!> @file biometeorology_mod.f90
!--------------------------------------------------------------------------------------------------!
! This file is part of PALM-4U.
!
! PALM-4U is free software: You can redistribute it and/or modify it under the terms of the GNU
! General Public License as published by the Free Software Foundation, either version 3 of the
! License, or (at your option) any later version.
!
! PALM-4U is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
! the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
! Public License for more details.
!
! You should have received a copy of the GNU General Public License along with PALM. If not, see
! .
!
! Copyright 2018-2021 Deutscher Wetterdienst (DWD)
! Copyright 2018-2021 Institute of Computer Science, Academy of Sciences, Prague
! Copyright 2018-2021 Leibniz Universitaet Hannover
!--------------------------------------------------------------------------------------------------!
!
! Authors:
! --------
! @author Dominik Froehlich , thermal indices
! @author Jaroslav Resler , mean radiant temperature
! @author Michael Schrempf , uv exposure
!
!
! Description:
! ------------
!> Biometeorology module consisting of two parts:
!> 1.: Human thermal comfort module calculating thermal perception of a sample human being under the
!> current meteorological conditions.
!> 2.: Calculation of vitamin-D weighted UV exposure
!>
!> @todo Alphabetical sorting of "USE ..." lists, "ONLY" list, variable declarations
!> (per subroutine: first all CHARACTERs, then INTEGERs, LOGICALs, REALs, )
!> @todo Comments start with capital letter --> "!-- Include..."
!> @todo uv_vitd3dose-->new output type necessary (cumulative)
!> @todo consider upwelling radiation in UV
!> @todo re-design module to work with PALM's module interface and reduce number of workarounds
!>
!> @note nothing now
!>
!> @bug checks for proper parameter settings and required input data are missing. Currently
!< implemented only by a workaround!
!--------------------------------------------------------------------------------------------------!
MODULE biometeorology_mod
USE arrays_3d, &
ONLY: pt, p, u, v, w, q
USE averaging, &
ONLY: pt_av, q_av, u_av, v_av, w_av
USE basic_constants_and_equations_mod, &
ONLY: degc_to_k, c_p, l_v, magnus, pi, sigma_sb
USE control_parameters, &
ONLY: average_count_3d, &
biometeorology, &
debug_output, &
dz, &
dz_stretch_factor, &
dz_stretch_level, &
humidity, &
initializing_actions, message_string, &
nz_do3d, &
restart_data_format_output, &
surface_pressure
USE grid_variables, &
ONLY: ddx, dx, ddy, dy
USE indices, &
ONLY: nxl, nxr, nys, nyn, nzb, nzt, nys, nyn, nxl, nxr, nxlg, nxrg, nysg, nyng, &
topo_top_ind
USE kinds !< Set precision of INTEGER and REAL arrays according to PALM
USE netcdf_data_input_mod, &
ONLY: building_obstruction_f, &
input_file_uvem, &
input_pids_uvem, &
netcdf_data_input_uvem, &
uvem_integration_f, &
uvem_irradiance_f, &
uvem_projarea_f, &
uvem_radiance_f
USE palm_date_time_mod, &
ONLY: get_date_time
!
!-- Import radiation model to obtain input for mean radiant temperature
USE radiation_model_mod, &
ONLY: id, ix, iy, iz, mrt_include_sw, mrt_nlevels, &
mrtbl, mrtinlw, mrtinsw, nmrtbl, radiation, &
rad_lw_in, rad_lw_out, rad_sw_in, rad_sw_out, radiation_interactions
USE restart_data_mpi_io_mod, &
ONLY: rrd_mpi_io, &
rd_mpi_io_check_array, &
wrd_mpi_io
IMPLICIT NONE
!
!-- Declare all global variables within the module (alphabetical order)
REAL(wp), PARAMETER :: bio_fill_value = -9999.0_wp !< set module fill value, replace by global fill value as soon as available
REAL(wp), PARAMETER :: human_absorb = 0.7_wp !< SW absorbtivity of a human body (Fanger 1972)
REAL(wp), PARAMETER :: human_emiss = 0.97_wp !< LW emissivity of a human body after (Fanger 1972)
INTEGER(iwp) :: bio_cell_level !< cell level biom calculates for
LOGICAL :: thermal_comfort = .FALSE. !< Enables or disables the entire thermal comfort part
LOGICAL :: do_average_theta = .FALSE. !< switch: do theta averaging in this module? (if .FALSE. this is done globally)
LOGICAL :: do_average_q = .FALSE. !< switch: do e averaging in this module?
LOGICAL :: do_average_u = .FALSE. !< switch: do u averaging in this module?
LOGICAL :: do_average_v = .FALSE. !< switch: do v averaging in this module?
LOGICAL :: do_average_w = .FALSE. !< switch: do w averaging in this module?
LOGICAL :: do_average_mrt = .FALSE. !< switch: do mrt averaging in this module?
LOGICAL :: average_trigger_perct = .FALSE. !< update averaged input on call to bio_perct?
LOGICAL :: average_trigger_utci = .FALSE. !< update averaged input on call to bio_utci?
LOGICAL :: average_trigger_pet = .FALSE. !< update averaged input on call to bio_pet?
LOGICAL :: average_trigger_mrt = .FALSE. !< update averaged input on call to bio_pet?
LOGICAL :: do_calculate_perct = .FALSE. !< Turn index PT (instant. input) on or off
LOGICAL :: do_calculate_perct_av = .FALSE. !< Turn index PT (averaged input) on or off
LOGICAL :: do_calculate_pet = .FALSE. !< Turn index PET (instant. input) on or off
LOGICAL :: do_calculate_pet_av = .FALSE. !< Turn index PET (averaged input) on or off
LOGICAL :: do_calculate_utci = .FALSE. !< Turn index UTCI (instant. input) on or off
LOGICAL :: do_calculate_utci_av = .FALSE. !< Turn index UTCI (averaged input) on or off
LOGICAL :: do_calculate_mrt2d = .FALSE. !< Turn index MRT 2D (averaged or inst) on or off
REAL(wp) :: bio_output_height !< height output is calculated in m
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: perct !< PT results (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pet !< PET results (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tmrt_grid !< tmrt results (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: utci !< UTCI results (degree_C)
!
!-- Grids for averaged thermal indices
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: perct_av !< PT results (aver. input) (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pet_av !< PET results (aver. input) (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tmrt_av_grid !< tmrt results (degree_C)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: utci_av !< UTCI results (aver. input) (degree_C)
REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: mrt_av_grid !< time average mean radiant temperature
!
!-- UVEM parameters from here
INTEGER(iwp) :: ai = 0 !< loop index in azimuth direction
INTEGER(iwp) :: bi = 0 !< loop index of bit location within an 8bit-integer (one Byte)
INTEGER(iwp) :: bio_nmrtbl
INTEGER(iwp) :: clothing = 1 !< clothing (0=unclothed, 1=Arms,Hands,Face free, 3=Hand,Face free)
INTEGER(iwp) :: iq = 0 !< loop index of irradiance quantity
INTEGER(iwp) :: pobi = 0 !< loop index of the position of corresponding byte within ibset byte vektor
INTEGER(iwp) :: obstruction_direct_beam = 0 !< Obstruction information for direct beam
INTEGER(iwp) :: zi = 0 !< loop index in zenith direction
INTEGER(KIND=1), DIMENSION(0:44) :: obstruction_temp1 = 0 !< temporary obstruction information stored with ibset
INTEGER(iwp), DIMENSION(0:359) :: obstruction_temp2 = 0 !< restored temporary obstruction information from ibset file
INTEGER(iwp), DIMENSION(0:35,0:9) :: obstruction = 1 !< final 2D obstruction information array
LOGICAL :: consider_obstructions = .TRUE. !< namelist parameter (see documentation)
LOGICAL :: sun_in_south = .FALSE. !< namelist parameter (see documentation)
LOGICAL :: turn_to_sun = .TRUE. !< namelist parameter (see documentation)
LOGICAL :: uv_exposure = .FALSE. !< namelist parameter (see documentation)
REAL(wp) :: diffuse_exposure = 0.0_wp !< calculated exposure by diffuse radiation
REAL(wp) :: direct_exposure = 0.0_wp !< calculated exposure by direct solar beam
REAL(wp) :: orientation_angle = 0.0_wp !< orientation of front/face of the human model
REAL(wp) :: projection_area_direct_beam = 0.0_wp !< projection area for direct solar beam
REAL(wp) :: saa = 180.0_wp !< solar azimuth angle
REAL(wp) :: startpos_human = 0.0_wp !< start value for azimuth interpolation of human geometry array
REAL(wp) :: startpos_saa_float = 0.0_wp !< start value for azimuth interpolation of radiance array
REAL(wp) :: sza = 20.0_wp !< solar zenith angle
REAL(wp) :: xfactor = 0.0_wp !< relative x-position used for interpolation
REAL(wp) :: yfactor = 0.0_wp !< relative y-position used for interpolation
REAL(wp), DIMENSION(0:2) :: irradiance = 0.0_wp !< iradiance values extracted from irradiance lookup table
REAL(wp), DIMENSION(0:2,0:90) :: irradiance_lookup_table = 0.0_wp !< irradiance lookup table
REAL(wp), DIMENSION(0:35,0:9) :: integration_array = 0.0_wp !< solid angle factors for hemispherical integration
REAL(wp), DIMENSION(0:35,0:9) :: projection_area = 0.0_wp !< projection areas of a human (all directions)
REAL(wp), DIMENSION(0:35,0:9) :: projection_area_lookup_table = 0.0_wp !< human geometry lookup table (projection areas)
REAL(wp), DIMENSION(0:71,0:9) :: projection_area_direct_temp = 0.0_wp !< temporary projection area for direct solar beam
REAL(wp), DIMENSION(0:71,0:9) :: projection_area_temp = 0.0_wp !< temporary projection area for all directions
REAL(wp), DIMENSION(0:35,0:9) :: radiance_array = 0.0_wp !< radiance extracted from radiance_lookup_table
REAL(wp), DIMENSION(0:71,0:9) :: radiance_array_temp = 0.0_wp !< temporary radiance data
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vitd3_exposure !< result variable for instantaneous vitamin-D weighted exposures
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: vitd3_dose !< result variable for summation of vitamin-D weighted exposures
REAL(wp), DIMENSION(0:35,0:9,0:90) :: radiance_lookup_table = 0.0_wp !< radiance lookup table
PRIVATE
!
!-- INTERFACES that must be available to other modules (alphabetical order)
PUBLIC bio_3d_data_averaging, bio_calculate_mrt_grid, bio_calculate_thermal_index_maps, &
bio_calc_ipt, bio_check_data_output, bio_check_parameters, &
bio_data_output_2d, bio_data_output_3d, bio_define_netcdf_grid, &
bio_get_thermal_index_input_ij, bio_header, bio_init, bio_init_checks, bio_nmrtbl, &
bio_parin, bio_rrd_global, bio_rrd_local, bio_wrd_global, bio_wrd_local, thermal_comfort
!
!-- UVEM PUBLIC variables and methods
PUBLIC bio_calculate_uv_exposure, uv_exposure
!
!-- PALM interfaces:
!
!-- 3D averaging for HTCM _INPUT_ variables
INTERFACE bio_3d_data_averaging
MODULE PROCEDURE bio_3d_data_averaging
END INTERFACE bio_3d_data_averaging
!
!-- Calculate mtr from rtm fluxes and assign into 2D grid
INTERFACE bio_calculate_mrt_grid
MODULE PROCEDURE bio_calculate_mrt_grid
END INTERFACE bio_calculate_mrt_grid
!
!-- Calculate static thermal indices PT, UTCI and/or PET
INTERFACE bio_calculate_thermal_index_maps
MODULE PROCEDURE bio_calculate_thermal_index_maps
END INTERFACE bio_calculate_thermal_index_maps
!
!-- Calculate the dynamic index iPT (to be caled by the agent model)
INTERFACE bio_calc_ipt
MODULE PROCEDURE bio_calc_ipt
END INTERFACE bio_calc_ipt
!
!-- Data output checks for 2D/3D data to be done in check_parameters
INTERFACE bio_check_data_output
MODULE PROCEDURE bio_check_data_output
END INTERFACE bio_check_data_output
!
!-- Input parameter checks to be done in check_parameters
INTERFACE bio_check_parameters
MODULE PROCEDURE bio_check_parameters
END INTERFACE bio_check_parameters
!
