!> @file chem_emissions_mod.f90
!--------------------------------------------------------------------------------------------------!
! This file is part of PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General
! Public License as published by the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
! Public License for more details.
!
! You should have received a copy of the GNU General Public License along with PALM. If not, see
! .
!
! Copyright 2018-2021 Leibniz Universitaet Hannover
! Copyright 2018-2021 Freie Universitaet Berlin
! Copyright 2018-2021 Karlsruhe Institute of Technology
!--------------------------------------------------------------------------------------------------!
!
! Authors:
! --------
! @author Emmanuele Russo (FU-Berlin)
! @author Sabine Banzhaf (FU-Berlin)
! @author Martijn Schaap (FU-Berlin, TNO Utrecht)
!
! Description:
! ------------
!> MODULE for reading-in Chemistry Emissions data
!>
!> @note
!> @bug
!--------------------------------------------------------------------------------------------------!
MODULE chem_emissions_mod
USE arrays_3d, &
ONLY: rho_air
USE basic_constants_and_equations_mod, &
ONLY: p_0, rd_d_cp, rgas_univ
USE control_parameters, &
ONLY: debug_output, end_time, initializing_actions, intermediate_timestep_count, &
message_string, dt_3d
USE indices
USE kinds
#if defined( __netcdf )
USE netcdf
#endif
USE netcdf_data_input_mod, &
ONLY: chem_emis_att_type, chem_emis_val_type
USE chem_gasphase_mod, &
ONLY: nvar, spc_names
USE chem_modules
USE statistics, &
ONLY: weight_pres
!
!-- 20200203 NB
!-- Added new palm_date_time_mod for on-demand emission reading
USE palm_date_time_mod, &
ONLY: get_date_time
IMPLICIT NONE
!
!-- Declare all global variables within the module
!
!-- 20200203 NB new variables for on-demand read mode
CHARACTER(LEN=*), PARAMETER :: input_file_chem = 'PIDS_CHEM' !< chemistry file
CHARACTER(LEN=512), ALLOCATABLE, DIMENSION(:) :: timestamps !< timestamps in chemistry file
INTEGER(iwp) :: dt_emis !< Time Step Emissions
INTEGER(iwp) :: i !< index 1st selected dimension (some dims are not spatial)
INTEGER(iwp) :: j !< index 2nd selected dimension
INTEGER(iwp) :: i_end !< Index to end read variable from netcdf in one dims
INTEGER(iwp) :: i_start !< Index to start read variable from netcdf along one dims
INTEGER(iwp) :: j_end !< Index to end read variable from netcdf in additional dims
INTEGER(iwp) :: j_start !< Index to start read variable from netcdf in additional dims
INTEGER(iwp) :: len_index !< length of index (used for several indices)
INTEGER(iwp) :: len_index_pm !< length of PMs index
INTEGER(iwp) :: len_index_voc !< length of voc index
INTEGER(iwp) :: previous_timestamp_index !< index for current timestamp (20200203 ECC)
INTEGER(iwp) :: z_end !< Index to end read variable from netcdf in additional dims
INTEGER(iwp) :: z_start !< Index to start read variable from netcdf in additional dims
REAL(wp) :: conversion_factor !< Units Conversion Factor
SAVE
!
!-- Matching Emissions actions
INTERFACE chem_emissions_match
MODULE PROCEDURE chem_emissions_match
END INTERFACE chem_emissions_match
!
!-- Initialization actions
INTERFACE chem_emissions_init
MODULE PROCEDURE chem_emissions_init
END INTERFACE chem_emissions_init
!
!-- Setup of Emissions
INTERFACE chem_emissions_setup
MODULE PROCEDURE chem_emissions_setup
END INTERFACE chem_emissions_setup
!
!-- 20200203 NB new interfaces for on-demand mode
!
!-- initialization actions for on-demand mode
INTERFACE chem_emissions_header_init
MODULE PROCEDURE chem_emissions_header_init
END INTERFACE chem_emissions_header_init
!
!-- load emission data for on-demand mode
INTERFACE chem_emissions_update_on_demand
MODULE PROCEDURE chem_emissions_update_on_demand
END INTERFACE chem_emissions_update_on_demand
!
!-- 20200203 NB update public routines
PUBLIC chem_emissions_init, chem_emissions_match, chem_emissions_setup, &
chem_emissions_header_init, chem_emissions_update_on_demand
!
!-- Public Variables
PUBLIC conversion_factor, len_index, len_index_pm, len_index_voc
CONTAINS
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Matching the chemical species indices. The routine checks what are the indices of the emission
!> input species and the corresponding ones of the model species. The routine gives as output a
!> vector containing the number of common species: it is important to note that while the model
!> species are distinct, their values could be given to a single species in input.
!> For example, in the case of NO2 and NO, values may be passed in input as NOX values.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_match( emt_att,len_index )
INTEGER(iwp) :: ind_inp !< Parameters for cycling through chemical input species
INTEGER(iwp) :: ind_mod !< Parameters for cycling through chemical model species
INTEGER(iwp) :: ind_voc !< Indices to check whether a split for voc should be done
INTEGER(iwp) :: ispec !< index for cycle over effective number of emission species
INTEGER(iwp) :: nspec_emis_inp !< Variable where to store # of emission species in input
INTEGER(iwp), INTENT(INOUT) :: len_index !< number of common species between input dataset & model species
TYPE(chem_emis_att_type), INTENT(INOUT) :: emt_att !< Chemistry Emission Array (decl. netcdf_data_input.f90)
IF ( debug_output ) CALL debug_message( 'chem_emissions_match', 'start' )
!
!-- Number of input emission species
nspec_emis_inp = emt_att%n_emiss_species
! nspec_emis_inp=emt_att%nspec
!
!-- Check the emission LOD: 0 (PARAMETERIZED), 1 (DEFAULT), 2 (PRE-PROCESSED)
SELECT CASE (emiss_lod)
!
!-- LOD 0 (PARAMETERIZED mode)
CASE (0)
len_index = 0
!
!-- Number of species and number of matched species can be different but call is only made if
!-- both are greater than zero.
IF ( nvar > 0 .AND. nspec_emis_inp > 0 ) THEN
!
!-- Cycle over model species
DO ind_mod = 1, nvar
ind_inp = 1
DO WHILE ( TRIM( surface_csflux_name(ind_inp) ) /= 'novalue' ) !< 'novalue' is the default
IF ( TRIM( surface_csflux_name(ind_inp) ) == TRIM( spc_names(ind_mod) ) ) THEN
len_index = len_index + 1
ENDIF
ind_inp = ind_inp + 1
ENDDO
ENDDO
IF ( len_index > 0 ) THEN
!
!-- Allocation of Arrays of the matched species
ALLOCATE ( match_spec_input(len_index) )
ALLOCATE ( match_spec_model(len_index) )
!
!-- Pass species indices to declared arrays
len_index = 0
DO ind_mod = 1, nvar
ind_inp = 1
DO WHILE ( TRIM( surface_csflux_name(ind_inp) ) /= 'novalue' )
IF ( TRIM( surface_csflux_name(ind_inp) ) == TRIM(spc_names(ind_mod) ) ) &
THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
ind_inp = ind_inp + 1
END DO
END DO
!
!-- Check
DO ispec = 1, len_index
IF ( emiss_factor_main(match_spec_input(ispec) ) < 0 .AND. &
emiss_factor_side(match_spec_input(ispec) ) < 0 ) THEN
message_string = 'PARAMETERIZED emissions mode selected:' // &
' EMISSIONS POSSIBLE ONLY ON STREET SURFACES' // &
' but values of scaling factors for street types' // &
' emiss_factor_main AND emiss_factor_side' // &
' not provided for each of the emissions species' // &
' or not provided at all: PLEASE set a finite value' // &
' for these parameters in the chemistry namelist'
CALL message( 'chem_emissions_matching', 'CM0442', 2, 2, 0, 6, 0 )
ENDIF
END DO
ELSE
message_string = 'Non of given Emission Species' // &
' matches' // &
' model chemical species' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0443', 0, 0, 0, 6, 0 )
ENDIF
ELSE
message_string = 'Array of Emission species not allocated: ' // &
' Either no emission species are provided as input or' // &
' no chemical species are used by PALM.' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0444', 0, 2, 0, 6, 0 )
ENDIF
!
!-- LOD 1 (DEFAULT mode)
CASE (1)
len_index = 0 ! total number of species (to be accumulated)
len_index_voc = 0 ! total number of VOCs (to be accumulated)
len_index_pm = 3 ! total number of PMs: PM1, PM2.5, PM10.
