< relative position of two agents (y) REAL(wp) :: r_sq !< y-position REAL(wp) :: sra !< scan radius (agents) REAL(wp) :: srw !< local variable for scan radius (walls) REAL(wp) :: v_rel_x !< relative velocity (x); collision avoidance REAL(wp) :: v_rel_y !< relative velocity (y); collision avoidance REAL(wp) :: x_a !< x-position REAL(wp) :: x_wall !< x-position of wall REAL(wp) :: y_a !< y-position REAL(wp) :: y_wall !< y-position of wall TYPE(agent_type), DIMENSION(:), POINTER :: l_agts !< agents that repulse current agent ! !-- Initialization x_a = agents(nl)%x y_a = agents(nl)%y SELECT CASE ( TRIM( mode ) ) ! !-- Calculation of force due to agent trying to approach desired velocity CASE ( 'acceleration' ) force_x = force_x + d_tau_accel_agent & * ( agents(nl)%speed_des*agents(nl)%speed_e_x - agents(nl)%speed_x ) force_y = force_y + d_tau_accel_agent & * ( agents(nl)%speed_des*agents(nl)%speed_e_y - agents(nl)%speed_y ) ! !-- Calculation of repulsive forces by other agents in a radius around the current one CASE ( 'other_agents' ) sra = scan_radius_agent d_coll_t_0 = 1./coll_t_0 ! !-- Find relevant gridboxes (those that could contain agents within scan radius) sc_x_start = FLOOR( (x_a - sra) * ddx ) sc_x_end = FLOOR( (x_a + sra) * ddx ) sc_y_start = FLOOR( (y_a - sra) * ddx ) sc_y_end = FLOOR( (y_a + sra) * ddx ) IF ( sc_x_start < nxlg ) sc_x_start = nxlg IF ( sc_x_end > nxrg ) sc_x_end = nxrg IF ( sc_y_start < nysg ) sc_y_start = nysg IF ( sc_y_end > nyng ) sc_y_end = nyng sra = sra**2 ! !-- Loop over all previously found relevant gridboxes DO il = sc_x_start, sc_x_end DO jl = sc_y_start, sc_y_end noa = agt_count(jl,il) IF ( noa <= 0 ) CYCLE l_agts => grid_agents(jl,il)%agents(1:noa) DO no = 1, noa ! !-- Skip self IF ( jl == jp .AND. il == ip .AND. no == nl ) CYCLE pos_rel_x = l_agts(no)%x - x_a pos_rel_y = l_agts(no)%y - y_a dist_sq = pos_rel_x**2 + pos_rel_y**2 IF ( dist_sq > sra ) CYCLE r_sq = (2*radius_agent)**2 v_rel_x = agents(nl)%speed_x - l_agts(no)%speed_x v_rel_y = agents(nl)%speed_y - l_agts(no)%speed_y ! !-- Collision is already occuring, default to standard social forces. IF ( dist_sq <= r_sq ) THEN dist = SQRT( dist_sq ) + 1.0d-12 ax_semimaj = 0.5_wp * SQRT( dist ) force_x = force_x - 0.125_wp * repuls_agent & * d_sigma_rep_agent / ax_semimaj & * EXP( - ax_semimaj * d_sigma_rep_agent ) & * ( pos_rel_x / dist ) force_y = force_y - 0.125_wp * repuls_agent & * d_sigma_rep_agent / ax_semimaj & * EXP( - ax_semimaj * d_sigma_rep_agent ) & * ( pos_rel_y / dist ) ! !-- Currently no collision, calculate collision avoidance force according to !-- Karamouzas et al (2014, PRL 113,238701) ELSE ! !-- Factors a_pl = v_rel_x**2 + v_rel_y**2 b_pl = pos_rel_x*v_rel_x + pos_rel_y*v_rel_y c_pl = dist_sq - r_sq d_pl = b_pl**2 - a_pl*c_pl ! !-- If the two agents are moving non-parallel, calculate collision avoidance !-- social force IF ( d_pl > 0.0_wp .AND. ( a_pl < -0.00001 .OR. a_pl > 0.00001 ) ) THEN d_pl = SQRT( d_pl ) coll_t = ( b_pl - d_pl ) / a_pl IF ( coll_t > 0.0_wp ) THEN ! !-- Dummy factor ddum_f = 1. / ( a_pl * coll_t**2 ) * ( 2. / coll_t + 1.0 * d_coll_t_0 ) ! !-- x-component of social force force_x = force_x - k_pl * EXP( -coll_t * d_coll_t_0 ) * & ( v_rel_x - ( b_pl * v_rel_x - a_pl * pos_rel_x ) / d_pl ) * & ddum_f ! !