!-- Data output of 2D quantities
INTERFACE bio_data_output_2d
MODULE PROCEDURE bio_data_output_2d
END INTERFACE bio_data_output_2d
!
!-- no 3D data, thus, no averaging of 3D data, removed
INTERFACE bio_data_output_3d
MODULE PROCEDURE bio_data_output_3d
END INTERFACE bio_data_output_3d
!
!-- Definition of data output quantities
INTERFACE bio_define_netcdf_grid
MODULE PROCEDURE bio_define_netcdf_grid
END INTERFACE bio_define_netcdf_grid
!
!-- Obtains all relevant input values to estimate local thermal comfort/stress
INTERFACE bio_get_thermal_index_input_ij
MODULE PROCEDURE bio_get_thermal_index_input_ij
END INTERFACE bio_get_thermal_index_input_ij
!
!-- Output of information to the header file
INTERFACE bio_header
MODULE PROCEDURE bio_header
END INTERFACE bio_header
!
!-- Initialization actions
INTERFACE bio_init
MODULE PROCEDURE bio_init
END INTERFACE bio_init
!
!-- Initialization checks
INTERFACE bio_init_checks
MODULE PROCEDURE bio_init_checks
END INTERFACE bio_init_checks
!
!-- Reading of NAMELIST parameters
INTERFACE bio_parin
MODULE PROCEDURE bio_parin
END INTERFACE bio_parin
!
!-- Read global restart parameters
INTERFACE bio_rrd_global
MODULE PROCEDURE bio_rrd_global_ftn
MODULE PROCEDURE bio_rrd_global_mpi
END INTERFACE bio_rrd_global
!
!-- Read local restart parameters
INTERFACE bio_rrd_local
MODULE PROCEDURE bio_rrd_local_ftn
MODULE PROCEDURE bio_rrd_local_mpi
END INTERFACE bio_rrd_local
!
!-- Write global restart parameters
INTERFACE bio_wrd_global
MODULE PROCEDURE bio_wrd_global
END INTERFACE bio_wrd_global
!
!-- Write local restart parameters
INTERFACE bio_wrd_local
MODULE PROCEDURE bio_wrd_local
END INTERFACE bio_wrd_local
!
!-- Calculate UV exposure grid
INTERFACE bio_calculate_uv_exposure
MODULE PROCEDURE bio_calculate_uv_exposure
END INTERFACE bio_calculate_uv_exposure
CONTAINS
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Sum up and time-average biom input quantities as well as allocate the array necessary for storing
!> the average.
!> There is a considerable difference to the 3d_data_averaging subroutines used by other modules:
!> For the thermal indices, the module needs to average the input conditions, not the result!
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_3d_data_averaging( mode, variable )
IMPLICIT NONE
CHARACTER (LEN=*) :: mode !< Averaging mode: allocate, sum, or average
CHARACTER (LEN=*) :: variable !< The variable in question
INTEGER(iwp) :: i !< Running index, x-direction
INTEGER(iwp) :: j !< Running index, y-direction
INTEGER(iwp) :: k !< Running index, z-direction
INTEGER(iwp) :: l !< index used to link radiation arrays to 3d grid arrays
IF ( mode == 'allocate' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
IF ( .NOT. ALLOCATED( mrt_av_grid ) ) THEN
ALLOCATE( mrt_av_grid(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
mrt_av_grid = 0.0_wp
do_average_mrt = .FALSE. !< Overwrite if that was enabled somehow
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*', 'bio_mrt*' )
!
!-- Averaging, as well as the allocation of the required grids must be done only once,
!-- independent of for how many thermal indices averaged output is desired.
!-- Therefore we need to memorize which index is the one that controls the averaging
!-- (what must be the first thermal index called).
!-- Indices are in unknown order as depending on the input file, determine first index to
!-- average und update only once.
!
!-- Only proceed here if this was not done for any index before. This is done only once
!-- during the whole model run.
IF ( .NOT. average_trigger_perct .AND. &
.NOT. average_trigger_utci .AND. &
.NOT. average_trigger_pet .AND. &
.NOT. average_trigger_mrt ) THEN
!
!-- Memorize the first index called to control averaging
IF ( TRIM( variable ) == 'bio_perct*' ) THEN
average_trigger_perct = .TRUE.
ENDIF
IF ( TRIM( variable ) == 'bio_utci*' ) THEN
average_trigger_utci = .TRUE.
ENDIF
IF ( TRIM( variable ) == 'bio_pet*' ) THEN
average_trigger_pet = .TRUE.
ENDIF
IF ( TRIM( variable ) == 'bio_mrt*' ) THEN
average_trigger_mrt = .TRUE.
ENDIF
ENDIF
!
!-- Allocation of the input _av grids was moved to the "sum" section to make sure averaging
!-- is only done once!
CASE ( 'uvem_vitd3dose*' )
IF ( .NOT. ALLOCATED( vitd3_dose ) ) THEN
ALLOCATE( vitd3_dose(nysg:nyng,nxlg:nxrg) )
ENDIF
vitd3_dose = 0.0_wp
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'sum' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
!
!-- Consider the case 'bio_mrt' is called after some thermal index. In that case
! do_average_mrt will be .TRUE. leading to a double-averaging.
IF ( .NOT. do_average_mrt .AND. ALLOCATED( mrt_av_grid ) ) THEN
IF ( mrt_include_sw ) THEN
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) + &
( ( human_absorb * mrtinsw(l) + &
mrtinlw(l) ) / ( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ENDDO
ELSE
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) + &
( mrtinlw(l) / ( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ENDDO
ENDIF
ENDIF
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*', 'bio_mrt*' )
!
!-- Only continue if the current index is the one to trigger the input averaging, see
!-- above.
IF ( average_trigger_perct .AND. TRIM( variable ) /= 'bio_perct*') RETURN
IF ( average_trigger_utci .AND. TRIM( variable ) /= 'bio_utci*' ) RETURN
IF ( average_trigger_pet .AND. TRIM( variable ) /= 'bio_pet*' ) RETURN
IF ( average_trigger_mrt .AND. TRIM( variable ) /= 'bio_mrt*' ) RETURN
!
!-- Now memorize which of the input grids are not averaged by other modules. Set averaging
!-- switch to .TRUE. and allocate the respective grid in that case.
IF ( .NOT. ALLOCATED( pt_av ) ) THEN !< if not averaged by other module
ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_theta = .TRUE. !< memorize, that bio is responsible
pt_av = 0.0_wp
ENDIF
IF ( ALLOCATED( pt_av ) .AND. do_average_theta ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( .NOT. ALLOCATED( q_av ) ) THEN
ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_q = .TRUE.
q_av = 0.0_wp
ENDIF
IF ( ALLOCATED( q_av ) .AND. do_average_q ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
q_av(k,j,i) = q_av(k,j,i) + q(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- u_av, v_av and w_av are always allocated
IF ( .NOT. ALLOCATED( u_av ) ) THEN
ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_u = .TRUE.
u_av = 0.0_wp
ENDIF
IF ( ALLOCATED( u_av ) .AND. do_average_u ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
u_av(k,j,i) = u_av(k,j,i) + u(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( .NOT. ALLOCATED( v_av ) ) THEN
ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_v = .TRUE.
v_av = 0.0_wp
ENDIF
IF ( ALLOCATED( v_av ) .AND. do_average_v ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
v_av(k,j,i) = v_av(k,j,i) + v(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( .NOT. ALLOCATED( w_av ) ) THEN
ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_w = .TRUE.
w_av = 0.0_wp
ENDIF
IF ( ALLOCATED( w_av ) .AND. do_average_w ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
w_av(k,j,i) = w_av(k,j,i) + w(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
IF ( .NOT. ALLOCATED( mrt_av_grid ) ) THEN
ALLOCATE( mrt_av_grid(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
do_average_mrt = .TRUE.
mrt_av_grid = 0.0_wp
ENDIF
IF ( ALLOCATED( mrt_av_grid ) .AND. do_average_mrt ) THEN
IF ( mrt_include_sw ) THEN
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) + &
( ( human_absorb * mrtinsw(l) + &
mrtinlw(l) ) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ENDDO
ELSE
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) + &
( mrtinlw(l) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ENDDO
ENDIF
ENDIF
!
!-- This is a cumulated dose. No mode == 'average' for this quantity.
CASE ( 'uvem_vitd3dose*' )
IF ( ALLOCATED( vitd3_dose ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
vitd3_dose(j,i) = vitd3_dose(j,i) + vitd3_exposure(j,i)
ENDDO
ENDDO
ENDIF
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'average' ) THEN
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
!
!-- Consider the case 'bio_mrt' is called after some thermal index. In that case
!-- do_average_mrt will be .TRUE. leading to a double-averaging.
IF ( .NOT. do_average_mrt .AND. ALLOCATED( mrt_av_grid ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
CASE ( 'bio_perct*', 'bio_utci*', 'bio_pet*', 'bio_mrt*' )
!
!-- Only continue if update index, see above
IF ( average_trigger_perct .AND. &
TRIM( variable ) /= 'bio_perct*' ) RETURN
IF ( average_trigger_utci .AND. &
TRIM( variable ) /= 'bio_utci*' ) RETURN
IF ( average_trigger_pet .AND. &
TRIM( variable ) /= 'bio_pet*' ) RETURN
IF ( average_trigger_mrt .AND. &
TRIM( variable ) /= 'bio_mrt*' ) RETURN
IF ( ALLOCATED( pt_av ) .AND. do_average_theta ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
pt_av(k,j,i) = pt_av(k,j,i) / REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( q_av ) .AND. do_average_q ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
q_av(k,j,i) = q_av(k,j,i) / REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( u_av ) .AND. do_average_u ) THEN
DO i = nxlg, nxrg !< yes, ghost points are required here!
DO j = nysg, nyng
DO k = nzb, nzt+1
u_av(k,j,i) = u_av(k,j,i) / REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( v_av ) .AND. do_average_v ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
v_av(k,j,i) = v_av(k,j,i) / REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( w_av ) .AND. do_average_w ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
w_av(k,j,i) = w_av(k,j,i) / REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ENDIF
IF ( ALLOCATED( mrt_av_grid ) .AND. do_average_mrt ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
mrt_av_grid(k,j,i) = mrt_av_grid(k,j,i) / REAL( average_count_3d, KIND=wp )
ENDDO
ENDDO
ENDDO
ENDIF
!
!-- No averaging for UVEM since we are calculating a dose (only sum is calculated and saved to
!-- av.nc file)
END SELECT
ENDIF
END SUBROUTINE bio_3d_data_averaging
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Check data output for biometeorology model
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_check_data_output( var, unit, i, j, ilen, k )
USE control_parameters, &
ONLY: data_output, message_string
IMPLICIT NONE
CHARACTER (LEN=*) :: unit !< The unit for the variable var
CHARACTER (LEN=*) :: var !< The variable in question
INTEGER(iwp), INTENT(IN) :: i !< Current element of data_output
INTEGER(iwp), INTENT(IN) :: j !< Average quantity? 0 = no, 1 = yes
INTEGER(iwp), INTENT(IN) :: ilen !< Length of current entry in data_output
INTEGER(iwp), INTENT(IN) :: k !< Output is xy mode? 0 = no, 1 = yes
SELECT CASE ( TRIM( var ) )
!
!-- Allocate a temporary array with the desired output dimensions.
!-- Arrays for time-averaged thermal indices are also allocated here because they are not running
!-- through the standard averaging procedure in bio_3d_data_averaging as the values of the
!-- averaged thermal indices are derived in a single step based on priorly averaged arrays (see
!-- bio_calculate_thermal_index_maps).
CASE ( 'bio_mrt', 'bio_mrt*' )
unit = 'degree_C'
thermal_comfort = .TRUE. !< enable thermal_comfort if user forgot to do so
IF ( .NOT. ALLOCATED( tmrt_grid ) ) THEN
ALLOCATE( tmrt_grid (nys:nyn,nxl:nxr) )
tmrt_grid = REAL( bio_fill_value, KIND = wp )
ENDIF
IF ( TRIM( var ) == 'bio_mrt*' ) THEN
do_calculate_mrt2d = .TRUE.
END IF
CASE ( 'bio_perct*' )
unit = 'degree_C'
thermal_comfort = .TRUE.
IF ( j == 0 ) THEN !< if instantaneous input
do_calculate_perct = .TRUE.
IF ( .NOT. ALLOCATED( perct ) ) THEN
ALLOCATE( perct (nys:nyn,nxl:nxr) )
perct = REAL( bio_fill_value, KIND = wp )
ENDIF
ELSE !< if averaged input
do_calculate_perct_av = .TRUE.