!
!-- Number of model species and input species could be different but process this only when both are
!-- non-zero
IF ( nvar > 0 .AND. nspec_emis_inp > 0 ) THEN
!
!-- Cycle over model species
DO ind_mod = 1, nvar
!
!-- Cycle over input species
DO ind_inp = 1, nspec_emis_inp
!
!-- Check for VOC Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == "VOC" ) THEN
DO ind_voc= 1, emt_att%nvoc
IF ( TRIM( emt_att%voc_name(ind_voc) ) == TRIM( spc_names(ind_mod) ) ) &
THEN
len_index = len_index + 1
len_index_voc = len_index_voc + 1
ENDIF
END DO
ENDIF
!
!-- PMs: There is one input species name for all PM. This variable has 3 dimensions, one for PM1,
!-- PM2.5 and PM10
IF ( TRIM( emt_att%species_name(ind_inp) ) == "PM" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "PM1" ) THEN
len_index = len_index + 1
ELSEIF ( TRIM( spc_names(ind_mod) ) == "PM25" ) THEN
len_index = len_index + 1
ELSEIF ( TRIM( spc_names(ind_mod) ) == "PM10" ) THEN
len_index = len_index + 1
ENDIF
ENDIF
!
!-- NOX: NO2 and NO
IF ( TRIM( emt_att%species_name(ind_inp) ) == "NOX" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "NO" ) THEN
len_index = len_index + 1
ELSEIF ( TRIM( spc_names(ind_mod) ) == "NO2" ) THEN
len_index = len_index + 1
ENDIF
ENDIF
!
!-- SOX: SO2 and SO4
IF ( TRIM( emt_att%species_name(ind_inp) ) == "SOX" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "SO2" ) THEN
len_index = len_index + 1
ELSEIF ( TRIM( spc_names(ind_mod) ) == "SO4" ) THEN
len_index = len_index + 1
ENDIF
ENDIF
!
!-- Other Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == TRIM( spc_names(ind_mod) ) ) THEN
len_index = len_index + 1
ENDIF
END DO ! ind_inp ...
END DO ! ind_mod ...
!
!-- Allocate arrays
IF ( len_index > 0 ) THEN
ALLOCATE ( match_spec_input(len_index) )
ALLOCATE ( match_spec_model(len_index) )
IF ( len_index_voc > 0 ) THEN
!
!-- Contains indices of the VOC model species
ALLOCATE( match_spec_voc_model(len_index_voc) )
!
!-- Contains the indices of different values of VOC composition of input variable
!-- VOC_composition
ALLOCATE( match_spec_voc_input(len_index_voc) )
ENDIF
!
!-- Pass the species indices to declared arrays
len_index = 0
len_index_voc = 0
DO ind_mod = 1, nvar
DO ind_inp = 1, nspec_emis_inp
!
!-- VOCs
IF ( TRIM( emt_att%species_name(ind_inp) ) == "VOC" .AND. &
ALLOCATED( match_spec_voc_input ) ) THEN
DO ind_voc = 1, emt_att%nvoc
IF ( TRIM( emt_att%voc_name(ind_voc) ) == TRIM( spc_names(ind_mod) ) )&
THEN
len_index = len_index + 1
len_index_voc = len_index_voc + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
match_spec_voc_input(len_index_voc) = ind_voc
match_spec_voc_model(len_index_voc) = ind_mod
ENDIF
END DO
ENDIF
!
!-- PMs
IF ( TRIM( emt_att%species_name(ind_inp) ) == "PM" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "PM1" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ELSEIF ( TRIM( spc_names(ind_mod) ) == "PM25" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ELSEIF ( TRIM( spc_names(ind_mod) ) == "PM10" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
ENDIF
!
!-- NOX
IF ( TRIM( emt_att%species_name(ind_inp) ) == "NOX" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "NO" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ELSEIF ( TRIM( spc_names(ind_mod) ) == "NO2" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
ENDIF
!
!-- SOX
IF ( TRIM( emt_att%species_name(ind_inp) ) == "SOX" ) THEN
IF ( TRIM( spc_names(ind_mod) ) == "SO2" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ELSEIF ( TRIM( spc_names(ind_mod) ) == "SO4" ) THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
ENDIF
!
!-- Other Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == TRIM( spc_names(ind_mod) ) ) &
THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
END DO ! inp_ind
END DO ! inp_mod
!
!-- Error reporting (no matching)
ELSE
message_string = 'None of given Emission Species matches' // &
' model chemical species' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0440', 0, 0, 0, 6, 0 )
ENDIF
!
!-- Error reporting (no species)
ELSE
message_string = 'Array of Emission species not allocated: ' // &
' Either no emission species are provided as input or' // &
' no chemical species are used by PALM:' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0441', 0, 2, 0, 6, 0 )
ENDIF
!
!-- LOD 2 (PRE-PROCESSED mode)
CASE (2)
len_index = 0
len_index_voc = 0
IF ( nvar > 0 .AND. nspec_emis_inp > 0 ) THEN
!
!-- Cycle over model species
DO ind_mod = 1, nvar
!
!-- Cycle over input species
DO ind_inp = 1, nspec_emis_inp
!
!-- Check for VOC Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == "VOC" ) THEN
DO ind_voc = 1, emt_att%nvoc
IF ( TRIM( emt_att%voc_name(ind_voc) ) == TRIM( spc_names(ind_mod) ) ) &
THEN
len_index = len_index + 1
len_index_voc = len_index_voc + 1
ENDIF
END DO
ENDIF
!
!-- Other Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == TRIM( spc_names(ind_mod) ) ) THEN
len_index = len_index + 1
ENDIF
ENDDO
ENDDO
!
!-- Allocate array for storing the indices of the matched species
IF ( len_index > 0 ) THEN
ALLOCATE ( match_spec_input(len_index) )
ALLOCATE ( match_spec_model(len_index) )
IF ( len_index_voc > 0 ) THEN
!
!-- Contains indices of the VOC model species
ALLOCATE( match_spec_voc_model(len_index_voc) )
!
!-- Contains the indices of different values of VOC composition of input variable
!-- VOC_composition
ALLOCATE( match_spec_voc_input(len_index_voc) )
ENDIF
!
!-- Pass the species indices to declared arrays
len_index = 0
!
!-- Cycle over model species
DO ind_mod = 1, nvar
!
!-- Cycle over Input species
DO ind_inp = 1, nspec_emis_inp
!
!-- VOCs
IF ( TRIM( emt_att%species_name(ind_inp) ) == "VOC" .AND. &
ALLOCATED( match_spec_voc_input ) ) THEN
DO ind_voc= 1, emt_att%nvoc
IF ( TRIM( emt_att%voc_name(ind_voc) ) == TRIM( spc_names(ind_mod) ) )&
THEN
len_index = len_index + 1
len_index_voc = len_index_voc + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
match_spec_voc_input(len_index_voc) = ind_voc
match_spec_voc_model(len_index_voc) = ind_mod
ENDIF
END DO
ENDIF
!
!-- Other Species
IF ( TRIM( emt_att%species_name(ind_inp) ) == TRIM( spc_names(ind_mod) ) ) &
THEN
len_index = len_index + 1
match_spec_input(len_index) = ind_inp
match_spec_model(len_index) = ind_mod
ENDIF
END DO ! ind_inp
END DO ! ind_mod
ELSE ! if len_index_voc <= 0
!
!-- In case there are no species matching (just informational message)
message_string = 'Non of given emission species' // &
' matches' // &
' model chemical species:' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0438', 0, 0, 0, 6, 0 )
ENDIF
!
!-- Error check (no matching)
ELSE
!
!-- Either spc_names is zero or nspec_emis_inp is not allocated
message_string = 'Array of Emission species not allocated:' // &
' Either no emission species are provided as input or' // &
' no chemical species are used by PALM:' // &
' Emission routine is not called'
CALL message( 'chem_emissions_matching', 'CM0439', 0, 2, 0, 6, 0 )
ENDIF
!
!-- If emission module is switched on but mode_emis is not specified or it is given the wrong name
!
!-- Error check (no species)
CASE DEFAULT
message_string = 'Emission Module switched ON, but' // &
' either no emission mode specified or incorrectly given :' // &
' please, pass the correct value to the namelist parameter "mode_emis"'
CALL message( 'chem_emissions_matching', 'CM0445', 2, 2, 0, 6, 0 )
END SELECT
IF ( debug_output ) CALL debug_message( 'chem_emissions_match', 'end' )
END SUBROUTINE chem_emissions_match
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization:
!> Netcdf reading, arrays allocation and first calculation of cssws fluxes at timestep 0
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_init
USE netcdf_data_input_mod, &
ONLY: chem_emis, chem_emis_att
IMPLICIT NONE
INTEGER(iwp) :: ispec !< running index
IF ( debug_output ) CALL debug_message( 'chem_emissions_init', 'start' )
!