-- y-component of social force force_y = force_y - k_pl * EXP( -coll_t * d_coll_t_0 ) * & ( v_rel_y - ( b_pl * v_rel_y - a_pl * pos_rel_y ) / d_pl ) * & ddum_f ENDIF ENDIF ENDIF ENDDO ENDDO ENDDO CASE ( 'walls' ) srw = scan_radius_wall corner_found = .FALSE. ! !-- Find relevant grid boxes (those that could contain topography within radius) sc_x_start = (x_a - srw) * ddx sc_x_end = (x_a + srw) * ddx sc_y_start = (y_a - srw) * ddx sc_y_end = (y_a + srw) * ddx IF ( sc_x_start < nxlg ) sc_x_start = nxlg IF ( sc_x_end > nxrg ) sc_x_end = nxrg IF ( sc_y_start < nysg ) sc_y_start = nysg IF ( sc_y_end > nyng ) sc_y_end = nyng ! !-- Find "walls" ( i.e. topography steps (up or down) higher than one grid box ) that are !-- perpendicular to the agent within the defined search radius. Such obstacles cannot be !-- passed and a social force to that effect is applied. !-- Walls only apply a force perpendicular to the wall to the agent. !-- There is therefore a search for walls directly right, left, south and north of the agent. !-- All other walls are ignored. !-- !-- Check for wall left of current agent ij_dum = 0 IF ( sc_x_start < ip ) THEN DO il = ip - 1, sc_x_start, -1 ! !-- Going left from the agent, check for a right wall IF ( BTEST( obstacle_flags(jp,il), 2 ) ) THEN ! !-- Obstacle found in grid box il, wall at right side x_wall = (il+1)*dx ! !-- Calculate force of found wall on agent CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_a ) ! !-- Calculate new x starting index for later scan for corners ij_dum = il + 1 EXIT ENDIF ENDDO ENDIF IF ( ij_dum /= 0 ) sc_x_start = ij_dum ! !-- Check for wall right of current agent ij_dum = 0 IF ( sc_x_end > ip ) THEN DO il = ip + 1, sc_x_end ! !-- Going right from the agent, check for a left wall IF ( BTEST( obstacle_flags(jp,il), 6 ) ) THEN ! !-- Obstacle found in grid box il, wall at left side x_wall = il*dx ! !-- Calculate force of found wall on agent CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_a ) ! !-- Calculate new x end index for later scan for corners ij_dum = il - 1 EXIT ENDIF ENDDO ENDIF IF ( ij_dum /= 0 ) sc_x_end = ij_dum ! !-- Check for wall south of current agent ij_dum = 0 IF ( sc_y_start < jp ) THEN DO jl = jp - 1, sc_y_start, -1 ! !-- Going south from the agent, check for a north wall IF ( BTEST( obstacle_flags(jl,ip), 0 ) ) THEN ! !-- Obstacle found in grid box jl, wall at left side y_wall = ( jl + 1 ) * dy CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, y_wall ) ! !-- Calculate new y starting index for later scan for corners ij_dum = jl + 1 EXIT ENDIF ENDDO ENDIF IF ( ij_dum /= 0 ) sc_y_start = ij_dum ! !-- Check for wall north of current agent ij_dum = 0 IF ( sc_y_end > jp ) THEN DO jl = jp + 1, sc_y_end ! !-- Going north from the agent, check for a south wall IF ( BTEST( obstacle_flags(jl,ip), 4 ) ) THEN ! !-- obstacle found in grid box jl, wall at left side y_wall = jl * dy CALL mas_timestep_wall_corner_force( x_a, x_a, y_a, y_wall ) ! !-- Calculate new y end index for later scan for corners ij_dum = jl - 1 ENDIF ENDDO ENDIF IF ( ij_dum /= 0 ) sc_y_end = ij_dum ! !-- Scan for corners surrounding current agent. !