IF ( .NOT. ALLOCATED( perct_av ) ) THEN
ALLOCATE( perct_av (nys:nyn,nxl:nxr) )
perct_av = REAL( bio_fill_value, KIND = wp )
ENDIF
ENDIF
CASE ( 'bio_utci*' )
unit = 'degree_C'
thermal_comfort = .TRUE.
IF ( j == 0 ) THEN
do_calculate_utci = .TRUE.
IF ( .NOT. ALLOCATED( utci ) ) THEN
ALLOCATE( utci (nys:nyn,nxl:nxr) )
utci = REAL( bio_fill_value, KIND = wp )
ENDIF
ELSE
do_calculate_utci_av = .TRUE.
IF ( .NOT. ALLOCATED( utci_av ) ) THEN
ALLOCATE( utci_av (nys:nyn,nxl:nxr) )
utci_av = REAL( bio_fill_value, KIND = wp )
ENDIF
ENDIF
CASE ( 'bio_pet*' )
unit = 'degree_C'
thermal_comfort = .TRUE.
IF ( j == 0 ) THEN
do_calculate_pet = .TRUE.
IF ( .NOT. ALLOCATED( pet ) ) THEN
ALLOCATE( pet (nys:nyn,nxl:nxr) )
pet = REAL( bio_fill_value, KIND = wp )
ENDIF
ELSE
do_calculate_pet_av = .TRUE.
IF ( .NOT. ALLOCATED( pet_av ) ) THEN
ALLOCATE( pet_av (nys:nyn,nxl:nxr) )
pet_av = REAL( bio_fill_value, KIND = wp )
ENDIF
ENDIF
CASE ( 'uvem_vitd3*' )
IF ( .NOT. uv_exposure ) THEN
message_string = 'output of "' // TRIM( var ) // '" requires uv_exposure = .TRUE.' // &
'&in namelist "biometeorology_parameters"'
CALL message( 'uvem_check_data_output', 'PA0512', 1, 2, 0, 6, 0 )
ENDIF
IF ( k == 0 .OR. data_output(i)(ilen-2:ilen) /= '_xy' ) THEN
message_string = 'illegal value for data_output: "' // &
TRIM( var ) // '" & only 2d-horizontal ' // &
'cross sections are allowed for this value'
CALL message( 'check_parameters', 'PA0111', 1, 2, 0, 6, 0 )
ENDIF
unit = 'IU/s'
IF ( .NOT. ALLOCATED( vitd3_exposure ) ) THEN
ALLOCATE( vitd3_exposure(nysg:nyng,nxlg:nxrg) )
ENDIF
vitd3_exposure = 0.0_wp
CASE ( 'uvem_vitd3dose*' )
IF ( .NOT. uv_exposure ) THEN
message_string = 'output of "' // TRIM( var ) // '" requires uv_exposure = .TRUE.' // &
'&in namelist "biometeorology_parameters"'
CALL message( 'uvem_check_data_output', 'PA0512', 1, 2, 0, 6, 0 )
ENDIF
IF ( k == 0 .OR. data_output(i)(ilen-2:ilen) /= '_xy' ) THEN
message_string = 'illegal value for data_output: "' // &
TRIM( var ) // '" & only 2d-horizontal ' // &
'cross sections are allowed for this value'
CALL message( 'check_parameters', 'PA0111', 1, 2, 0, 6, 0 )
ENDIF
unit = 'IU/av-h'
IF ( .NOT. ALLOCATED( vitd3_dose ) ) THEN
ALLOCATE( vitd3_dose(nysg:nyng,nxlg:nxrg) )
ENDIF
vitd3_dose = 0.0_wp
CASE DEFAULT
unit = 'illegal'
END SELECT
!
!-- Further checks if thermal comfort output is desired.
IF ( thermal_comfort .AND. unit(1:6) == 'degree' ) THEN
!
!-- Break if required modules "radiation" is not available.
IF ( .NOT. radiation ) THEN
message_string = 'output of "' // TRIM( var ) // '" require' // 's radiation = .TRUE.'
CALL message( 'check_parameters', 'PA0509', 1, 2, 0, 6, 0 )
unit = 'illegal'
ENDIF
!
!-- All "thermal_comfort" outputs except from 'bio_mrt' will also need humidity input. Check
!-- also for that.
IF ( TRIM( var ) /= 'bio_mrt' ) THEN
IF ( .NOT. humidity ) THEN
message_string = 'The estimation of thermal comfort ' // &
'requires air humidity information, but ' // &
'humidity module is disabled!'
CALL message( 'check_parameters', 'PA0561', 1, 2, 0, 6, 0 )
unit = 'illegal'
ENDIF
ENDIF
ENDIF
END SUBROUTINE bio_check_data_output
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for biom module
!> Currently unused but might come in handy for future checks?
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_check_parameters
IMPLICIT NONE
!
!-- Check settings for UV exposure part
IF ( uv_exposure ) THEN
!
!-- Input file not present
IF ( .NOT. input_pids_uvem ) THEN
WRITE( message_string, * ) 'uv_exposure = .TRUE. but input file "' // &
TRIM( input_file_uvem ) // '" is not present.&' // &
'Calculating UV exposure impossible.'
CALL message( 'bio_check_parameters', 'PA0513', 1, 2, 0, 6, 0 )
ELSE
!
!-- Required variables not given in input file
IF ( .NOT. uvem_integration_f%from_file .OR. .NOT. uvem_irradiance_f%from_file .OR. &
.NOT. uvem_projarea_f%from_file .OR. .NOT. uvem_radiance_f%from_file ) THEN
WRITE( message_string, * ) 'uv_exposure = .TRUE. but one or more required input ' // &
'varaibles are not present in file "' // &
TRIM( input_file_uvem ) // '".&' // &
'Calculating UV exposure impossible.'
CALL message( 'bio_check_parameters', 'PA0514', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Obstruction requested but not given
IF ( consider_obstructions .AND. .NOT. building_obstruction_f%from_file ) THEN
WRITE( message_string, * ) 'consider_obstructions = .TRUE. but varaible ' // &
'"obstruction" is not present in file "' // &
TRIM( input_file_uvem ) // '".&' // &
'Calculating UV exposure impossible.'
CALL message( 'bio_check_parameters', 'PA0515', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
ENDIF
END SUBROUTINE bio_check_parameters
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 2D output variables
!> data_output_2d 1188ff
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_data_output_2d( av, variable, found, grid, local_pf, two_d, nzb_do, nzt_do)
USE kinds
IMPLICIT NONE
!
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: variable !< Char identifier to select var for output
INTEGER(iwp), INTENT(IN) :: av !< Use averaged data? 0 = no, 1 = yes?
INTEGER(iwp), INTENT(IN) :: nzb_do !< Unused. 2D. nz bottom to nz top
INTEGER(iwp), INTENT(IN) :: nzt_do !< Unused.
!
!-- Output variables
CHARACTER (LEN=*), INTENT(OUT) :: grid !< Grid type (always "zu1" for biom)
LOGICAL, INTENT(OUT) :: found !< Output found?
LOGICAL, INTENT(OUT) :: two_d !< Flag parameter that indicates 2D variables,
!< horizontal cross sections, must be .TRUE. for thermal indices and uv
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< Temp. result grid to return
!
!-- Internal variables
INTEGER(iwp) :: i !< Running index, x-dir
INTEGER(iwp) :: j !< Running index, y-dir
INTEGER(iwp) :: k !< Running index, z-dir
INTEGER(iwp) :: l !< Running index, radiation grid
found = .TRUE.
local_pf = bio_fill_value
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt_xy' )
grid = 'zu1'
two_d = .FALSE. !< can be calculated for several levels
local_pf = REAL( bio_fill_value, KIND = wp )
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k < nzb_do .OR. k > nzt_do .OR. j < nys .OR. &
j > nyn .OR. i < nxl .OR. i > nxr ) CYCLE
IF ( av == 0 ) THEN
IF ( mrt_include_sw ) THEN
local_pf(i,j,k) = ( ( human_absorb * mrtinsw(l) + &
mrtinlw(l) ) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ELSE
local_pf(i,j,k) = ( mrtinlw(l) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k
ENDIF
ELSE
local_pf(i,j,k) = mrt_av_grid(k,j,i)
ENDIF
ENDDO
CASE ( 'bio_mrt*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = tmrt_grid(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = tmrt_av_grid(j,i)
ENDDO
ENDDO
ENDIF
CASE ( 'bio_perct*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = perct(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = perct_av(j,i)
ENDDO
ENDDO
ENDIF
CASE ( 'bio_utci*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = utci(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = utci_av(j,i)
ENDDO
ENDDO
ENDIF
CASE ( 'bio_pet*_xy' ) ! 2d-array
grid = 'zu1'
two_d = .TRUE.
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = pet(j,i)
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = pet_av(j,i)
ENDDO
ENDDO
ENDIF
!
!-- Before data is transfered to local_pf, transfer is in 2D dummy variable and exchange ghost
!-- points therein. However, at this point this is only required for instantaneous arrays,
!-- time-averaged quantities are already exchanged.
CASE ( 'uvem_vitd3*_xy' ) ! 2d-array
IF ( av == 0 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = vitd3_exposure(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE ( 'uvem_vitd3dose*_xy' ) ! 2d-array
IF ( av == 1 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
local_pf(i,j,nzb+1) = vitd3_dose(j,i)
ENDDO
ENDDO
ENDIF
two_d = .TRUE.
grid = 'zu1'
CASE DEFAULT
found = .FALSE.
grid = 'none'
END SELECT
END SUBROUTINE bio_data_output_2d
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 3D output variables (dummy, always 2d!)
!> data_output_3d 709ff
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do )
USE indices
USE kinds
IMPLICIT NONE
!
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: variable !< Char identifier to select var for output
INTEGER(iwp), INTENT(IN) :: av !< Use averaged data? 0 = no, 1 = yes?
INTEGER(iwp), INTENT(IN) :: nzb_do !< Unused. 2D. nz bottom to nz top
INTEGER(iwp), INTENT(IN) :: nzt_do !< Unused.
!
!-- Output variables
LOGICAL, INTENT(OUT) :: found !< Output found?
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< Temp. result grid to return
!
!-- Internal variables
INTEGER(iwp) :: l !< Running index, radiation grid
INTEGER(iwp) :: i !< Running index, x-dir
INTEGER(iwp) :: j !< Running index, y-dir
INTEGER(iwp) :: k !< Running index, z-dir
! REAL(wp) :: mrt !< Buffer for mean radiant temperature
found = .TRUE.
SELECT CASE ( TRIM( variable ) )
CASE ( 'bio_mrt' )
local_pf = REAL( bio_fill_value, KIND = sp )
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k < nzb_do .OR. k > nzt_do .OR. j < nys .OR. &
j > nyn .OR. i < nxl .OR. i > nxr ) CYCLE
IF ( av == 0 ) THEN
IF ( mrt_include_sw ) THEN
local_pf(i,j,k) = REAL( ( ( human_absorb * mrtinsw(l) + &
mrtinlw(l) ) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k, &
KIND = sp )
ELSE
local_pf(i,j,k) = REAL( ( mrtinlw(l) / &
( human_emiss * sigma_sb ) )**0.25_wp - degc_to_k, &
KIND = sp )
ENDIF
ELSE
local_pf(i,j,k) = REAL( mrt_av_grid(k,j,i), KIND = sp )
ENDIF
ENDDO
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE bio_data_output_3d
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf_interface_mod.
!> netcdf_interface_mod 918ff
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_define_netcdf_grid( var, found, grid_x, grid_y, grid_z )
IMPLICIT NONE
!
!-- Input variables
CHARACTER (LEN=*), INTENT(IN) :: var !< Name of output variable
!
!-- Output variables
CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< x grid of output variable
CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< y grid of output variable
CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< z grid of output variable
LOGICAL, INTENT(OUT) :: found !< Flag if output var is found
!
!-- Local variables
INTEGER(iwp) :: l !< Length of the var array
LOGICAL :: is2d !< Var is 2d?
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
l = MAX( 2, LEN_TRIM( var ) )
is2d = ( var(l-1:l) == 'xy' )
IF ( var(1:4) == 'bio_' ) THEN
found = .TRUE.
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
IF ( is2d .AND. var(1:7) /= 'bio_mrt' ) grid_z = 'zu1'
ENDIF
IF ( is2d .AND. var(1:4) == 'uvem' ) THEN
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu1'
ENDIF
END SUBROUTINE bio_define_netcdf_grid
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Header output for biom module
!> header 982
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_header( io )
IMPLICIT NONE
!