!-- Matching
CALL chem_emissions_match( chem_emis_att, n_matched_vars )
IF ( n_matched_vars == 0 ) THEN
emission_output_required = .FALSE.
ELSE
emission_output_required = .TRUE.
!
!-- Set molecule masses (in kg/mol)
ALLOCATE( chem_emis_att%xm(n_matched_vars) )
DO ispec = 1, n_matched_vars
SELECT CASE ( TRIM( spc_names(match_spec_model(ispec)) ) )
CASE ( 'SO2' ); chem_emis_att%xm(ispec) = xm_S + xm_O * 2
CASE ( 'SO4' ); chem_emis_att%xm(ispec) = xm_S + xm_O * 4
CASE ( 'NO' ); chem_emis_att%xm(ispec) = xm_N + xm_O
CASE ( 'NO2' ); chem_emis_att%xm(ispec) = xm_N + xm_O * 2
CASE ( 'NH3' ); chem_emis_att%xm(ispec) = xm_N + xm_H * 3
CASE ( 'CO' ); chem_emis_att%xm(ispec) = xm_C + xm_O
CASE ( 'CO2' ); chem_emis_att%xm(ispec) = xm_C + xm_O * 2
CASE ( 'CH4' ); chem_emis_att%xm(ispec) = xm_C + xm_H * 4
CASE ( 'HNO3' ); chem_emis_att%xm(ispec) = xm_H + xm_N + xm_O*3
CASE DEFAULT
chem_emis_att%xm(ispec) = 1.0_wp
END SELECT
ENDDO
!
!-- Get emissions for the first time step base on LOD (if defined) or emission mode
!-- (if no LOD defined)
!
!-- NOTE - I could use a combined if ( lod = xxx .or. mode = 'XXX' ) type of decision structure but
! I think it is much better to implement it this way (i.e., conditional on lod if it is
! defined, and mode if not) as we can easily take out the case structure for mode_emis
! later on.
IF ( emiss_lod < 0 ) THEN !-- no LOD defined (not likely)
SELECT CASE ( TRIM( mode_emis ) )
CASE ( 'PARAMETERIZED' ) ! LOD 0
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
ALLOCATE( emis_distribution(1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars)
CASE ( 'DEFAULT' ) ! LOD 1
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
ALLOCATE( emis_distribution(1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
CASE ( 'PRE-PROCESSED' ) ! LOD 2
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
!
!-- Note, at the moment emissions are considered only by surface fluxes rather than
!-- by volume sources. Therefore, no vertical dimension is required and is thus
!-- allocated with 1. Later when volume sources are considered, the vertical
!-- dimension will increase.
!ALLOCATE( emis_distribution(nzb:nzt+1,nys:nyn,nxl:nxr,n_matched_vars) )
ALLOCATE( emis_distribution(1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
END SELECT
ELSE ! if LOD is defined
SELECT CASE ( emiss_lod )
CASE ( 0 ) ! parameterized mode
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
ALLOCATE( emis_distribution(1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars)
CASE ( 1 ) ! default mode
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
ALLOCATE( emis_distribution(1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
CASE ( 2 ) ! pre-processed mode
IF ( .NOT. ALLOCATED( emis_distribution) ) THEN
ALLOCATE( emis_distribution(nzb:nzt+1,nys:nyn,nxl:nxr,n_matched_vars) )
ENDIF
CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
END SELECT
ENDIF
!
! -- Initialize
emis_distribution = 0.0_wp
ENDIF
IF ( debug_output ) CALL debug_message( 'chem_emissions_init', 'end' )
END SUBROUTINE chem_emissions_init
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Routine for Update of Emission values at each timestep.
!>
!> @todo Clarify the correct usage of index_dd, index_hh and index_mm. Consider renaming of these
!> variables.
!> @todo Clarify time used in emis_lod=2 mode. ATM, the used time seems strange.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_setup( emt_att, emt, n_matched_vars )
USE surface_mod, &
ONLY: surf_def_h, surf_lsm_h, surf_usm_h
USE netcdf_data_input_mod, &
ONLY: street_type_f
USE arrays_3d, &
ONLY: hyp, pt
USE control_parameters, &
ONLY: time_since_reference_point
USE palm_date_time_mod, &
ONLY: days_per_week, get_date_time, hours_per_day, months_per_year, seconds_per_day
IMPLICIT NONE
INTEGER(iwp) :: day_of_month !< day of the month
INTEGER(iwp) :: day_of_week !< day of the week
INTEGER(iwp) :: day_of_year !< day of the year
INTEGER(iwp) :: days_since_reference_point !< days since reference point
INTEGER(iwp) :: i !< running index for grid in x-direction
INTEGER(iwp) :: i_pm_comp !< index for number of PM components
INTEGER(iwp) :: icat !< Index for number of categories
INTEGER(iwp) :: index_dd !< index day
INTEGER(iwp) :: index_hh !< index hour
INTEGER(iwp) :: index_mm !< index month
INTEGER(iwp) :: ispec !< index for number of species
INTEGER(iwp) :: ivoc !< Index for number of VOCs
INTEGER(iwp) :: hour_of_day !< hour of the day
INTEGER(iwp) :: j !< running index for grid in y-direction
INTEGER(iwp) :: k !< running index for grid in z-direction
INTEGER(iwp) :: m !< running index for horizontal surfaces
INTEGER(iwp) :: month_of_year !< month of the year
INTEGER,INTENT(IN) :: n_matched_vars !< Output of matching routine with number
!< of matched species
REAL(wp) :: time_utc_init !< second of day of initial date
TYPE(chem_emis_att_type), INTENT(INOUT) :: emt_att !< variable to store emission information
TYPE(chem_emis_val_type), INTENT(INOUT), ALLOCATABLE, DIMENSION(:) :: emt !< variable to store emission input values,
!< depending on the considered species
!
!-- CONVERSION FACTORS: TIME
REAL(wp), PARAMETER :: hour_per_year = 8760.0_wp !< number of hours in a year of 365 days
REAL(wp), PARAMETER :: s_per_hour = 3600.0_wp !< number of sec per hour (s)/(hour)
REAL(wp), PARAMETER :: s_per_day = 86400.0_wp !< number of sec per day (s)/(day)
REAL(wp), PARAMETER :: day_to_s = 1.0_wp/s_per_day !< conversion day -> sec
REAL(wp), PARAMETER :: hour_to_s = 1.0_wp/s_per_hour !< conversion hours -> sec
REAL(wp), PARAMETER :: year_to_s = 1.0_wp/(s_per_hour*hour_per_year) !< conversion year -> sec
!
!-- CONVERSION FACTORS: MASS
REAL(wp), PARAMETER :: g_to_kg = 1.0E-03_wp !< Conversion from g to kg (kg/g)
REAL(wp), PARAMETER :: miug_to_kg = 1.0E-09_wp !< Conversion from g to kg (kg/g)
REAL(wp), PARAMETER :: tons_to_kg = 100.0_wp !< Conversion from tons to kg (kg/tons)
!
!-- CONVERSION FACTORS: PPM
REAL(wp), PARAMETER :: ratio2ppm = 1.0E+06_wp
REAL(wp), DIMENSION(24) :: par_emis_time_factor !< time factors for the parameterized mode:
!< fixed houlry profile for example day
REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: conv_to_ratio !< factor used for converting input
!< to concentration ratio
REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: tmp_temp !< temporary variable for abs. temperature
REAL(wp), DIMENSION(:), ALLOCATABLE :: time_factor !< factor for time scaling of emissions
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: delta_emis !< incremental emission factor
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: emis !< emission factor
IF ( emission_output_required ) THEN
!
!-- Set emis_dt to be used - since chemistry ODEs can be stiff, the option to solve them at every
!-- RK substep is present to help improve stability should the need arises
IF ( call_chem_at_all_substeps ) THEN
dt_emis = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_emis = dt_3d
ENDIF
!