-- Only gridcells that are closer than the closest wall in each direction (n,s,r,l) are !-- considered in the search since those further away would have a significantly smaller !-- resulting force than the closer wall. DO il = sc_x_start, sc_x_end DO jl = sc_y_start, sc_y_end IF ( il == ip .OR. jl == jp ) CYCLE ! !-- Corners left of agent IF ( il < ip ) THEN ! !-- South left quadrant: look for north right corner IF ( jl < jp ) THEN IF ( BTEST( obstacle_flags(jl,il), 1 ) ) THEN ! !-- Calculate coordinates of the found corner x_wall = ( il + 1 ) * dx y_wall = ( jl + 1 ) * dy CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) ENDIF ! !-- North left quadrant: look for south right corner ELSEIF ( jl > jp ) THEN IF ( BTEST( obstacle_flags(jl,il), 3 ) ) THEN ! !-- Calculate coordinates of the corner of mentioned gridcell that is closest !-- to the current agent. x_wall = ( il + 1 ) * dx y_wall = jl * dy CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) ENDIF ENDIF ELSEIF ( il > ip ) THEN ! !-- South right quadrant: look for north left corner IF ( jl < jp ) THEN IF ( BTEST( obstacle_flags(jl,il), 7 ) ) THEN ! !-- Calculate coordinates of the corner of mentioned gridcell that is closest !-- to the current agent. x_wall = il * dx y_wall = ( jl + 1 ) * dy CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) ENDIF ! !-- North right quadrant: look for south left corner ELSEIF ( jl > jp ) THEN IF ( BTEST( obstacle_flags(jl,il), 5 ) ) THEN ! !-- Calculate coordinates of the corner of mentioned gridcell that is closest !-- to the current agent. x_wall = il * dx y_wall = jl * dy CALL mas_timestep_wall_corner_force( x_a, x_wall, y_a, y_wall ) ENDIF ENDIF ENDIF ENDDO ENDDO CASE DEFAULT END SELECT END SUBROUTINE mas_timestep_social_forces !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Given a distance to the current agent, calculates the force a found corner or wall exerts on that !> agent !--------------------------------------------------------------------------------------------------! SUBROUTINE mas_timestep_wall_corner_force( xa, xw, ya, yw ) IMPLICIT NONE REAL(wp) :: dist_l !< distance to obstacle REAL(wp) :: force_d_x !< increment of social force, x-direction REAL(wp) :: force_d_y !< increment of social force, x-direction REAL(wp) :: xa !< x-position of agent REAL(wp) :: xw !< x-position of wall REAL(wp) :: ya !< x-position of agent REAL(wp) :: yw !< y-position of wall force_d_x = 0.0_wp force_d_y = 0.0_wp ! !-- Calculate coordinates of corner relative to agent postion and distance between corner and agent. xw = xa - xw yw = ya - yw dist_l = SQRT( ( xw )**2 + ( yw )**2 ) ! !-- Calculate x and y component of repulsive force induced by previously found corner IF ( dist_l > 0 ) THEN force_d_x = repuls_wall * d_sigma_rep_wall & * EXP( -dist_l * d_sigma_rep_wall ) & * xw / (dist_l) force_d_y = repuls_wall * d_sigma_rep_wall & * EXP( -dist_l * d_sigma_rep_wall ) & * yw / (dist_l) ENDIF ! !-- forces that are located outside of a sight radius of ! !-- 200 degrees (-> COS(100./180.*pi) = COS(.555*pi)) of ! !