!-- Input variables
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
!
!-- Internal variables
CHARACTER (LEN=86) :: output_height_chr !< String for output height
WRITE( output_height_chr, '(F8.1,7X)' ) bio_output_height
!
!-- Write biom header
WRITE( io, 1 )
WRITE( io, 2 ) TRIM( output_height_chr )
WRITE( io, 3 ) TRIM( ACHAR( bio_cell_level ) )
1 FORMAT (//' Human thermal comfort module information:'/ &
' ------------------------------'/)
2 FORMAT (' --> All indices calculated for a height of (m): ', A )
3 FORMAT (' --> This corresponds to cell level : ', A )
END SUBROUTINE bio_header
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the HTCM
!> init_3d_model 1987ff
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_init
USE netcdf_data_input_mod, &
ONLY: netcdf_data_input_uvem
IMPLICIT NONE
!
!-- Internal vriables
REAL ( wp ) :: height !< current height in meters
IF ( debug_output ) CALL debug_message( 'bio_init', 'start' )
!
!-- Determine cell level corresponding to 1.1 m above ground level (gravimetric center of sample
!-- human)
bio_cell_level = 0_iwp
bio_output_height = 0.5_wp * dz(1)
height = 0.0_wp
bio_cell_level = INT( 1.099_wp / dz(1) )
bio_output_height = bio_output_height + bio_cell_level * dz(1)
!
!-- Set radiation level if not done by user
IF ( mrt_nlevels == 0 ) THEN
mrt_nlevels = bio_cell_level + 1_iwp
ENDIF
!
!-- Init UVEM and load lookup tables
IF ( uv_exposure ) CALL netcdf_data_input_uvem
!
!-- Check parameters
!-- WARNING This is a WORKAROUND! Due to the design of the module, checks are called at this point
!-- rather than within module_interface_check_parameters.
CALL bio_check_parameters
IF ( debug_output ) CALL debug_message( 'bio_init', 'end' )
END SUBROUTINE bio_init
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Checks done after the Initialization
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_init_checks
USE control_parameters, &
ONLY: message_string
IF ( (.NOT. radiation_interactions) .AND. ( thermal_comfort ) ) THEN
message_string = 'The mrt calculation requires ' // &
'enabled radiation_interactions but it ' // &
'is disabled!'
CALL message( 'bio_init_checks', 'PAHU03', 1, 2, 0, 6, 0 )
ENDIF
END SUBROUTINE bio_init_checks
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &biometeorology_parameters for reading biomet parameters
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_parin
IMPLICIT NONE
!
!-- Internal variables
CHARACTER (LEN=100) :: line !< Dummy string for current line in parameter file
INTEGER(iwp) :: io_status !< Status after reading the namelist file
LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module
!< although the respective module namelist appears in
!< the namelist file
NAMELIST /biometeorology_parameters/ clothing, &
consider_obstructions, &
orientation_angle, &
sun_in_south, &
switch_off_module, &
thermal_comfort, &
turn_to_sun, &
uv_exposure
!
!-- Move to the beginning of the namelist file and try to find and read the namelist named
!-- biometeorology_parameters.
REWIND( 11 )
READ( 11, biometeorology_parameters, IOSTAT=io_status )
!
!-- Action depending on the READ status
IF ( io_status == 0 ) THEN
!
!-- biometeorology_parameters namelist was found and read correctly. Set flag that
!-- biometeorology_mod is switched on.
IF ( .NOT. switch_off_module ) biometeorology = .TRUE.
ELSEIF ( io_status > 0 ) THEN
!
!-- biometeorology_parameters namelist was found, but contained errors. Print an error message
!-- containing the line that caused the problem.
BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'biometeorology_parameters', line )
ENDIF
END SUBROUTINE bio_parin
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific global restart data (Fortran binary format).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_rrd_global_ftn( found )
USE control_parameters, &
ONLY: length, restart_string
IMPLICIT NONE
LOGICAL, INTENT(OUT) :: found !< variable found? yes = .T., no = .F.
found = .TRUE.
SELECT CASE ( restart_string(1:length) )
!
!-- Read control flags to determine if input grids need to be averaged.
CASE ( 'do_average_theta' )
READ ( 13 ) do_average_theta
CASE ( 'do_average_q' )
READ ( 13 ) do_average_q
CASE ( 'do_average_u' )
READ ( 13 ) do_average_u
CASE ( 'do_average_v' )
READ ( 13 ) do_average_v
CASE ( 'do_average_w' )
READ ( 13 ) do_average_w
CASE ( 'do_average_mrt' )
READ ( 13 ) do_average_mrt
!
!-- Read control flags to determine which thermal index needs to trigger averaging.
CASE ( 'average_trigger_perct' )
READ ( 13 ) average_trigger_perct
CASE ( 'average_trigger_utci' )
READ ( 13 ) average_trigger_utci
CASE ( 'average_trigger_pet' )
READ ( 13 ) average_trigger_pet
CASE ( 'average_trigger_mrt' )
READ ( 13 ) average_trigger_mrt
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE bio_rrd_global_ftn
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific global restart data (MPI-IO).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_rrd_global_mpi
!
!-- Read control flags to determine if input grids need to be averaged
CALL rrd_mpi_io( 'do_average_theta', do_average_theta )
CALL rrd_mpi_io( 'do_average_q', do_average_q )
CALL rrd_mpi_io( 'do_average_u', do_average_u )
CALL rrd_mpi_io( 'do_average_v', do_average_v )
CALL rrd_mpi_io( 'do_average_w', do_average_w )
CALL rrd_mpi_io( 'do_average_mrt', do_average_mrt )
!
!-- Rad control flags to determine which thermal index needs to trigger averaging
CALL rrd_mpi_io( 'average_trigger_perct', average_trigger_perct )
CALL rrd_mpi_io( 'average_trigger_utci', average_trigger_utci )
CALL rrd_mpi_io( 'average_trigger_pet', average_trigger_pet )
CALL rrd_mpi_io( 'average_trigger_mrt', average_trigger_mrt )
END SUBROUTINE bio_rrd_global_mpi
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific local restart data arrays (Fortran binary format).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_rrd_local_ftn( found )
USE control_parameters, &
ONLY: length, restart_string
IMPLICIT NONE
LOGICAL, INTENT(OUT) :: found !< variable found? yes = .TRUE., no = .FALSE.
found = .TRUE.
SELECT CASE ( restart_string(1:length) )
CASE ( 'mrt_av_grid' )
IF ( .NOT. ALLOCATED( mrt_av_grid ) ) THEN
ALLOCATE( mrt_av_grid(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
mrt_av_grid = 0.0_wp
ENDIF
READ ( 13 ) mrt_av_grid
CASE DEFAULT
found = .FALSE.
END SELECT
END SUBROUTINE bio_rrd_local_ftn
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific local restart data arrays (Fortran binary format).
!------------------------------------------------------------------------------!
SUBROUTINE bio_rrd_local_mpi
USE control_parameters
USE indices
USE kinds
IMPLICIT NONE
LOGICAL :: array_found !<
CALL rd_mpi_io_check_array( 'mrt_av_grid' , found = array_found )
IF ( array_found ) THEN
IF ( .NOT. ALLOCATED( mrt_av_grid ) ) ALLOCATE( mrt_av_grid(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
CALL rrd_mpi_io( 'mrt_av_grid', mrt_av_grid )
ENDIF
END SUBROUTINE bio_rrd_local_mpi
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Write global restart data for the biometeorology module.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_wrd_global
IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN
CALL wrd_write_string( 'do_average_theta' )
WRITE ( 14 ) do_average_theta
CALL wrd_write_string( 'do_average_q' )
WRITE ( 14 ) do_average_q
CALL wrd_write_string( 'do_average_u' )
WRITE ( 14 ) do_average_u
CALL wrd_write_string( 'do_average_v' )
WRITE ( 14 ) do_average_v
CALL wrd_write_string( 'do_average_w' )
WRITE ( 14 ) do_average_w
CALL wrd_write_string( 'do_average_mrt' )
WRITE ( 14 ) do_average_mrt
CALL wrd_write_string( 'average_trigger_perct' )
WRITE ( 14 ) average_trigger_perct
CALL wrd_write_string( 'average_trigger_utci' )
WRITE ( 14 ) average_trigger_utci
CALL wrd_write_string( 'average_trigger_pet' )
WRITE ( 14 ) average_trigger_pet
CALL wrd_write_string( 'average_trigger_mrt' )
WRITE ( 14 ) average_trigger_mrt
ELSEIF ( TRIM( restart_data_format_output(1:3) ) == 'mpi' ) THEN
CALL wrd_mpi_io( 'do_average_theta', do_average_theta )
CALL wrd_mpi_io( 'do_average_q', do_average_q )
CALL wrd_mpi_io( 'do_average_u', do_average_u )
CALL wrd_mpi_io( 'do_average_v', do_average_v )
CALL wrd_mpi_io( 'do_average_w', do_average_w )
CALL wrd_mpi_io( 'do_average_mrt', do_average_mrt )
CALL wrd_mpi_io( 'average_trigger_perct', average_trigger_perct )
CALL wrd_mpi_io( 'average_trigger_utci', average_trigger_utci )
CALL wrd_mpi_io( 'average_trigger_pet', average_trigger_pet )
CALL wrd_mpi_io( 'average_trigger_mrt', average_trigger_mrt )
ENDIF
END SUBROUTINE bio_wrd_global
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Write local restart data for the biometeorology module.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_wrd_local
IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN
IF ( ALLOCATED( mrt_av_grid ) ) THEN
CALL wrd_write_string( 'mrt_av_grid' )
WRITE ( 14 ) mrt_av_grid
ENDIF
ELSEIF ( TRIM( restart_data_format_output(1:3) ) == 'mpi' ) THEN
IF ( ALLOCATED( mrt_av_grid ) ) CALL wrd_mpi_io( 'mrt_av_grid', mrt_av_grid )
ENDIF
END SUBROUTINE bio_wrd_local
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate biometeorology MRT for all 2D grid
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_calculate_mrt_grid ( av )
IMPLICIT NONE
LOGICAL, INTENT(IN) :: av !< use averaged input?
!
!-- Internal variables
INTEGER(iwp) :: i !< Running index, x-dir, radiation coordinates
INTEGER(iwp) :: j !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: k !< Running index, y-dir, radiation coordinates
INTEGER(iwp) :: l !< Running index, radiation coordinates
!
!-- We need to differentiate if averaged input is desired (av == .TRUE.) or not.
IF ( av ) THEN
!
!-- Make sure tmrt_av_grid is present and initialize with the fill value
IF ( .NOT. ALLOCATED( tmrt_av_grid ) ) THEN
ALLOCATE( tmrt_av_grid(nys:nyn,nxl:nxr) )
ENDIF
tmrt_av_grid = REAL( bio_fill_value, KIND = wp )
!
!-- mrt_av_grid should always be allcoated here, but better make sure ist actually is.
IF ( ALLOCATED( mrt_av_grid ) ) THEN
!
!-- Iterate over the radiation grid (radiation coordinates) and fill the tmrt_av_grid
!-- (x, y coordinates) where appropriate: tmrt_av_grid is written for all i / j if level (k)
!-- matches output height.
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k - topo_top_ind(j,i,0) == bio_cell_level + 1_iwp) THEN
!
!-- Averaging was done before, so we can just copy the result here.
tmrt_av_grid(j,i) = mrt_av_grid(k,j,i)
ENDIF
ENDDO
ENDIF
!
!-- In case instantaneous input is desired, mrt values will be re-calculated.
ELSE
!
!-- Calculate biometeorology MRT from local radiation fluxes calculated by RTM and assign into 2D
!-- grid. Depending on selected output quantities, tmrt_grid might not have been allocated in
!-- bio_check_data_output yet.
IF ( .NOT. ALLOCATED( tmrt_grid ) ) THEN
ALLOCATE( tmrt_grid (nys:nyn,nxl:nxr) )
ENDIF
tmrt_grid = REAL( bio_fill_value, KIND = wp )
DO l = 1, nmrtbl
i = mrtbl(ix,l)
j = mrtbl(iy,l)
k = mrtbl(iz,l)
IF ( k - topo_top_ind(j,i,0) == bio_cell_level + 1_iwp) THEN
IF ( mrt_include_sw ) THEN
tmrt_grid(j,i) = ( ( human_absorb * mrtinsw(l) + &
mrtinlw(l) ) / &
( human_emiss * sigma_sb ) )**0.25_wp - &
degc_to_k
ELSE
tmrt_grid(j,i) = ( mrtinlw(l) / &
( human_emiss * sigma_sb ) )**0.25_wp - &
degc_to_k
ENDIF
ENDIF
ENDDO
ENDIF
END SUBROUTINE bio_calculate_mrt_grid
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate static thermal indices for 2D grid point i, j
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_get_thermal_index_input_ij( average_input, i, j, ta, vp, ws, pair, tmrt )
IMPLICIT NONE
!