!-- Conversion of units to the ones employed in PALM
!-- In PARAMETERIZED mode no conversion is performed: in this case input units are fixed
IF ( TRIM( mode_emis ) == "DEFAULT" .OR. TRIM( mode_emis ) == "PRE-PROCESSED" ) THEN
SELECT CASE ( TRIM( emt_att%units ) )
CASE ( 'kg/m2/s', 'KG/M2/S' ); conversion_factor = 1.0_wp ! kg
CASE ( 'kg/m2/hour', 'KG/M2/HOUR' ); conversion_factor = hour_to_s
CASE ( 'kg/m2/day', 'KG/M2/DAY' ); conversion_factor = day_to_s
CASE ( 'kg/m2/year', 'KG/M2/YEAR' ); conversion_factor = year_to_s
CASE ( 'ton/m2/s', 'TON/M2/S' ); conversion_factor = tons_to_kg ! tonnes
CASE ( 'ton/m2/hour', 'TON/M2/HOUR' ); conversion_factor = tons_to_kg*hour_to_s
CASE ( 'ton/m2/year', 'TON/M2/YEAR' ); conversion_factor = tons_to_kg*year_to_s
CASE ( 'g/m2/s', 'G/M2/S' ); conversion_factor = g_to_kg ! grams
CASE ( 'g/m2/hour', 'G/M2/HOUR' ); conversion_factor = g_to_kg*hour_to_s
CASE ( 'g/m2/year', 'G/M2/YEAR' ); conversion_factor = g_to_kg*year_to_s
CASE ( 'micrograms/m2/s', 'MICROGRAMS/M2/S' ); conversion_factor = miug_to_kg ! ug
CASE ( 'micrograms/m2/hour', 'MICROGRAMS/M2/HOUR' ); conversion_factor = miug_to_kg*hour_to_s
CASE ( 'micrograms/m2/year', 'MICROGRAMS/M2/YEAR' ); conversion_factor = miug_to_kg*year_to_s
!
!-- Error check (need units)
CASE DEFAULT
message_string = 'The Units of the provided emission input' // &
' are not the ones required by PALM-4U: please check ' // &
' emission module documentation.'
CALL message( 'chem_emissions_setup', 'CM0446', 2, 2, 0, 6, 0 )
END SELECT
ENDIF
!
!-- Conversion factor to convert kg/m**2/s to ppm/s
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Derive Temperature from Potential Temperature
tmp_temp(nzb:nzt+1,j,i) = pt(nzb:nzt+1,j,i) * ( hyp(nzb:nzt+1) / p_0 )**rd_d_cp
!
!-- We need to pass to cssws <- (ppm/s) * dz
!-- Input is Nmole/(m^2*s)
!-- To go to ppm*dz multiply the input by (m**2/N)*dz
!-- (m**2/N)*dz == V/N
!-- V/N = RT/P
conv_to_ratio(nzb:nzt+1,j,i) = rgas_univ * & ! J K-1 mol-1
tmp_temp(nzb:nzt+1,j,i) / & ! K
hyp(nzb:nzt+1) ! Pa
ENDDO
ENDDO
!
!-- LOD 2 (PRE-PROCESSED MODE)
IF ( emiss_lod == 2 ) THEN
!
!-- Update time indices
CALL get_date_time( 0.0_wp, second_of_day=time_utc_init )
CALL get_date_time( MAX( 0.0_wp, time_since_reference_point ), hour=hour_of_day )
days_since_reference_point = INT( FLOOR( ( time_utc_init + &
MAX( 0.0_wp, time_since_reference_point ) ) &
/ seconds_per_day ) )
index_hh = days_since_reference_point * hours_per_day + hour_of_day
!
!-- LOD 1 (DEFAULT MODE)
ELSEIF ( emiss_lod == 1 ) THEN
!
!-- Allocate array where to store temporary emission values
IF ( .NOT. ALLOCATED(emis) ) ALLOCATE( emis(nys:nyn,nxl:nxr) )
!
!-- Allocate time factor per category
ALLOCATE( time_factor(emt_att%ncat) )
!
!-- Read-in hourly emission time factor
IF ( TRIM( time_fac_type ) == "HOUR" ) THEN
!
!-- Update time indices
CALL get_date_time( MAX( time_since_reference_point, 0.0_wp ), &
day_of_year=day_of_year, hour=hour_of_day )
index_hh = ( day_of_year - 1_iwp ) * hour_of_day
!
!-- Check if the index is less or equal to the temporal dimension of HOURLY emission files
IF ( index_hh <= SIZE( emt_att%hourly_emis_time_factor(1,:) ) ) THEN
!
!-- Read-in the correspondant time factor
time_factor(:) = emt_att%hourly_emis_time_factor(:,index_hh+1)
!
!-- Error check (time out of range)
ELSE
message_string = 'The "HOUR" time-factors in the DEFAULT mode ' // &
' are not provided for each hour of the total simulation time'
CALL message( 'chem_emissions_setup', 'CM0448', 2, 2, 0, 6, 0 )
ENDIF
!
!-- Read-in MDH emissions time factors
ELSEIF ( TRIM( time_fac_type ) == "MDH" ) THEN
!
!-- Update time indices
CALL get_date_time( MAX( time_since_reference_point, 0.0_wp ), &
month = month_of_year, &
day = day_of_month, &
hour = hour_of_day, &
day_of_week = day_of_week &
)
index_mm = month_of_year
index_dd = months_per_year + day_of_week
SELECT CASE( TRIM( daytype_mdh ) )
CASE ("workday")
index_hh = months_per_year + days_per_week + hour_of_day
CASE ("weekend")
index_hh = months_per_year + days_per_week + hours_per_day + hour_of_day
CASE ("holiday")
index_hh = months_per_year + days_per_week + 2*hours_per_day + hour_of_day
END SELECT
!
!-- Check if the index is less or equal to the temporal dimension of MDH emission files
IF ( ( index_hh + index_dd + index_mm) <= SIZE( emt_att%mdh_emis_time_factor(1,:) ) )&
THEN
!
!-- Read in corresponding time factor
time_factor(:) = emt_att%mdh_emis_time_factor(:,index_mm) * &
emt_att%mdh_emis_time_factor(:,index_dd) * &
emt_att%mdh_emis_time_factor(:,index_hh+1)
!
!-- Error check (MDH time factor not provided)
ELSE
message_string = 'The "MDH" time-factors in the DEFAULT mode ' // &
' are not provided for each hour/day/month of the total simulation time'
CALL message( 'chem_emissions_setup', 'CM0449', 2, 2, 0, 6, 0 )
ENDIF
!
!-- Error check (no time factor defined)
ELSE
message_string = 'In the DEFAULT mode the time factor' // &
' has to be defined in the NAMELIST'
CALL message( 'chem_emissions_setup', 'CM0450', 2, 2, 0, 6, 0 )
ENDIF
!
!-- PARAMETERIZED MODE
ELSEIF ( emiss_lod == 0 ) THEN
!
!-- Assign constant values of time factors, diurnal profile for traffic sector
par_emis_time_factor(:) = (/ 0.009, 0.004, 0.004, 0.009, 0.029, 0.039, &
0.056, 0.053, 0.051, 0.051, 0.052, 0.055, &
0.059, 0.061, 0.064, 0.067, 0.069, 0.069, &
0.049, 0.039, 0.039, 0.029, 0.024, 0.019 /)
IF ( .NOT. ALLOCATED( time_factor ) ) ALLOCATE( time_factor(1) )
!
!-- Get time-factor for specific hour
CALL get_date_time( MAX( time_since_reference_point, 0.0_wp ), hour = hour_of_day )
index_hh = hour_of_day
time_factor(1) = par_emis_time_factor(index_hh+1)
ENDIF ! emiss_lod
!
!-- Emission distribution calculation
IF ( emiss_lod == 0 ) THEN
DO ispec = 1, n_matched_vars
!
!-- Units are micromoles/m**2*day (or kilograms/m**2*day for PMs)
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = surface_csflux( match_spec_input(ispec) )&
* time_factor(1) * hour_to_s
ENDDO
!
!-- LOD 1 (DEFAULT mode)
ELSEIF ( emiss_lod == 1 ) THEN
!
!-- Allocate array for the emission value corresponding to a specific category and time factor
ALLOCATE (delta_emis(nys:nyn,nxl:nxr))
!
!-- Cycle over categories
DO icat = 1, emt_att%ncat
!
!-- Cycle over Species: n_matched_vars represents the number of species in common between
!-- the emission input data and the chemistry mechanism used
DO ispec = 1, n_matched_vars
emis(nys:nyn,nxl:nxr) = emt( match_spec_input(ispec) )% &
default_emission_data(icat,nys+1:nyn+1,nxl+1:nxr+1)
!
!-- NO
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "NO" ) THEN
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%nox_comp(icat,1) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec)&
+ delta_emis(nys:nyn,nxl:nxr)
!