-- current agent are considered to have an effect of 50% ! IF ( force_d_x * agents(nl)%speed_e_x + & ! force_d_y * agents(nl)%speed_e_y < & ! SQRT(force_d_x**2 + force_d_y**2) * & ! COS( .55555555 * 3.1415 ) ) & ! THEN ! force_d_x = force_d_x * .5_wp ! force_d_y = force_d_y * .5_wp ! ENDIF ! !-- Add force increment to total force of current agent force_x = force_x + force_d_x force_y = force_y + force_d_y END SUBROUTINE mas_timestep_wall_corner_force ! !-- Calculates distance of point P to edge (A,B). If A = B, calculates point-to-point distance from !-- A/B to P. FUNCTION dist_point_to_edge( a_x, a_y, b_x, b_y, p_x, p_y ) IMPLICIT NONE REAL(wp) :: a_x !< x-coordinate of point A of edge REAL(wp) :: a_y !< y-coordinate of point A of edge REAL(wp) :: ab_x !< x-coordinate of vector from A to B REAL(wp) :: ab_y !< y-coordinate of vector from A to B REAL(wp) :: ab_d !< inverse length of vector from A to B REAL(wp) :: ab_u_x !< x-coordinate of vector with direction of ab and length 1 REAL(wp) :: ab_u_y !< y-coordinate of vector with direction of ab and length 1 REAL(wp) :: ap_x !< x-coordinate of vector from A to P REAL(wp) :: ap_y !< y-coordinate of vector from A to P REAL(wp) :: b_x !< x-coordinate of point B of edge REAL(wp) :: b_y !< y-coordinate of point B of edge REAL(wp) :: ba_x !< x-coordinate of vector from B to A REAL(wp) :: ba_y !< y-coordinate of vector from B to A REAL(wp) :: bp_x !< x-coordinate of vector from B to P REAL(wp) :: bp_y !< y-coordinate of vector from B to P REAL(wp) :: dist_x !< x-coordinate of point P REAL(wp) :: dist_y !< y-coordinate of point P REAL(wp) :: dist_point_to_edge !< y-coordinate of point P REAL(wp) :: p_x !< x-coordinate of point P REAL(wp) :: p_y !< y-coordinate of point P ab_x = - a_x + b_x ab_y = - a_y + b_y ba_x = - b_x + a_x ba_y = - b_y + a_y ap_x = - a_x + p_x ap_y = - a_y + p_y bp_x = - b_x + p_x bp_y = - b_y + p_y IF ( ab_x * ap_x + ab_y * ap_y <= 0. ) THEN dist_point_to_edge = SQRT( ( a_x - p_x )**2 + ( a_y - p_y )**2 ) ELSEIF ( ba_x * bp_x + ba_y * bp_y <= 0. ) THEN dist_point_to_edge = SQRT( ( b_x - p_x )**2 + ( b_y - p_y )**2) ELSE ab_d = 1.0_wp / SQRT( ( ab_x )**2 + ( ab_y )**2 ) ab_u_x = ab_x * ab_d ab_u_y = ab_y * ab_d dist_x = ap_x - ( ap_x * ab_u_x + ap_y * ab_u_y ) * ab_u_x dist_y = ap_y - ( ap_x * ab_u_x + ap_y * ab_u_y ) * ab_u_y dist_point_to_edge = SQRT( dist_x**2 + dist_y**2 ) ENDIF END FUNCTION dist_point_to_edge ! !-- Returns the heuristic between points A and B (currently the straight distance) FUNCTION heuristic( ax, ay, bx, by ) IMPLICIT NONE REAL(wp) :: ax !< x-coordinate of point A REAL(wp) :: ay !< y-coordinate of point A REAL(wp) :: bx !< x-coordinate of point B REAL(wp) :: by !< y-coordinate of point B REAL(wp) :: heuristic !< return value heuristic = SQRT( ( ax - bx )**2 + ( ay - by )**2 ) END FUNCTION heuristic ! !-- Calculates if point P is left of the infinite line that contains A and B (direction: A to B). !-- Concept: 2D rotation of two vectors FUNCTION is_left( ax, ay, bx, by, px, py ) IMPLICIT NONE LOGICAL :: is_left !< return value; TRUE if P is left of AB REAL(wp) :: ax !< x-coordinate of point A REAL(wp) :: ay !< y-coordinate of point A REAL(wp) :: bx !< x-coordinate of point B REAL(wp) :: by !< y-coordinate of point B REAL(wp) :: px !< x-coordinate of point P REAL(wp) :: py !