!-- Input variables
LOGICAL, INTENT ( IN ) :: average_input !< Determine averaged input conditions?
INTEGER(iwp), INTENT ( IN ) :: i !< Running index, x-dir
INTEGER(iwp), INTENT ( IN ) :: j !< Running index, y-dir
!
!-- Output parameters
REAL(wp), INTENT ( OUT ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( OUT ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT ( OUT ) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT ( OUT ) :: vp !< Vapour pressure (hPa)
REAL(wp), INTENT ( OUT ) :: ws !< Wind speed (local level) (m/s)
!
!-- Internal variables
INTEGER(iwp) :: k !< Running index, z-dir
INTEGER(iwp) :: k_wind !< Running index, z-dir, wind speed only
REAL(wp) :: vp_sat !< Saturation vapor pressure (hPa)
!
!-- Determine cell level closest to 1.1m above ground by making use of truncation due to int cast.
k = INT( topo_top_ind(j,i,0) + bio_cell_level ) !< Vertical cell center closest to 1.1m
!
!-- Avoid non-representative horizontal u and v of 0.0 m/s too close to ground
k_wind = k
IF ( bio_cell_level < 1_iwp ) THEN
k_wind = k + 1_iwp
ENDIF
!
!-- Determine local values:
IF ( average_input ) THEN
!
!-- Calculate ta from Tp assuming dry adiabatic laps rate
ta = bio_fill_value
IF ( ALLOCATED( pt_av ) ) THEN
ta = pt_av(k,j,i) - ( 0.0098_wp * dz(1) * ( k + 0.5_wp ) ) - degc_to_k
ENDIF
vp = bio_fill_value
IF ( humidity .AND. ALLOCATED( q_av ) ) THEN
vp = q_av(k,j,i)
ENDIF
ws = bio_fill_value
IF ( ALLOCATED( u_av ) .AND. ALLOCATED( v_av ) .AND. &
ALLOCATED( w_av ) ) THEN
ws = ( 0.5_wp * ABS( u_av(k_wind,j,i) + u_av(k_wind,j,i+1) ) + &
0.5_wp * ABS( v_av(k_wind,j,i) + v_av(k_wind,j+1,i) ) + &
0.5_wp * ABS( w_av(k_wind,j,i) + w_av(k_wind+1,j,i) ) )
ENDIF
ELSE
!
!-- Calculate ta from Tp assuming dry adiabatic laps rate
ta = pt(k,j,i) - ( 0.0098_wp * dz(1) * ( k + 0.5_wp ) ) - degc_to_k
vp = bio_fill_value
IF ( humidity ) THEN
vp = q(k,j,i)
ENDIF
ws = ( 0.5_wp * ABS( u(k_wind,j,i) + u(k_wind,j,i+1) ) + &
0.5_wp * ABS( v(k_wind,j,i) + v(k_wind,j+1,i) ) + &
0.5_wp * ABS( w(k_wind,j,i) + w(k_wind+1,j,i) ) )
ENDIF
!
!-- Local air pressure
pair = surface_pressure
!
!-- Calculate water vapour pressure at saturation and convert to hPa.
!-- The magnus formula is limited to temperatures up to 333.15 K to avoid negative values of vp_sat.
IF ( vp > -998.0_wp ) THEN
vp_sat = 0.01_wp * magnus( MIN( ta + degc_to_k, 333.15_wp ) )
vp = vp * pair / ( vp + 0.622_wp )
IF ( vp > vp_sat ) vp = vp_sat
ENDIF
!
!-- Local mtr value at [i,j]
tmrt = bio_fill_value !< this can be a valid result (e.g. for inside some ostacle)
IF ( .NOT. average_input ) THEN
!
!-- Use MRT from RTM precalculated in tmrt_grid
tmrt = tmrt_grid(j,i)
ELSE
tmrt = tmrt_av_grid(j,i)
ENDIF
END SUBROUTINE bio_get_thermal_index_input_ij
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate static thermal indices for any point within a 2D grid time_integration.f90: 1065ff
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_calculate_thermal_index_maps( av )
IMPLICIT NONE
!
!-- Input attributes
LOGICAL, INTENT ( IN ) :: av !< Calculate based on averaged input conditions?
!
!-- Internal variables
INTEGER(iwp) :: i, j !< Running index
REAL(wp) :: clo !< Clothing index (no dimension)
REAL(wp) :: pair !< Air pressure (hPa)
REAL(wp) :: perct_ij !< Perceived temperature (degree_C)
REAL(wp) :: pet_ij !< Physiologically equivalent temperature (degree_C)
REAL(wp) :: ta !< Air temperature (degree_C)
REAL(wp) :: tmrt_ij !< Mean radiant temperature (degree_C)
REAL(wp) :: utci_ij !< Universal thermal climate index (degree_C)
REAL(wp) :: vp !< Vapour pressure (hPa)
REAL(wp) :: ws !< Wind speed (local level) (m/s)
!
!-- Check if some thermal index is desired. Don't do anything if, e.g. only bio_mrt is desired.
IF ( do_calculate_perct .OR. do_calculate_perct_av .OR. do_calculate_utci .OR. &
do_calculate_utci_av .OR. do_calculate_pet .OR. do_calculate_pet_av .OR. &
do_calculate_mrt2d ) THEN
!
!-- fill out the MRT 2D grid from appropriate source (RTM, RRTMG,...)
CALL bio_calculate_mrt_grid ( av )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Determine local input conditions
tmrt_ij = bio_fill_value
vp = bio_fill_value
!
!-- Determine local meteorological conditions
CALL bio_get_thermal_index_input_ij ( av, i, j, ta, vp, ws, pair, tmrt_ij )
!
!-- Only proceed if input is available
pet_ij = bio_fill_value !< set fail value, e.g. valid for
perct_ij = bio_fill_value !< within some obstacle
utci_ij = bio_fill_value
IF ( .NOT. ( tmrt_ij <= -998.0_wp .OR. vp <= -998.0_wp .OR. ws <= -998.0_wp .OR.&
ta <= -998.0_wp ) ) THEN
!
!-- Calculate static thermal indices based on local tmrt
clo = bio_fill_value
IF ( do_calculate_perct .OR. do_calculate_perct_av ) THEN
!
!-- Estimate local perceived temperature
CALL calculate_perct_static( ta, vp, ws, tmrt_ij, pair, clo, perct_ij )
ENDIF
IF ( do_calculate_utci .OR. do_calculate_utci_av ) THEN
!
!-- Estimate local universal thermal climate index
CALL calculate_utci_static( ta, vp, ws, tmrt_ij, bio_output_height, utci_ij )
ENDIF
IF ( do_calculate_pet .OR. do_calculate_pet_av ) THEN
!
!-- Estimate local physiologically equivalent temperature
CALL calculate_pet_static( ta, vp, ws, tmrt_ij, pair, pet_ij )
ENDIF
ENDIF
IF ( av ) THEN
!
!-- Write results for selected averaged indices
IF ( do_calculate_perct_av ) THEN
perct_av(j, i) = perct_ij
ENDIF
IF ( do_calculate_utci_av ) THEN
utci_av(j, i) = utci_ij
ENDIF
IF ( do_calculate_pet_av ) THEN
pet_av(j, i) = pet_ij
ENDIF
ELSE
!
!-- Write result for selected indices
IF ( do_calculate_perct ) THEN
perct(j, i) = perct_ij
ENDIF
IF ( do_calculate_utci ) THEN
utci(j, i) = utci_ij
ENDIF
IF ( do_calculate_pet ) THEN
pet(j, i) = pet_ij
ENDIF
ENDIF
ENDDO
ENDDO
ENDIF
END SUBROUTINE bio_calculate_thermal_index_maps
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate dynamic thermal indices (currently only iPT, but expandable)
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_calc_ipt( ta, vp, ws, pair, tmrt, dt, energy_storage, t_clo, clo, actlev, age, &
weight, height, work, sex, ipt )
IMPLICIT NONE
!
!-- Input parameters
INTEGER(iwp), INTENT ( IN ) :: sex !< Sex of agent (1 = male, 2 = female)
REAL(wp), INTENT ( IN ) :: age !< Age of agent (y)
REAL(wp), INTENT ( IN ) :: dt !< Time past since last calculation (s)
REAL(wp), INTENT ( IN ) :: height !< Height of agent (m)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT ( IN ) :: vp !< Vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: weight !< Weight of agent (Kg)
REAL(wp), INTENT ( IN ) :: work !< Mechanical workload of agent (without metabolism!) (W)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (local level) (m/s)
!
!-- Both, input and output parameters
Real(wp), INTENT ( INOUT ) :: actlev !< Individuals activity level
!< per unit surface area (W/m²)
Real(wp), INTENT ( INOUT ) :: clo !< Current clothing in sulation
Real(wp), INTENT ( INOUT ) :: energy_storage !< Energy storage (W/m²)
Real(wp), INTENT ( INOUT ) :: t_clo !< Clothing temperature (degree_C)
!
!-- Output parameters
REAL(wp), INTENT ( OUT ) :: ipt !< Instationary perceived temp. (degree_C)
!
!-- Return immediatelly if nothing to do!
IF ( .NOT. thermal_comfort ) THEN
RETURN
ENDIF
!
!-- If clo equals the initial value, this is the initial call
IF ( clo <= -998.0_wp ) THEN
!
!-- Initialize instationary perceived temperature with personalized PT as an initial guess, set
!-- actlev and clo
CALL ipt_init( age, weight, height, sex, work, actlev, clo, ta, vp, ws, tmrt, pair, dt, &
energy_storage, t_clo, ipt )
ELSE
!
!-- Estimate local instatinoary perceived temperature
CALL ipt_cycle ( ta, vp, ws, tmrt, pair, dt, energy_storage, t_clo, clo, actlev, work, ipt )
ENDIF
END SUBROUTINE bio_calc_ipt
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE for calculating UTCI Temperature (UTCI)
!> computed by a 6th order approximation
!>
!> UTCI regression equation according to
!> Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012)
!> Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International
!> Journal of Biometeorology 56 (3):481-494. doi:10.1007/s00484-011-0454-1
!>
!> original source available at:
!> www.utci.org
!--------------------------------------------------------------------------------------------------!
SUBROUTINE calculate_utci_static( ta_in, vp, ws_hag, tmrt, hag, utci_ij )
IMPLICIT NONE
!
!-- Type of input of the argument list
REAL(WP), INTENT ( IN ) :: hag !< Height of wind speed input (m)
REAL(WP), INTENT ( IN ) :: ta_in !< Local air temperature (degree_C)
REAL(WP), INTENT ( IN ) :: tmrt !< Local mean radiant temperature (degree_C)
REAL(WP), INTENT ( IN ) :: vp !< Loacl vapour pressure (hPa)
REAL(WP), INTENT ( IN ) :: ws_hag !< Incident wind speed (m/s)
!
!-- Type of output of the argument list
REAL(WP) :: d_tmrt !< delta-tmrt (degree_C)
REAL(WP) :: d_tmrt2 !< 2 times d_tmrt
REAL(WP) :: d_tmrt3 !< 3 times d_tmrt
REAL(WP) :: d_tmrt4 !< 4 times d_tmrt
REAL(WP) :: d_tmrt5 !< 5 times d_tmrt
REAL(WP) :: d_tmrt6 !< 6 times d_tmrt
REAL(WP) :: offset !< utci deviation by ta cond. exceeded (degree_C)
REAL(WP) :: pa !< air pressure in kPa (kPa)
REAL(WP) :: pa2 !< 2 times pa
REAL(WP) :: pa3 !< 3 times pa
REAL(WP) :: pa4 !< 4 times pa
REAL(WP) :: pa5 !< 5 times pa
REAL(WP) :: pa6 !< 6 times pa
REAL(WP) :: part_d_tmrt !< Mean radiant temp. related part of the reg.