!-- NO2
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "NO2" ) THEN
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%nox_comp(icat,2) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
!
!-- SO2
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "SO2" ) THEN
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%sox_comp(icat,1) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
!
!-- SO4
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "SO4" ) THEN
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%sox_comp(icat,2) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
!
!-- PM1
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" ) THEN
DO i_pm_comp = 1, SIZE( emt_att%pm_comp(1,:,1) ) ! cycle through components
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%pm_comp(icat,i_pm_comp,1) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
ENDDO
!
!-- PM2.5
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" ) THEN
DO i_pm_comp = 1, SIZE( emt_att%pm_comp(1,:,2) ) ! cycle through components
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%pm_comp(icat,i_pm_comp,2) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
ENDDO
!
!-- PM10
ELSEIF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
DO i_pm_comp = 1, SIZE( emt_att%pm_comp(1,:,3) ) ! cycle through components
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * & ! kg/m2/s
time_factor(icat) * &
emt_att%pm_comp(icat,i_pm_comp,3) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
ENDDO
!
!-- VOCs
ELSEIF ( SIZE( match_spec_voc_input ) > 0 ) THEN
DO ivoc = 1, SIZE( match_spec_voc_input ) ! cycle through components
IF ( TRIM( spc_names(match_spec_model(ispec) ) ) == &
TRIM( emt_att%voc_name(ivoc) ) ) THEN
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * &
time_factor(icat) * &
emt_att%voc_comp(icat,match_spec_voc_input(ivoc)) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
ENDIF
ENDDO
!
!-- Any other species
ELSE
delta_emis(nys:nyn,nxl:nxr) = emis(nys:nyn,nxl:nxr) * time_factor(icat) * &
conversion_factor * hours_per_day
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = &
emis_distribution(1,nys:nyn,nxl:nxr,ispec) &
+ delta_emis(nys:nyn,nxl:nxr)
ENDIF ! TRIM spc_names
emis = 0
ENDDO
delta_emis = 0
ENDDO
!
!-- LOD 2 (PRE-PROCESSED mode)
ELSEIF ( emiss_lod == 2 ) THEN
!
!-- Cycle over species: n_matched_vars represents the number of species in common between the
!-- emission input data and the chemistry mechanism used
DO ispec = 1, n_matched_vars
! (ecc)
emis_distribution(1,nys:nyn,nxl:nxr,ispec) = emt(match_spec_input(ispec))% &
preproc_emission_data(index_hh+1,1,nys+1:nyn+1,nxl+1:nxr+1) &
* conversion_factor
ENDDO
ENDIF ! emiss_lod
!
!-- Cycle to transform x,y coordinates to the one of surface_mod and to assign emission values to
!-- cssws
!
!-- LOD 0 (PARAMETERIZED mode)
!-- Units of inputs are micromoles/m2/s
IF ( emiss_lod == 0 ) THEN
IF (street_type_f%from_file) THEN
!
!-- Streets are lsm surfaces, hence, no usm surface treatment required.
!-- However, urban surface may be initialized via default initialization in surface_mod, e.g. at
!-- horizontal urban walls that are at k == 0 (building is lower than the first grid point). Hence,
!-- in order to have only emissions at streets, set the surfaces emissions to zero at urban walls.
IF ( surf_usm_h(0)%ns >=1 ) surf_usm_h(0)%cssws = 0.0_wp
!
!-- Treat land-surfaces.
DO m = 1, surf_lsm_h(0)%ns
i = surf_lsm_h(0)%i(m)
j = surf_lsm_h(0)%j(m)
k = surf_lsm_h(0)%k(m)
!
!-- Set everything to zero then reassign according to street type
surf_lsm_h(0)%cssws(:,m) = 0.0_wp
IF ( street_type_f%var(j,i) >= main_street_id .AND. &
street_type_f%var(j,i) < max_street_id ) THEN
!
!-- Cycle over matched species
DO ispec = 1, n_matched_vars
!
!-- PMs are already in kilograms
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
!
!-- kg/(m^2*s) * kg/m^3
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = &
emiss_factor_main(match_spec_input(ispec)) * &
emis_distribution(1,j,i,ispec) * & ! kg/(m^2*s)
rho_air(k) ! kg/m^3
!
!-- Other Species
!-- Inputs are micromoles
ELSE
!
!-- ppm/s *m *kg/m^3
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = &
emiss_factor_main( match_spec_input(ispec) ) * &
emis_distribution(1,j,i,ispec) * & ! micromoles/(m^2*s)
conv_to_ratio(k,j,i) * & ! m^3/Nmole
rho_air(k) ! kg/m^3
ENDIF
ENDDO ! ispec
ELSEIF ( street_type_f%var(j,i) >= side_street_id .AND. &
street_type_f%var(j,i) < main_street_id ) THEN
!
!-- Cycle over matched species
DO ispec = 1, n_matched_vars
!
!-- PMs are already in kilograms
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
!
!-- kg/(m^2*s) * kg/m^3
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = &
emiss_factor_side( match_spec_input(ispec) ) * &
emis_distribution(1,j,i,ispec) * & ! kg/(m^2*s)
rho_air(k) ! kg/m^3
!
!-- Other species
!-- Inputs are micromoles
ELSE
!
!-- ppm/s *m *kg/m^3
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = &
emiss_factor_side( match_spec_input(ispec) ) * &
emis_distribution(1,j,i,ispec) * & ! micromoles/(m^2*s)
conv_to_ratio(k,j,i) * & ! m^3/Nmole
rho_air(k) ! kg/m^3
ENDIF
ENDDO ! ispec
ENDIF ! street type
ENDDO ! m
ENDIF ! street_type_f%from_file
!
!-- LOD 1 (DEFAULT) and LOD 2 (PRE-PROCESSED)
ELSE
DO ispec = 1, n_matched_vars
!
!-- Default surfaces
DO m = 1, surf_def_h(0)%ns
i = surf_def_h(0)%i(m)
j = surf_def_h(0)%j(m)
IF ( emis_distribution(1,j,i,ispec) > 0.0_wp ) THEN
!
!-- PMs
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
surf_def_h(0)%cssws(match_spec_model(ispec),m) = & ! kg/m2/s * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
rho_air(nzb) ! kg/m^3
ELSE
!
!-- VOCs
IF ( len_index_voc > 0 .AND. &
emt_att%species_name(match_spec_input(ispec)) == "VOC" ) THEN
surf_def_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! mole/m2/s
conv_to_ratio(nzb,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(nzb) ! kg/m^3
!
!-- Other species
ELSE
surf_def_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
( 1.0_wp / emt_att%xm(ispec) ) * & ! mole/kg
conv_to_ratio(nzb,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(nzb) ! kg/m^3
ENDIF ! VOC
ENDIF ! PM
ENDIF ! emis_distribution > 0
ENDDO ! m
!
!-- LSM surfaces
DO m = 1, surf_lsm_h(0)%ns
i = surf_lsm_h(0)%i(m)
j = surf_lsm_h(0)%j(m)
k = surf_lsm_h(0)%k(m)
IF ( emis_distribution(1,j,i,ispec) > 0.0_wp ) THEN
!
!-- PMs
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = & ! kg/m2/s * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
rho_air(k) ! kg/m^3
ELSE
!
!-- VOCs
IF ( len_index_voc > 0 .AND. &
emt_att%species_name(match_spec_input(ispec)) == "VOC" ) THEN
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! mole/m2/s
conv_to_ratio(k,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(k) ! kg/m^3
!
!-- Other species
ELSE
surf_lsm_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
( 1.0_wp / emt_att%xm(ispec) ) * & ! mole/kg
conv_to_ratio(k,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(k) ! kg/m^3
ENDIF ! VOC
ENDIF ! PM
ENDIF ! emis_distribution
ENDDO ! m
!
!-- USM surfaces
DO m = 1, surf_usm_h(0)%ns
i = surf_usm_h(0)%i(m)
j = surf_usm_h(0)%j(m)
k = surf_usm_h(0)%k(m)
IF ( emis_distribution(1,j,i,ispec) > 0.0_wp ) THEN
!
!-- PMs
IF ( TRIM( spc_names( match_spec_model(ispec) ) ) == "PM1" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM25" .OR. &
TRIM( spc_names( match_spec_model(ispec) ) ) == "PM10" ) THEN
surf_usm_h(0)%cssws(match_spec_model(ispec),m) = & ! kg/m2/s * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
rho_air(k) ! kg/m^3
ELSE
!