< y-coordinate of point P is_left = (bx-ax)*(py-ay)-(px-ax)*(by-ay) > 0 IF ( ( ABS( ax - px ) < .001 .AND. ABS( ay - py ) < .001 ) .OR. & ( ABS( bx - px ) < .001 .AND. ABS( by - py ) < .001) ) & THEN is_left = .FALSE. ENDIF END FUNCTION is_left ! !-- Calculates if point P is right of the infinite line that contains A and B (direction: A to B) !-- Concept: 2D rotation of two vectors FUNCTION is_right( ax, ay, bx, by, px, py ) IMPLICIT NONE LOGICAL :: is_right !< return value; TRUE if P is right of AB REAL(wp), INTENT(IN) :: ax !< x-coordinate of point A REAL(wp), INTENT(IN) :: ay !< y-coordinate of point A REAL(wp), INTENT(IN) :: bx !< x-coordinate of point B REAL(wp), INTENT(IN) :: by !< y-coordinate of point B REAL(wp), INTENT(IN) :: px !< x-coordinate of point P REAL(wp), INTENT(IN) :: py !< y-coordinate of point P is_right = (bx-ax)*(py-ay)-(px-ax)*(by-ay) < 0 IF ( ( ABS( ax - px ) < 0.001_wp .AND. ABS( ay - py ) < 0.001_wp ) .OR. & ( ABS( bx - px ) < 0.001_wp .AND. ABS( by - py ) < 0.001_wp ) ) & THEN is_right = .FALSE. ENDIF END FUNCTION is_right ! !-- Returns true if the line segments AB and PQ share an intersection FUNCTION intersect( ax, ay, bx, by, px, py, qx, qy ) IMPLICIT NONE LOGICAL :: intersect !< return value; TRUE if intersection was found LOGICAL :: la !< T if a is left of PQ LOGICAL :: lb !< T if b is left of PQ LOGICAL :: lp !< T if p is left of AB LOGICAL :: lq !< T if q is left of AB LOGICAL :: poss !< flag that indicates if an intersection is still possible LOGICAL :: ra !< T if a is right of PQ LOGICAL :: rb !< T if b is right of PQ LOGICAL :: rp !< T if p is right of AB LOGICAL :: rq !< T if q is right of AB REAL(wp) :: ax !< x-coordinate of point A REAL(wp) :: ay !< y-coordinate of point A REAL(wp) :: bx !< x-coordinate of point B REAL(wp) :: by !< y-coordinate of point B REAL(wp) :: px !< x-coordinate of point P REAL(wp) :: py !< y-coordinate of point P REAL(wp) :: qx !< x-coordinate of point Q REAL(wp) :: qy !< y-coordinate of point Q intersect = .FALSE. poss = .FALSE. ! !-- Intersection is possible only if P and Q are on opposing sides of AB lp = is_left(ax,ay,bx,by,px,py) rq = is_right(ax,ay,bx,by,qx,qy) IF ( lp .AND. rq ) poss = .TRUE. IF ( .NOT. poss ) THEN lq = is_left(ax,ay,bx,by,qx,qy) rp = is_right(ax,ay,bx,by,px,py) IF ( lq .AND. rp ) poss = .TRUE. ENDIF ! !-- Intersection occurs only if above test (poss) was true AND A and B are on opposing sides of PQ. IF ( poss ) THEN la = is_left(px,py,qx,qy,ax,ay) rb = is_right(px,py,qx,qy,bx,by) IF ( la .AND. rb ) intersect = .TRUE. IF ( .NOT. intersect ) THEN lb = is_left(px,py,qx,qy,bx,by) ra = is_right(px,py,qx,qy,ax,ay) IF ( lb .AND. ra ) intersect = .TRUE. ENDIF ENDIF END FUNCTION intersect ! !-- Gives a nuber randomly distributed around an average FUNCTION random_normal( avg, variation ) IMPLICIT NONE REAL(wp) :: avg !< x-coordinate of vector from A to B REAL(wp) :: random_normal !< y-coordinate of vector from A to B REAL(wp) :: variation !< y-coordinate of vector from A to B REAL(wp), DIMENSION(12) :: random_arr !< inverse length of vector from A to B CALL RANDOM_NUMBER( random_arr ) random_normal = avg + variation * ( SUM( random_arr ) - 6.0_wp ) END FUNCTION random_normal END MODULE multi_agent_system_mod