REAL(WP) :: part_pa !< Air pressure related part of the regression
REAL(WP) :: part_pa2 !< Air pressure^2 related part of the regression
REAL(WP) :: part_pa3 !< Air pressure^3 related part of the regression
REAL(WP) :: part_pa46 !< Air pressure^4-6 related part of the regression
REAL(WP) :: part_ta !< Air temperature related part of the regression
REAL(WP) :: part_va !< Vapour pressure related part of the regression
REAL(WP) :: ta !< air temperature modified by offset (degree_C)
REAL(WP) :: ta2 !< 2 times ta
REAL(WP) :: ta3 !< 3 times ta
REAL(WP) :: ta4 !< 4 times ta
REAL(WP) :: ta5 !< 5 times ta
REAL(WP) :: ta6 !< 6 times ta
REAL(WP) :: va !< wind speed at 10 m above ground level (m/s)
REAL(WP) :: va2 !< 2 times va
REAL(WP) :: va3 !< 3 times va
REAL(WP) :: va4 !< 4 times va
REAL(WP) :: va5 !< 5 times va
REAL(WP) :: va6 !< 6 times va
REAL(wp), INTENT ( OUT ) :: utci_ij !< Universal Thermal Climate Index (degree_C)
!
!-- Initialize
offset = 0.0_wp
ta = ta_in
d_tmrt = tmrt - ta_in
!
!-- Use vapour pressure in kpa
pa = vp / 10.0_wp
!
!-- Wind altitude correction from hag to 10m after Broede et al. (2012), eq.3
!-- z(0) is set to 0.01 according to UTCI profile definition
va = ws_hag * log ( 10.0_wp / 0.01_wp ) / log ( hag / 0.01_wp )
!
!-- Check if input values in range after Broede et al. (2012)
IF ( ( d_tmrt > 70.0_wp ) .OR. ( d_tmrt < -30.0_wp ) .OR. ( vp >= 50.0_wp ) ) THEN
utci_ij = bio_fill_value
RETURN
ENDIF
!
!-- Apply eq. 2 in Broede et al. (2012) for ta out of bounds
IF ( ta > 50.0_wp ) THEN
offset = ta - 50.0_wp
ta = 50.0_wp
ENDIF
IF ( ta < -50.0_wp ) THEN
offset = ta + 50.0_wp
ta = -50.0_wp
ENDIF
!
!-- For routine application. For wind speeds and relative humidity values below 0.5 m/s or 5%,
!-- respectively, the user is advised to use the lower bounds for the calculations.
IF ( va < 0.5_wp ) va = 0.5_wp
IF ( va > 17.0_wp ) va = 17.0_wp
!
!-- Pre-calculate multiples of input parameters to save time later
ta2 = ta * ta
ta3 = ta2 * ta
ta4 = ta3 * ta
ta5 = ta4 * ta
ta6 = ta5 * ta
va2 = va * va
va3 = va2 * va
va4 = va3 * va
va5 = va4 * va
va6 = va5 * va
d_tmrt2 = d_tmrt * d_tmrt
d_tmrt3 = d_tmrt2 * d_tmrt
d_tmrt4 = d_tmrt3 * d_tmrt
d_tmrt5 = d_tmrt4 * d_tmrt
d_tmrt6 = d_tmrt5 * d_tmrt
pa2 = pa * pa
pa3 = pa2 * pa
pa4 = pa3 * pa
pa5 = pa4 * pa
pa6 = pa5 * pa
!
!-- Pre-calculate parts of the regression equation
part_ta = ( 6.07562052e-01_wp ) + &
( -2.27712343e-02_wp ) * ta + &
( 8.06470249e-04_wp ) * ta2 + &
( -1.54271372e-04_wp ) * ta3 + &
( -3.24651735e-06_wp ) * ta4 + &
( 7.32602852e-08_wp ) * ta5 + &
( 1.35959073e-09_wp ) * ta6
part_va = ( -2.25836520e+00_wp ) * va + &
( 8.80326035e-02_wp ) * ta * va + &
( 2.16844454e-03_wp ) * ta2 * va + &
( -1.53347087e-05_wp ) * ta3 * va + &
( -5.72983704e-07_wp ) * ta4 * va + &
( -2.55090145e-09_wp ) * ta5 * va + &
( -7.51269505e-01_wp ) * va2 + &
( -4.08350271e-03_wp ) * ta * va2 + &
( -5.21670675e-05_wp ) * ta2 * va2 + &
( 1.94544667e-06_wp ) * ta3 * va2 + &
( 1.14099531e-08_wp ) * ta4 * va2 + &
( 1.58137256e-01_wp ) * va3 + &
( -6.57263143e-05_wp ) * ta * va3 + &
( 2.22697524e-07_wp ) * ta2 * va3 + &
( -4.16117031e-08_wp ) * ta3 * va3 + &
( -1.27762753e-02_wp ) * va4 + &
( 9.66891875e-06_wp ) * ta * va4 + &
( 2.52785852e-09_wp ) * ta2 * va4 + &
( 4.56306672e-04_wp ) * va5 + &
( -1.74202546e-07_wp ) * ta * va5 + &
( -5.91491269e-06_wp ) * va6
part_d_tmrt = ( 3.98374029e-01_wp ) * d_tmrt + &
( 1.83945314e-04_wp ) * ta * d_tmrt + &
( -1.73754510e-04_wp ) * ta2 * d_tmrt + &
( -7.60781159e-07_wp ) * ta3 * d_tmrt + &
( 3.77830287e-08_wp ) * ta4 * d_tmrt + &
( 5.43079673e-10_wp ) * ta5 * d_tmrt + &
( -2.00518269e-02_wp ) * va * d_tmrt + &
( 8.92859837e-04_wp ) * ta * va * d_tmrt + &
( 3.45433048e-06_wp ) * ta2 * va * d_tmrt + &
( -3.77925774e-07_wp ) * ta3 * va * d_tmrt + &
( -1.69699377e-09_wp ) * ta4 * va * d_tmrt + &
( 1.69992415e-04_wp ) * va2 * d_tmrt + &
( -4.99204314e-05_wp ) * ta * va2 * d_tmrt + &
( 2.47417178e-07_wp ) * ta2 * va2 * d_tmrt + &
( 1.07596466e-08_wp ) * ta3 * va2 * d_tmrt + &
( 8.49242932e-05_wp ) * va3 * d_tmrt + &
( 1.35191328e-06_wp ) * ta * va3 * d_tmrt + &
( -6.21531254e-09_wp ) * ta2 * va3 * d_tmrt + &
( -4.99410301e-06_wp ) * va4 * d_tmrt + &
( -1.89489258e-08_wp ) * ta * va4 * d_tmrt + &
( 8.15300114e-08_wp ) * va5 * d_tmrt + &
( 7.55043090e-04_wp ) * d_tmrt2 + &
( -5.65095215e-05_wp ) * ta * d_tmrt2 + &
( -4.52166564e-07_wp ) * ta2 * d_tmrt2 + &
( 2.46688878e-08_wp ) * ta3 * d_tmrt2 + &
( 2.42674348e-10_wp ) * ta4 * d_tmrt2 + &
( 1.54547250e-04_wp ) * va * d_tmrt2 + &
( 5.24110970e-06_wp ) * ta * va * d_tmrt2 + &
( -8.75874982e-08_wp ) * ta2 * va * d_tmrt2 + &
( -1.50743064e-09_wp ) * ta3 * va * d_tmrt2 + &
( -1.56236307e-05_wp ) * va2 * d_tmrt2 + &
( -1.33895614e-07_wp ) * ta * va2 * d_tmrt2 + &
( 2.49709824e-09_wp ) * ta2 * va2 * d_tmrt2 + &
( 6.51711721e-07_wp ) * va3 * d_tmrt2 + &
( 1.94960053e-09_wp ) * ta * va3 * d_tmrt2 + &
( -1.00361113e-08_wp ) * va4 * d_tmrt2 + &
( -1.21206673e-05_wp ) * d_tmrt3 + &
( -2.18203660e-07_wp ) * ta * d_tmrt3 + &
( 7.51269482e-09_wp ) * ta2 * d_tmrt3 + &
( 9.79063848e-11_wp ) * ta3 * d_tmrt3 + &
( 1.25006734e-06_wp ) * va * d_tmrt3 + &
( -1.81584736e-09_wp ) * ta * va * d_tmrt3 + &
( -3.52197671e-10_wp ) * ta2 * va * d_tmrt3 + &
( -3.36514630e-08_wp ) * va2 * d_tmrt3 + &
( 1.35908359e-10_wp ) * ta * va2 * d_tmrt3 + &
( 4.17032620e-10_wp ) * va3 * d_tmrt3 + &
( -1.30369025e-09_wp ) * d_tmrt4 + &
( 4.13908461e-10_wp ) * ta * d_tmrt4 + &
( 9.22652254e-12_wp ) * ta2 * d_tmrt4 + &
( -5.08220384e-09_wp ) * va * d_tmrt4 + &
( -2.24730961e-11_wp ) * ta * va * d_tmrt4 + &
( 1.17139133e-10_wp ) * va2 * d_tmrt4 + &
( 6.62154879e-10_wp ) * d_tmrt5 + &
( 4.03863260e-13_wp ) * ta * d_tmrt5 + &
( 1.95087203e-12_wp ) * va * d_tmrt5 + &
( -4.73602469e-12_wp ) * d_tmrt6
part_pa = ( 5.12733497e+00_wp ) * pa + &
( -3.12788561e-01_wp ) * ta * pa + &
( -1.96701861e-02_wp ) * ta2 * pa + &
( 9.99690870e-04_wp ) * ta3 * pa + &
( 9.51738512e-06_wp ) * ta4 * pa + &
( -4.66426341e-07_wp ) * ta5 * pa + &
( 5.48050612e-01_wp ) * va * pa + &
( -3.30552823e-03_wp ) * ta * va * pa + &
( -1.64119440e-03_wp ) * ta2 * va * pa + &
( -5.16670694e-06_wp ) * ta3 * va * pa + &
( 9.52692432e-07_wp ) * ta4 * va * pa + &
( -4.29223622e-02_wp ) * va2 * pa + &
( 5.00845667e-03_wp ) * ta * va2 * pa + &
( 1.00601257e-06_wp ) * ta2 * va2 * pa + &
( -1.81748644e-06_wp ) * ta3 * va2 * pa + &
( -1.25813502e-03_wp ) * va3 * pa + &
( -1.79330391e-04_wp ) * ta * va3 * pa + &
( 2.34994441e-06_wp ) * ta2 * va3 * pa + &
( 1.29735808e-04_wp ) * va4 * pa + &
( 1.29064870e-06_wp ) * ta * va4 * pa + &
( -2.28558686e-06_wp ) * va5 * pa + &
( -3.69476348e-02_wp ) * d_tmrt * pa + &
( 1.62325322e-03_wp ) * ta * d_tmrt * pa + &
( -3.14279680e-05_wp ) * ta2 * d_tmrt * pa + &
( 2.59835559e-06_wp ) * ta3 * d_tmrt * pa + &
( -4.77136523e-08_wp ) * ta4 * d_tmrt * pa + &
( 8.64203390e-03_wp ) * va * d_tmrt * pa + &
( -6.87405181e-04_wp ) * ta * va * d_tmrt * pa + &
( -9.13863872e-06_wp ) * ta2 * va * d_tmrt * pa + &
( 5.15916806e-07_wp ) * ta3 * va * d_tmrt * pa + &
( -3.59217476e-05_wp ) * va2 * d_tmrt * pa + &
( 3.28696511e-05_wp ) * ta * va2 * d_tmrt * pa + &
( -7.10542454e-07_wp ) * ta2 * va2 * d_tmrt * pa + &
( -1.24382300e-05_wp ) * va3 * d_tmrt * pa + &
( -7.38584400e-09_wp ) * ta * va3 * d_tmrt * pa + &
( 2.20609296e-07_wp ) * va4 * d_tmrt * pa + &
( -7.32469180e-04_wp ) * d_tmrt2 * pa + &
( -1.87381964e-05_wp ) * ta * d_tmrt2 * pa + &
( 4.80925239e-06_wp ) * ta2 * d_tmrt2 * pa + &
( -8.75492040e-08_wp ) * ta3 * d_tmrt2 * pa + &
( 2.77862930e-05_wp ) * va * d_tmrt2 * pa + &
( -5.06004592e-06_wp ) * ta * va * d_tmrt2 * pa + &
( 1.14325367e-07_wp ) * ta2 * va * d_tmrt2 * pa + &
( 2.53016723e-06_wp ) * va2 * d_tmrt2 * pa + &
( -1.72857035e-08_wp ) * ta * va2 * d_tmrt2 * pa + &
( -3.95079398e-08_wp ) * va3 * d_tmrt2 * pa + &
( -3.59413173e-07_wp ) * d_tmrt3 * pa + &
( 7.04388046e-07_wp ) * ta * d_tmrt3 * pa + &
( -1.89309167e-08_wp ) * ta2 * d_tmrt3 * pa + &
( -4.79768731e-07_wp ) * va * d_tmrt3 * pa + &
( 7.96079978e-09_wp ) * ta * va * d_tmrt3 * pa + &
( 1.62897058e-09_wp ) * va2 * d_tmrt3 * pa + &
( 3.94367674e-08_wp ) * d_tmrt4 * pa + &
( -1.18566247e-09_wp ) * ta * d_tmrt4 * pa + &
( 3.34678041e-10_wp ) * va * d_tmrt4 * pa + &
( -1.15606447e-10_wp ) * d_tmrt5 * pa
part_pa2 = ( -2.80626406e+00_wp ) * pa2 + &
( 5.48712484e-01_wp ) * ta * pa2 + &
( -3.99428410e-03_wp ) * ta2 * pa2 + &
( -9.54009191e-04_wp ) * ta3 * pa2 + &
( 1.93090978e-05_wp ) * ta4 * pa2 + &