!-- VOCs
IF ( len_index_voc > 0 .AND. &
emt_att%species_name(match_spec_input(ispec)) == "VOC" ) THEN
surf_usm_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! m2/s
conv_to_ratio(k,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(k) ! kg/m^3
!
!-- Other species
ELSE
surf_usm_h(0)%cssws(match_spec_model(ispec),m) = & ! ppm/s * m * kg/m3
emis_distribution(1,j,i,ispec) * & ! kg/m2/s
( 1.0_wp / emt_att%xm(ispec) ) * & ! mole/kg
conv_to_ratio(k,j,i) * & ! m^3/mole
ratio2ppm * & ! ppm
rho_air(k) ! kg/m^3
ENDIF ! VOC
ENDIF ! PM
ENDIF ! emis_distribution
ENDDO ! m
ENDDO
ENDIF
!
!-- Deallocate time_factor in case of DEFAULT mode)
IF ( ALLOCATED( time_factor ) ) DEALLOCATE( time_factor )
ENDIF
END SUBROUTINE chem_emissions_setup
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! 20200203 NB - ON DEMAND EMISSION UPDATE MODE
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! WRAPPER / INTERFACE FUNCTIONS
!!
!! NOTE - I find using an explicity wrapper provides much better flow control
!! over an interface block
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> interface for initiation of emission arrays based on emission LOD
!
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_header_init
IMPLICIT NONE
SELECT CASE ( emiss_lod )
CASE ( 0 )
! do nothing at the moment
CASE ( 1 )
! do nothing at the moment
CASE ( 2 )
CALL chem_emissions_header_init_lod2
END SELECT
END SUBROUTINE chem_emissions_header_init
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> interface for initiation of emission arrays based on emission LOD
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_update_on_demand
IMPLICIT NONE
SELECT CASE ( emiss_lod )
CASE ( 0 )
! do nothing at the moment
CASE ( 1 )
! do nothing at the moment
CASE ( 2 )
CALL chem_emissions_update_on_demand_lod2
END SELECT
END SUBROUTINE ! chem_emisisons_update_on_demand
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! SUBROUTINES SPECIFIC FOR LOD 2
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Initiates header for emissions data attributes for LOD 2
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_header_init_lod2
USE control_parameters, &
ONLY: coupling_char, message_string
USE netcdf_data_input_mod, &
ONLY: chem_emis_att, close_input_file, get_attribute, get_dimension_length, get_variable, &
open_read_file
IMPLICIT NONE
INTEGER(iwp) :: att_lod !< lod attribute in chemistry file
INTEGER(iwp) :: ncid !< chemistry file netCDF handle
IF ( debug_output ) CALL debug_message( 'chem_emissions_header_init_lod2', 'start' )
!
!-- Opens _chemistry input file and obtain header information
CALL open_read_file ( TRIM( input_file_chem ) // TRIM( coupling_char ), ncid )
!
!-- Check if LOD in chemistry file matches LOD in namelist
CALL get_attribute ( ncid, 'lod', att_lod, .TRUE. )
IF ( att_lod /= emiss_lod ) THEN
message_string = '' ! to get around unused variable warning / error
WRITE ( message_string, * ) 'LOD mismatch between namelist (emiss_lod) and', &
CHAR( 10 ), ' ', 'chemistry input file (global attributes>lod)'
CALL message( 'chem_emissions_header_init_lod2', 'CM0468', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Obtain unit conversion factor
CALL get_attribute ( ncid, 'units', chem_emis_att%units, .FALSE., "emission_values" )
conversion_factor = chem_emissions_convert_base_units ( chem_emis_att%units )
!
!-- Obtain header attributes
CALL chem_emissions_init_species ( ncid )
CALL chem_emissions_init_timestamps ( ncid )
!
!-- Done reading file
CALL close_input_file (ncid)
!
!-- Set previous timestamp index to something different to trigger a read event later on
previous_timestamp_index = -1
IF ( debug_output ) CALL debug_message( 'chem_emissions_header_init_lod2', 'end' )
END SUBROUTINE chem_emissions_header_init_lod2
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Reads emission data on demand for LOD2
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_update_on_demand_lod2
USE control_parameters, &
ONLY: coupling_char, time_since_reference_point
USE netcdf_data_input_mod, &
ONLY: chem_emis_att, close_input_file, get_variable, open_read_file
USE arrays_3d, &
ONLY: hyp, pt
USE surface_mod, &
ONLY: surf_def_h, surf_lsm_h, surf_usm_h
IMPLICIT NONE
CHARACTER(LEN=80) :: this_timestamp !< writes out timestamp
INTEGER(iwp) :: i,j,k,m !< generic counters
INTEGER(iwp) :: kmatch !< index of matched species
INTEGER(iwp) :: ncid !< netCDF file handle (chemistry file)
INTEGER(iwp) :: time_index_location !< location of most recent timestamp
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: cssws_def_h !< dummy default surface array
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: cssws_lsm_h !< dummy LSM surface array
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: cssws_usm_h !< dummy USM surface array
REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: mass2mole !< conversion factor mass 2 molar (ppm) flux
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: emis_distrib !< surface emissions
REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:,:) :: emissions_raw !< raw emissions data
IF ( debug_output ) CALL debug_message ( 'chem_emissions_update_on_demand_lod2', 'start' )
!
!-- Obtain current timestamp and locate index for most recent timestamp element
!-- end subroutine (RETURN) if it is still the same index as the existing time index
this_timestamp = '' ! string must be initiated before using
CALL get_date_time( time_since_reference_point, date_time_str=this_timestamp )
time_index_location = chem_emissions_locate_timestep &
( this_timestamp, timestamps, 1, chem_emis_att%dt_emission )
IF ( time_index_location == previous_timestamp_index ) RETURN
!
!-- Begin extract emission data for matched species from netCDF file
previous_timestamp_index = time_index_location
ALLOCATE ( emis_distrib(n_matched_vars,nys:nyn,nxl:nxr) )
emis_distrib = 0.0_wp
!
!-- Open netCDF file and allocate temp memory
CALL open_read_file( TRIM( input_file_chem ) // TRIM( coupling_char ), ncid )
ALLOCATE( emissions_raw(1,1,nys:nyn,nxl:nxr,1) )
DO k = 1, n_matched_vars
!
!-- Get index for matching species
kmatch = chem_emissions_locate_species( spc_names(match_spec_model(k)), &
chem_emis_att%species_name )
!
!-- Extract variable as-is
!-- Note C index notations for nx and ny due to MPI and reversed index dimension order for netCDF
!-- Fortran API)
emissions_raw = 0.0_wp
CALL get_variable ( ncid, 'emission_values', emissions_raw, &
kmatch, nxl+1, nys+1, 1, time_index_location, &
1, nxr-nxl+1, nyn-nys+1, 1, 1, .FALSE. )
!
!-- Transfer emission data
DO j = nys,nyn
DO i = nxl,nxr
emis_distrib(k,j,i) = emissions_raw(1,1,j,i,1) * conversion_factor
ENDDO
ENDDO
ENDDO ! k = n_matched_vars
!
!-- netCDF handle and temp memory no longer needed
DEALLOCATE( emissions_raw )
CALL close_input_file( ncid )
!
!-- Set emis_dt since chemistry ODEs can be stiff, the option to solve them at every RK substep is
!-- present to help improve stability should the need arise
dt_emis = dt_3d
IF ( call_chem_at_all_substeps ) dt_emis = dt_emis * weight_pres(intermediate_timestep_count)
!
!-- Calculate conversion factor from mass flux to molar flux (mixing ratio)
ALLOCATE ( mass2mole(nys:nyn,nxl:nxr) )
mass2mole = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
mass2mole(j,i) = mass_2_molar_flux ( hyp(nzb), pt(nzb,j,i) )
ENDDO
ENDDO
!
!-- Calculate surface fluxes
!-- NOTE - For some reason I can not pass surf_xxx%cssws as output argument into subroutine
!-- assign_surface_flux ( ). The contents got mixed up once the subroutine is finished. I
!-- don't know why and I don't have time to investigate. As workaround I declared dummy
!-- variables and reassign them one by one (i.e., in a loop)
!-- ECC 20200206
!
!-- Allocate and initialize dummy surface fluxes
ALLOCATE( cssws_def_h(n_matched_vars,surf_def_h(0)%ns) )
cssws_def_h = 0.0_wp
ALLOCATE( cssws_lsm_h(n_matched_vars,surf_lsm_h(0)%ns) )
cssws_lsm_h = 0.0_wp
ALLOCATE( cssws_usm_h(n_matched_vars,surf_usm_h(0)%ns) )
cssws_usm_h = 0.0_wp
!
!-- Assign and transfer emissions as surface fluxes
CALL assign_surface_flux ( cssws_def_h, surf_def_h(0)%ns, &
surf_def_h(0)%j, surf_def_h(0)%i, &
emis_distrib, mass2mole )
CALL assign_surface_flux ( cssws_lsm_h, surf_lsm_h(0)%ns, &
surf_lsm_h(0)%j, surf_lsm_h(0)%i, &
emis_distrib, mass2mole )
CALL assign_surface_flux ( cssws_usm_h, surf_usm_h(0)%ns, &
surf_usm_h(0)%j, surf_usm_h(0)%i, &
emis_distrib, mass2mole )
DO k = 1, n_matched_vars
DO m = 1, surf_def_h(0)%ns
surf_def_h(0)%cssws(k,m) = cssws_def_h(k,m)
ENDDO
DO m = 1, surf_lsm_h(0)%ns
surf_lsm_h(0)%cssws(k,m) = cssws_lsm_h(k,m)
ENDDO
DO m = 1, surf_usm_h(0)%ns
surf_usm_h(0)%cssws(k,m) = cssws_usm_h(k,m)
ENDDO
ENDDO
!
!-- Cleaning up
DEALLOCATE( cssws_def_h )
DEALLOCATE( cssws_lsm_h )
DEALLOCATE( cssws_usm_h )
DEALLOCATE ( emis_distrib )
DEALLOCATE ( mass2mole )
IF ( debug_output ) CALL debug_message ( 'chem_emissions_update_on_demand_lod2', 'end' )
END SUBROUTINE ! chem_emissions_update_on_demand_lod2
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! AUXILIARY SUBROUTINES
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Look for matched species between emissions attributes and selected chemical mechanisms and
!> determine corresponding molecular weights
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_init_species ( ncid )
USE netcdf_data_input_mod, &
ONLY: chem_emis_att, close_input_file, get_dimension_length, get_variable, open_read_file
IMPLICIT NONE
INTEGER(iwp) :: ispec !< generic counter 4 species
INTEGER(iwp), INTENT(IN) :: ncid !< netcdf file ID
IF ( debug_output ) CALL debug_message( 'chem_emissions_init_species', 'start' )
!
!- Assign species
CALL get_dimension_length ( ncid, chem_emis_att%n_emiss_species, 'nspecies' )
CALL get_variable ( ncid, 'emission_name', chem_emis_att%species_name, &
chem_emis_att%n_emiss_species )
!
!- Backward compatibility for salsa_mod NB
chem_emis_att%nspec = chem_emis_att%n_emiss_species
!
!-- Get a list of matched species between emission_attributes and selected chemical mechanism
emission_output_required = .FALSE.
CALL chem_emissions_match( chem_emis_att, n_matched_vars )
!
!-- If matched species found (at least 1),
!-- allocate memory for emission attributes,
!-- assign molecular masses [kg/mol],
!-- see chemistry_model_mod.f90 for reference.
IF ( n_matched_vars > 0 ) THEN
emission_output_required = .TRUE.
ALLOCATE( chem_emis_att%xm(n_matched_vars) )
DO ispec = 1, n_matched_vars
chem_emis_att%xm(ispec) = 1.0_wp
SELECT CASE ( TRIM( spc_names(match_spec_model(ispec)) ) )
CASE ( 'SO2' ); chem_emis_att%xm(ispec) = xm_S + xm_O * 2
CASE ( 'SO4' ); chem_emis_att%xm(ispec) = xm_S + xm_O * 4
CASE ( 'NO' ); chem_emis_att%xm(ispec) = xm_N + xm_O
CASE ( 'NO2' ); chem_emis_att%xm(ispec) = xm_N + xm_O * 2
CASE ( 'NH3' ); chem_emis_att%xm(ispec) = xm_N + xm_H * 3
CASE ( 'CO' ); chem_emis_att%xm(ispec) = xm_C + xm_O
CASE ( 'CO2' ); chem_emis_att%xm(ispec) = xm_C + xm_O * 2
CASE ( 'CH4' ); chem_emis_att%xm(ispec) = xm_C + xm_H * 4
CASE ( 'HNO3' ); chem_emis_att%xm(ispec) = xm_H + xm_N + xm_O*3
END SELECT
ENDDO
ENDIF ! IF ( n_matched_vars > 0 )
IF ( debug_output ) CALL debug_message( 'chem_emissions_init_species', 'end' )
END SUBROUTINE chem_emissions_init_species
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Extract timestamps from netCDF input
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_emissions_init_timestamps ( ncid )
USE control_parameters, &
ONLY: message_string
USE netcdf_data_input_mod, &
ONLY: chem_emis_att, close_input_file, get_dimension_length, get_variable, open_read_file
IMPLICIT NONE
INTEGER(iwp) :: fld_len !< string field length
INTEGER(iwp) :: itime !< generic counter (4 species)
INTEGER(iwp), INTENT(IN) :: ncid !< netcdf file handle
IF ( debug_output ) CALL debug_message( 'chem_emissions_read_timestamps', 'start' )
!
!-- Import timestamps from netCDF input
CALL get_dimension_length ( ncid, chem_emis_att%dt_emission, 'time' )
CALL get_dimension_length ( ncid, fld_len, 'field_length' )
CALL get_variable ( ncid, 'timestamp', timestamps, chem_emis_att%dt_emission, fld_len )
!
!-- Throw error at first instance of timestamps not in listed in chronological order.
DO itime = 2,chem_emis_att%dt_emission
IF ( timestamps(itime-1) > timestamps(itime) ) THEN
WRITE( message_string, * ) &
'input timestamps not in chronological order for', &
CHAR( 10 ), ' ', &
'index ', (itime-1), ' : ', TRIM( timestamps(itime-1) ), ' and', &
CHAR( 10 ), ' ', &
'index ', (itime), ' : ', TRIM( timestamps(itime) )
CALL message( 'chem_emissions_read_timestamps', 'CM0469', 1, 2, 0, 6, 0 )
ENDIF
ENDDO
IF ( debug_output ) CALL debug_message( 'chem_emissions_read_timestamps', 'end' )
END SUBROUTINE chem_emissions_init_timestamps
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Assign emissions as surface fluxes
!
!> NOTE: For arguments, I originally wanted to use unspecified dimensions, but I could not get
!> this to work properly, hence the dimensioned array arguments.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE assign_surface_flux ( surf_array, nsurfs, surf_j, surf_i, emis_dist, conv_mole )
USE arrays_3d, &
ONLY: rho_air
USE netcdf_data_input_mod, &
ONLY: chem_emis_att
USE surface_mod !< for surf_type
IMPLICIT NONE
!
!-- Input arguments
INTEGER(iwp), INTENT(IN) :: nsurfs !< # surfaces in surf_array
INTEGER(iwp), DIMENSION(nsurfs), INTENT(IN) :: surf_i !< i indices 4 surf. elements
INTEGER(iwp), DIMENSION(nsurfs), INTENT(IN) :: surf_j !< j indices 4 surf. elements
REAL(wp), DIMENSION(nys:nyn,nxl:nxr), INTENT(IN) :: conv_mole !< conv. 2 molar flux
REAL(wp), DIMENSION(n_matched_vars,nys:nyn,nxl:nxr), INTENT(IN) :: emis_dist !< surf. emissions
REAL(wp), DIMENSION(n_matched_vars,nsurfs), INTENT(INOUT) :: surf_array !< surface listing
!
!-- Parameters (magic numbers)
CHARACTER(LEN=2), PARAMETER :: sp_PM = 'PM' !< id string for all PMs
CHARACTER(LEN=3), PARAMETER :: sp_VOC = 'VOC' !< id string for VOC
REAL(wp), PARAMETER :: mol2ppm = 1.0E+06_wp !< conversion from mole 2 ppm
!
!-- Local variables
CHARACTER(LEN=80) :: this_species_name !< matched species name
INTEGER(iwp) :: i,j,k,m !< generic counters
REAL(wp) :: flux_conv_factor !< conversion factor
IF ( debug_output ) CALL debug_message( 'chem_emissions_header_init_lod2', 'start' )
DO k = 1, n_matched_vars
this_species_name = spc_names(k) !< species already matched
DO m = 1, nsurfs
j = surf_j(m) ! get surface coordinates
i = surf_i(m)
!
!-- Calculate conversion factor depending on emission species type
flux_conv_factor = rho_air(nzb)
!