( -3.08806365e-01_wp ) * va * pa2 + &
( 1.16952364e-02_wp ) * ta * va * pa2 + &
( 4.95271903e-04_wp ) * ta2 * va * pa2 + &
( -1.90710882e-05_wp ) * ta3 * va * pa2 + &
( 2.10787756e-03_wp ) * va2 * pa2 + &
( -6.98445738e-04_wp ) * ta * va2 * pa2 + &
( 2.30109073e-05_wp ) * ta2 * va2 * pa2 + &
( 4.17856590e-04_wp ) * va3 * pa2 + &
( -1.27043871e-05_wp ) * ta * va3 * pa2 + &
( -3.04620472e-06_wp ) * va4 * pa2 + &
( 5.14507424e-02_wp ) * d_tmrt * pa2 + &
( -4.32510997e-03_wp ) * ta * d_tmrt * pa2 + &
( 8.99281156e-05_wp ) * ta2 * d_tmrt * pa2 + &
( -7.14663943e-07_wp ) * ta3 * d_tmrt * pa2 + &
( -2.66016305e-04_wp ) * va * d_tmrt * pa2 + &
( 2.63789586e-04_wp ) * ta * va * d_tmrt * pa2 + &
( -7.01199003e-06_wp ) * ta2 * va * d_tmrt * pa2 + &
( -1.06823306e-04_wp ) * va2 * d_tmrt * pa2 + &
( 3.61341136e-06_wp ) * ta * va2 * d_tmrt * pa2 + &
( 2.29748967e-07_wp ) * va3 * d_tmrt * pa2 + &
( 3.04788893e-04_wp ) * d_tmrt2 * pa2 + &
( -6.42070836e-05_wp ) * ta * d_tmrt2 * pa2 + &
( 1.16257971e-06_wp ) * ta2 * d_tmrt2 * pa2 + &
( 7.68023384e-06_wp ) * va * d_tmrt2 * pa2 + &
( -5.47446896e-07_wp ) * ta * va * d_tmrt2 * pa2 + &
( -3.59937910e-08_wp ) * va2 * d_tmrt2 * pa2 + &
( -4.36497725e-06_wp ) * d_tmrt3 * pa2 + &
( 1.68737969e-07_wp ) * ta * d_tmrt3 * pa2 + &
( 2.67489271e-08_wp ) * va * d_tmrt3 * pa2 + &
( 3.23926897e-09_wp ) * d_tmrt4 * pa2
part_pa3 = ( -3.53874123e-02_wp ) * pa3 + &
( -2.21201190e-01_wp ) * ta * pa3 + &
( 1.55126038e-02_wp ) * ta2 * pa3 + &
( -2.63917279e-04_wp ) * ta3 * pa3 + &
( 4.53433455e-02_wp ) * va * pa3 + &
( -4.32943862e-03_wp ) * ta * va * pa3 + &
( 1.45389826e-04_wp ) * ta2 * va * pa3 + &
( 2.17508610e-04_wp ) * va2 * pa3 + &
( -6.66724702e-05_wp ) * ta * va2 * pa3 + &
( 3.33217140e-05_wp ) * va3 * pa3 + &
( -2.26921615e-03_wp ) * d_tmrt * pa3 + &
( 3.80261982e-04_wp ) * ta * d_tmrt * pa3 + &
( -5.45314314e-09_wp ) * ta2 * d_tmrt * pa3 + &
( -7.96355448e-04_wp ) * va * d_tmrt * pa3 + &
( 2.53458034e-05_wp ) * ta * va * d_tmrt * pa3 + &
( -6.31223658e-06_wp ) * va2 * d_tmrt * pa3 + &
( 3.02122035e-04_wp ) * d_tmrt2 * pa3 + &
( -4.77403547e-06_wp ) * ta * d_tmrt2 * pa3 + &
( 1.73825715e-06_wp ) * va * d_tmrt2 * pa3 + &
( -4.09087898e-07_wp ) * d_tmrt3 * pa3
part_pa46 = ( 6.14155345e-01_wp ) * pa4 + &
( -6.16755931e-02_wp ) * ta * pa4 + &
( 1.33374846e-03_wp ) * ta2 * pa4 + &
( 3.55375387e-03_wp ) * va * pa4 + &
( -5.13027851e-04_wp ) * ta * va * pa4 + &
( 1.02449757e-04_wp ) * va2 * pa4 + &
( -1.48526421e-03_wp ) * d_tmrt * pa4 + &
( -4.11469183e-05_wp ) * ta * d_tmrt * pa4 + &
( -6.80434415e-06_wp ) * va * d_tmrt * pa4 + &
( -9.77675906e-06_wp ) * d_tmrt2 * pa4 + &
( 8.82773108e-02_wp ) * pa5 + &
( -3.01859306e-03_wp ) * ta * pa5 + &
( 1.04452989e-03_wp ) * va * pa5 + &
( 2.47090539e-04_wp ) * d_tmrt * pa5 + &
( 1.48348065e-03_wp ) * pa6
!
!-- Calculate 6th order polynomial as approximation
utci_ij = ta + part_ta + part_va + part_d_tmrt + part_pa + part_pa2 + part_pa3 + part_pa46
!
!-- Consider offset in result
utci_ij = utci_ij + offset
END SUBROUTINE calculate_utci_static
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate_perct_static: Estimation of perceived temperature (PT, degree_C)
!> Value of perct is the Perceived Temperature, degree centigrade
!--------------------------------------------------------------------------------------------------!
SUBROUTINE calculate_perct_static( ta, vp, ws, tmrt, pair, clo, perct_ij )
IMPLICIT NONE
!
!-- Type of input of the argument list
REAL(wp), INTENT ( IN ) :: pair !< Local barometric air pressure (hPa)
REAL(wp), INTENT ( IN ) :: ta !< Local air temperature (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Local mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: vp !< Local vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: ws !< Local wind velocitry (m/s)
!
!-- Type of output of the argument list
REAL(wp), INTENT ( OUT ) :: clo !< Clothing index (dimensionless)
REAL(wp), INTENT ( OUT ) :: perct_ij !< Perceived temperature (degC)
!
!-- Parameters for standard "Klima-Michel"
REAL(wp), PARAMETER :: actlev = 134.6862_wp !< Workload by activity per standardized surface (A_Du)
REAL(wp), PARAMETER :: eta = 0.0_wp !< Mechanical work efficiency for walking on flat
!< ground (compare to Fanger (1972) pp 24f)
!
!-- Type of program variables
REAL(wp), PARAMETER :: eps = 0.0005 !< Accuracy in clothing insulation (clo) for evaluation the root of Fanger's PMV (pmva=0)
INTEGER(iwp) :: ncount !< running index
INTEGER(iwp) :: nerr_cold !< error number (cold conditions)
INTEGER(iwp) :: nerr !< error number
LOGICAL :: sultrieness
REAL(wp) :: clon !< clo for neutral conditions (clo)
REAL(wp) :: d_pmv !< PMV deviation (dimensionless --> PMV)
REAL(wp) :: dgtcm !< Mean deviation dependent on perct
REAL(wp) :: dgtcstd !< Mean deviation plus its standard deviation
REAL(wp) :: d_std !< factor to threshold for sultriness
REAL(wp) :: ireq_minimal !< Minimal required clothing insulation (clo)
REAL(wp) :: pmv_s !< Fangers predicted mean vote for summer clothing
REAL(wp) :: pmv_w !< Fangers predicted mean vote for winter clothing
REAL(wp) :: pmva !< adjusted predicted mean vote
REAL(wp) :: pmvs !< pred. mean vote considering sultrieness
REAL(wp) :: ptc !< perceived temp. for cold conditions (degree_C)
REAL(wp) :: sclo !< summer clothing insulation
REAL(wp) :: svp_ta !< saturation vapor pressure (hPa)
REAL(wp) :: sult_lim !< threshold for sultrieness (hPa)
REAL(wp) :: wclo !< winter clothing insulation
!
!-- Initialise
perct_ij = bio_fill_value
nerr = 0_iwp
ncount = 0_iwp
sultrieness = .FALSE.
!
!-- Tresholds: clothing insulation (account for model inaccuracies)
!-- Summer clothing
sclo = 0.44453_wp
!
!-- Winter clothing
wclo = 1.76267_wp
!
!-- Eecision: first calculate for winter or summer clothing
IF ( ta <= 10.0_wp ) THEN
!
!-- First guess: winter clothing insulation: cold stress
clo = wclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
pmv_w = pmva
IF ( pmva > 0.0_wp ) THEN
!
!-- Case summer clothing insulation: heat load ?
clo = sclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
pmv_s = pmva
IF ( pmva <= 0.0_wp ) THEN
!
!-- Case: comfort achievable by varying clothing insulation between winter and summer set
!-- values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, pmv_s, wclo, pmv_w, eps, &
pmva, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
ENDIF
ELSE IF ( pmva < - 0.11_wp ) THEN
clo = 1.75_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
ENDIF
ELSE
!
!-- First guess: summer clothing insulation: heat load
clo = sclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
pmv_s = pmva
IF ( pmva < 0.0_wp ) THEN
!
!-- Case winter clothing insulation: cold stress ?
clo = wclo
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
pmv_w = pmva
IF ( pmva >= 0.0_wp ) THEN
!
!-- Case: comfort achievable by varying clothing insulation between winter and summer set
!-- values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, pmv_s, wclo, pmv_w, eps, &
pmva, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva < - 0.11_wp ) THEN
clo = 1.75_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
CALL fanger ( ta, tmrt, vp, ws, pair, clo, actlev, eta, pmva )
ENDIF
ENDIF
!
!-- Determine perceived temperature by regression equation + adjustments
pmvs = pmva
CALL perct_regression( pmva, clo, perct_ij )
ptc = perct_ij
IF ( clo >= 1.75_wp .AND. pmva <= - 0.11_wp ) THEN
!
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > - 0.11_wp ) THEN
d_pmv = 0.0_wp
pmvs = - 0.11_wp
ENDIF
CALL perct_regression( pmvs, clo, perct_ij )
ENDIF
! clo_fanger = clo
clon = clo
IF ( clo > 0.5_wp .AND. perct_ij <= 8.73_wp ) THEN
!
!-- Required clothing insulation (ireq) is exclusively defined for perceived temperatures (perct)
!-- less 10 (C) for a reference wind of 0.2 m/s according to 8.73 (C) for 0.1 m/s.
clon = ireq_neutral ( perct_ij, ireq_minimal, nerr )
clo = clon
ENDIF
CALL calc_sultr( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = -99.0_wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression( pmvs, clo, perct_ij )
IF ( sult_lim < 99.0_wp ) THEN
IF ( (perct_ij - ptc) > sult_lim ) sultrieness = .TRUE.
!
!-- Set factor to threshold for sultriness
IF ( ABS( dgtcstd ) > 0.00001_wp ) THEN
d_std = ( ( perct_ij - ptc ) - dgtcm ) / dgtcstd
ENDIF
ENDIF
ENDIF
END SUBROUTINE calculate_perct_static
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE calculates the (saturation) water vapour pressure (hPa = hecto Pascal) for a given
!> temperature ta (degC).