!-- Account for conversion to different types of emisison species
IF ( TRIM( this_species_name( 1:LEN( sp_PM ) ) ) == sp_PM ) THEN
! do nothing (use mass flux directly)
ELSE IF ( TRIM( this_species_name( 1:LEN( sp_VOC ) ) ) == sp_VOC ) THEN
flux_conv_factor = flux_conv_factor * conv_mole(j,i) * mol2ppm
ELSE
flux_conv_factor = flux_conv_factor * conv_mole(j,i) * mol2ppm / chem_emis_att%xm(k)
ENDIF
!
!-- Finally assign surface flux
surf_array(k,m) = emis_dist(k,j,i) * flux_conv_factor
ENDDO ! m = 1, nsurfs
ENDDO ! k = 1, n_matched_vars
IF ( debug_output ) CALL debug_message( 'chem_emissions_header_init_lod2', 'end' )
END SUBROUTINE assign_surface_flux
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! AUXILIARY FUNCTIONS
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Given incoming flux units ( mass / area / time ) provide single-valued onversion factor to
!> ( kg / m2 / s )
!--------------------------------------------------------------------------------------------------!
FUNCTION chem_emissions_convert_base_units ( units_in ) RESULT ( conv_factor )
IMPLICIT NONE
!
!-- Function arguments
CHARACTER(LEN=*), INTENT(IN) :: units_in !< incoming units (ie emt_att%units)
REAL(wp) :: conv_factor !< convertion factor
!
!-- Parameters (magic numbers)
INTEGER(iwp), PARAMETER :: up2lo = 32 !< convert letter to lower case
!
!-- Base unit conversion factors (should be self-explanatory)
REAL(wp), PARAMETER :: hour_per_year = 8760.0_wp
REAL(wp), PARAMETER :: g_to_kg = 1.0E-03_wp
REAL(wp), PARAMETER :: miug_to_kg = 1.0E-09_wp
REAL(wp), PARAMETER :: s_per_hour = 3600.0_wp
REAL(wp), PARAMETER :: s_per_day = 86400.0_wp
REAL(wp), PARAMETER :: tons_to_kg = 100.0_wp
REAL(wp), PARAMETER :: day_to_s = 1.0_wp / s_per_day
REAL(wp), PARAMETER :: hour_to_s = 1.0_wp / s_per_hour
REAL(wp), PARAMETER :: year_to_s = 1.0_wp / s_per_hour / hour_per_year
!
!-- Local variables
CHARACTER(LEN=LEN(units_in)) :: units_in_lo !< units in lower case
INTEGER(iwp) :: j,k !< generic counters
INTEGER(iwp) :: str_len !< length of unit string
!
!-- Turn units string to lower case
units_in_lo = ''
str_len = LEN( TRIM( units_in ) )
DO k = 1,str_len
j = IACHAR( units_in(k:k) )
units_in_lo(k:k) = ACHAR( j )
IF ( ( j >= IACHAR( "A" ) ) .AND. ( j <= IACHAR( "Z" ) ) ) &
units_in_lo(k:k) = ACHAR( j + up2lo )
ENDDO
conv_factor = 1.0_wp !< default value (kg/m2/s)
SELECT CASE ( TRIM( units_in_lo ) )
CASE ( 'kg/m2/s' ); conv_factor = 1.0_wp
CASE ( 'kg/m2/hour' ); conv_factor = hour_to_s
CASE ( 'kg/m2/day' ); conv_factor = day_to_s
CASE ( 'kg/m2/year' ); conv_factor = year_to_s
CASE ( 'ton/m2/s' ); conv_factor = tons_to_kg
CASE ( 'ton/m2/hour' ); conv_factor = tons_to_kg * hour_to_s
CASE ( 'ton/m2/day' ); conv_factor = tons_to_kg * day_to_s
CASE ( 'ton/m2/year' ); conv_factor = tons_to_kg * year_to_s
CASE ( 'g/m2/s' ); conv_factor = g_to_kg
CASE ( 'g/m2/hour' ); conv_factor = g_to_kg * hour_to_s
CASE ( 'g/m2/day' ); conv_factor = g_to_kg * day_to_s
CASE ( 'g/m2/year' ); conv_factor = g_to_kg * year_to_s
CASE ( 'micrograms/m2/s' ); conv_factor = miug_to_kg
CASE ( 'micrograms/m2/hour' ); conv_factor = miug_to_kg * hour_to_s
CASE ( 'micrograms/m2/day' ); conv_factor = miug_to_kg * day_to_s
CASE ( 'micrograms/m2/year' ); conv_factor = miug_to_kg * year_to_s
CASE DEFAULT
message_string = '' ! to get around unused variable warning / error
WRITE ( message_string, * ) 'Specified emission units (', TRIM( units_in ), &
') not recognized in PALM-4U'
CALL message ( 'chem_emission_convert_units', 'CM0446', 2, 2, 0, 6, 0 )
END SELECT
END FUNCTION chem_emissions_convert_base_units
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates conversion factor from mass flux to ppm (molar flux)
!--------------------------------------------------------------------------------------------------!
FUNCTION mass_2_molar_flux ( rhogh, theta ) RESULT ( conv_factor )
USE basic_constants_and_equations_mod, &
ONLY: p_0, rd_d_cp, rgas_univ
IMPLICIT NONE
!
!-- Function arguments
REAL(wp) :: conv_factor !< conversion factor
REAL(wp), INTENT(IN) :: rhogh !< hydrostatic pressure
REAL(wp), INTENT(IN) :: theta !< potential temperature
conv_factor = ( rgas_univ / rhogh ) * theta * ( ( rhogh / p_0 ) ** rd_d_cp )
END FUNCTION mass_2_molar_flux
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Given target sepecies locate index in species array
!> returns 0 if none is found
!--------------------------------------------------------------------------------------------------!
FUNCTION chem_emissions_locate_species ( this_species, species_array ) RESULT ( species_index )
IMPLICIT NONE
!
!-- Function arguments
INTEGER(iwp) :: species_index !> index matching species
CHARACTER(LEN=25), INTENT(IN) :: species_array(:) !> array of species
CHARACTER(LEN=*), INTENT(IN) :: this_species !> target species
!
!-- Local variables
INTEGER(iwp) :: k !> generic counter
INTEGER(iwp) :: n_species !> number of species in species_array
n_species = SIZE( species_array, 1 )
DO k = 1, n_species
IF ( TRIM( species_array(k) ) == TRIM( this_species ) ) EXIT
ENDDO
species_index = 0 !> assume no matching index is found
IF ( TRIM( species_array(k) ) == TRIM( this_species ) ) specieS_index = k
END FUNCTION chem_emissions_locate_species
!
!-- 20200203 NB
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> given target timestamp locate most recent timestep in timestamp array
!> using bisection search (since array is sorted)
!--------------------------------------------------------------------------------------------------!
RECURSIVE FUNCTION chem_emissions_locate_timestep &
( this_timestamp, timestamp_array, lower_bound, upper_bound ) &
RESULT ( timestamp_index )
!
!-- Function arguments
CHARACTER(LEN=*), INTENT(IN) :: this_timestamp !> target timestamp
CHARACTER(LEN=512), INTENT(IN) :: timestamp_array(:) !> array of timestamps
INTEGER(iwp), INTENT(IN) :: lower_bound, upper_bound !> timestamp_array index bounds
INTEGER(iwp) :: timestamp_index !> index for most recent timestamp in timestamp_array
!
!-- Local variables
INTEGER(iwp) :: k0,km,k1 !> lower, central, and upper index bounds
!
!-- Assign bounds
k0 = lower_bound
k1 = upper_bound
!
!-- Make sure k1 is always not smaller than k0
IF ( k0 > k1 ) THEN
k0 = upper_bound
k1 = lower_bound
ENDIF
!
!-- Make sure k0 and k1 stay within array bounds by timestamp_array
IF ( k0 < 1 ) k0 = 1
IF ( k1 > SIZE( timestamp_array, 1 ) ) k1 = SIZE( timestamp_array, 1 )
!
!-- Terminate if target is contained within 2 consecutive indices otherwise calculate central bound
!-- (km) and determine new index bounds for the next iteration
IF ( ( k1 - k0 ) > 1 ) THEN
km = ( k0 + k1 ) / 2
IF ( TRIM( this_timestamp ) > TRIM( timestamp_array(km) ) ) THEN
k0 = km
ELSE
k1 = km
ENDIF
timestamp_index = chem_emissions_locate_timestep( this_timestamp, timestamp_array, k0, k1 )
ELSE
timestamp_index = k0
ENDIF
END FUNCTION chem_emissions_locate_timestep
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!! END OF MODULE
!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
END MODULE chem_emissions_mod