!>'ta' can be the air temperature or the dew point temperature. The first will result in the current
!> vapor pressure (hPa), the latter will calulate the saturation vapor pressure (hPa).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE saturation_vapor_pressure( ta, svp_ta )
IMPLICIT NONE
REAL(wp), INTENT ( IN ) :: ta !< ambient air temperature (degC)
REAL(wp), INTENT ( OUT ) :: svp_ta !< water vapour pressure (hPa)
REAL(wp) :: b
REAL(wp) :: c
IF ( ta < 0.0_wp ) THEN
!
!-- ta < 0 (degC): water vapour pressure over ice
b = 17.84362_wp
c = 245.425_wp
ELSE
!
!-- ta >= 0 (degC): water vapour pressure over water
b = 17.08085_wp
c = 234.175_wp
ENDIF
!
!-- Saturation water vapour pressure
svp_ta = 6.1078_wp * EXP( b * ta / ( c + ta ) )
END SUBROUTINE saturation_vapor_pressure
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Find the clothing insulation value clo_res (clo) to make Fanger's Predicted Mean Vote (PMV) equal
!> comfort (pmva=0) for actual meteorological conditions (ta,tmrt, vp, ws, pair) and values of
!> individual's activity level.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE iso_ridder( ta, tmrt, vp, ws, pair, actlev, eta, sclo, pmv_s, wclo, pmv_w, eps, pmva, &
nerr, clo_res )
IMPLICIT NONE
!
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: actlev !< Individuals activity level per unit surface area (W/m2)
REAL(wp), INTENT ( IN ) :: eps !< (0.05) accuracy in clothing insulation (clo) for evaluation the root of Fanger's PMV (pmva=0)
REAL(wp), INTENT ( IN ) :: eta !< Individuals work efficiency (dimensionless)
REAL(wp), INTENT ( IN ) :: pair !< Barometric air pressure (hPa)
REAL(wp), INTENT ( IN ) :: pmv_s !< Fanger's PMV corresponding to sclo
REAL(wp), INTENT ( IN ) :: pmv_w !< Fanger's PMV corresponding to wclo
REAL(wp), INTENT ( IN ) :: sclo !< Lower threshold of bracketing clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: ta !< Ambient temperature (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: vp !< Water vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: wclo !< Upper threshold of bracketing clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s) 1 m above ground
!
!-- Output variables of argument list:
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error status / quality flag
!< nerr >= 0, o.k., and nerr is the number of iterations for convergence
!< nerr = -1: error = malfunction of Ridder's convergence method
!< nerr = -2: error = maximum iterations (max_iteration) exceeded
!< nerr = -3: error = root not bracketed between sclo and wclo
REAL(wp), INTENT ( OUT ) :: clo_res !< Resulting clothing insulation value (clo)
REAL(wp), INTENT ( OUT ) :: pmva !< 0 (set to zero, because clo is evaluated for comfort)
!
!-- Type of program variables
INTEGER(iwp), PARAMETER :: max_iteration = 15_iwp !< max number of iterations
REAL(wp), PARAMETER :: guess_0 = -1.11e30_wp !< initial guess
INTEGER(iwp) :: j !< running index
REAL(wp) :: clo_lower !< lower limit of clothing insulation (clo)
REAL(wp) :: clo_upper !< upper limit of clothing insulation (clo)
REAL(wp) :: sroot !< sqrt of PMV-guess
REAL(wp) :: x_average !< average of x_lower and x_upper (clo)
REAL(wp) :: x_lower !< lower guess for clothing insulation (clo)
REAL(wp) :: x_new !< preliminary result for clothing insulation (clo)
REAL(wp) :: x_ridder !< current guess for clothing insulation (clo)
REAL(wp) :: x_upper !< upper guess for clothing insulation (clo)
REAL(wp) :: y_average !< average of y_lower and y_upper
REAL(wp) :: y_new !< preliminary result for pred. mean vote
REAL(wp) :: y_lower !< predicted mean vote for summer clothing
REAL(wp) :: y_upper !< predicted mean vote for winter clothing
!
!-- Initialise
nerr = 0_iwp
!
!-- Set pmva = 0 (comfort): Root of PMV depending on clothing insulation
x_ridder = bio_fill_value
pmva = 0.0_wp
clo_lower = sclo
y_lower = pmv_s
clo_upper = wclo
y_upper = pmv_w
IF ( ( y_lower > 0.0_wp .AND. y_upper < 0.0_wp ) .OR. &
( y_lower < 0.0_wp .AND. y_upper > 0.0_wp ) ) THEN
x_lower = clo_lower
x_upper = clo_upper
x_ridder = guess_0
DO j = 1_iwp, max_iteration
x_average = 0.5_wp * ( x_lower + x_upper )
CALL fanger ( ta, tmrt, vp, ws, pair, x_average, actlev, eta, y_average )
sroot = SQRT( y_average**2 - y_lower * y_upper )
IF ( ABS( sroot ) < 0.00001_wp ) THEN
clo_res = x_average
nerr = j
RETURN
ENDIF
x_new = x_average + ( x_average - x_lower ) * &
( SIGN ( 1.0_wp, y_lower - y_upper ) * y_average / sroot )
IF ( ABS( x_new - x_ridder ) <= eps ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
x_ridder = x_new
CALL fanger ( ta, tmrt, vp, ws, pair, x_ridder, actlev, eta, y_new )
IF ( ABS( y_new ) < 0.00001_wp ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
IF ( ABS( SIGN( y_average, y_new ) - y_average ) > 0.00001_wp ) THEN
x_lower = x_average
y_lower = y_average
x_upper = x_ridder
y_upper = y_new
ELSE IF ( ABS( SIGN( y_lower, y_new ) - y_lower ) > 0.00001_wp ) THEN
x_upper = x_ridder
y_upper = y_new
ELSE IF ( ABS( SIGN( y_upper, y_new ) - y_upper ) > 0.00001_wp ) THEN
x_lower = x_ridder
y_lower = y_new
ELSE
!
!-- Never get here in x_ridder: singularity in y
nerr = -1_iwp
clo_res = x_ridder
RETURN
ENDIF
IF ( ABS( x_upper - x_lower ) <= eps ) THEN
clo_res = x_ridder
nerr = j
RETURN
ENDIF
ENDDO
!
!-- x_ridder exceed maximum iterations
nerr = -2_iwp
clo_res = y_new
RETURN
ELSE IF ( ABS( y_lower ) < 0.00001_wp ) THEN
x_ridder = clo_lower
ELSE IF ( ABS( y_upper ) < 0.00001_wp ) THEN
x_ridder = clo_upper
ELSE
!
!-- x_ridder not bracketed by u_clo and o_clo
nerr = -3_iwp
clo_res = x_ridder
RETURN
ENDIF
END SUBROUTINE iso_ridder
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Regression relations between perceived temperature (perct) and (adjusted) PMV. The regression
!> presumes the Klima-Michel settings for reference individual and reference environment.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE perct_regression( pmv, clo, perct_ij )
IMPLICIT NONE
REAL(wp), INTENT ( IN ) :: clo !< clothing insulation index (clo)
REAL(wp), INTENT ( IN ) :: pmv !< Fangers predicted mean vote (dimensionless)
REAL(wp), INTENT ( OUT ) :: perct_ij !< perct (degC) corresponding to given PMV / clo
IF ( pmv <= - 0.11_wp ) THEN
perct_ij = 5.805_wp + 12.6784_wp * pmv
ELSE
IF ( pmv >= + 0.01_wp ) THEN
perct_ij = 16.826_wp + 6.163_wp * pmv
ELSE
perct_ij = 21.258_wp - 9.558_wp * clo
ENDIF
ENDIF
END SUBROUTINE perct_regression
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> FANGER.F90
!>
!> SI-VERSION: ACTLEV W m-2, VAPOUR PRESSURE hPa
!> Calculates the current Predicted Mean Vote according to Fanger.
!> The case of free convection (ws < 0.1 m/s) is dealt with ws = 0.1 m/s
!--------------------------------------------------------------------------------------------------!
SUBROUTINE fanger( ta, tmrt, pa, in_ws, pair, in_clo, actlev, eta, pmva )
IMPLICIT NONE
!
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: actlev !< Individuals activity level per unit surface area (W/m2)
REAL(wp), INTENT ( IN ) :: eta !< Individuals mechanical work efficiency (dimensionless)
REAL(wp), INTENT ( IN ) :: in_clo !< Clothing insulation (clo)
REAL(wp), INTENT ( IN ) :: in_ws !< Wind speed (m/s) 1 m above ground
REAL(wp), INTENT ( IN ) :: pa !< Water vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: pair !< Barometric pressure (hPa) at site
REAL(wp), INTENT ( IN ) :: ta !< Ambient air temperature (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
!
!-- Output variables of argument list:
REAL(wp), INTENT ( OUT ) :: pmva !< Actual Predicted Mean Vote (PMV,
!< dimensionless) according to Fanger corresponding to meteorological
!< (ta,tmrt,pa,ws,pair) and individual variables (clo, actlev, eta)
!
!-- Internal variables
INTEGER(iwp) :: i !< running index
REAL(wp) :: activity !< persons activity (must stay == actlev, W)
REAL(wp) :: bc !< preliminary result storage
REAL(wp) :: cc !< preliminary result storage
REAL(wp) :: clo !< clothing insulation index (clo)
REAL(wp) :: dc !< preliminary result storage
REAL(wp) :: ec !< preliminary result storage
REAL(wp) :: f_cl !< Increase in surface due to clothing (factor)
REAL(wp) :: gc !< preliminary result storage
REAL(wp) :: heat_convection !< energy loss by autocnvection (W)
REAL(wp) :: hr !< radiational heat resistence
REAL(wp) :: t_clothing !< clothing temperature (degree_C)
REAL(wp) :: t_skin_aver !< average skin temperature (degree_C)
REAL(wp) :: ws !< wind speed (m/s)
REAL(wp) :: z1 !< Empiric factor for the adaption of the heat
!< ballance equation to the psycho-physical scale (Equ. 40 in FANGER)
REAL(wp) :: z2 !< Water vapour diffution through the skin
REAL(wp) :: z3 !< Sweat evaporation from the skin surface
REAL(wp) :: z4 !< Loss of latent heat through respiration
REAL(wp) :: z5 !< Loss of radiational heat
REAL(wp) :: z6 !< Heat loss through forced convection
!
!-- Clo must be > 0. to avoid div. by 0!
clo = in_clo
IF ( clo <= 0.0_wp ) clo = .001_wp
!
!-- f_cl = increase in surface due to clothing
f_cl = 1.0_wp + 0.15_wp * clo
!
!-- Case of free convection (ws < 0.1 m/s ) not considered
ws = in_ws
IF ( ws < 0.1_wp ) THEN
ws = 0.1_wp
ENDIF
!
!-- Heat_convection = forced convection
heat_convection = 12.1_wp * SQRT( ws * pair / 1013.25_wp )
!
!-- Activity = inner heat production per standardized surface
activity = actlev * ( 1.0_wp - eta )
!
!-- t_skin_aver = average skin temperature
t_skin_aver = 35.7_wp - 0.0275_wp * activity
!
!-- Calculation of constants for evaluation below
bc = 0.155_wp * clo * 3.96_wp * 10.0_wp**( -8 ) * f_cl
cc = f_cl * heat_convection
ec = 0.155_wp * clo
dc = ( 1.0_wp + ec * cc ) / bc
gc = ( t_skin_aver + bc * ( tmrt + degc_to_k )**4 + ec * cc * ta ) / bc
!
!-- Calculation of clothing surface temperature (t_clothing) based on Newton-approximation with air
!-- temperature as initial guess.
t_clothing = ta
DO i = 1, 3
t_clothing = t_clothing - ( ( t_clothing + degc_to_k )**4 + t_clothing * dc - gc ) / &
( 4.0_wp * ( t_clothing + degc_to_k )**3 + dc )
ENDDO
!
!-- Empiric factor for the adaption of the heat ballance equation to the psycho-physical scale (Equ.
!-- 40 in FANGER)
z1 = ( 0.303_wp * EXP( - 0.036_wp * actlev ) + 0.0275_wp )
!
!-- Water vapour diffution through the skin
z2 = 0.31_wp * ( 57.3_wp - 0.07_wp * activity-pa )
!
!-- Sweat evaporation from the skin surface
z3 = 0.42_wp * ( activity - 58.0_wp )
!
!-- Loss of latent heat through respiration
z4 = 0.0017_wp * actlev * ( 58.7_wp - pa ) + 0.0014_wp * actlev * &
( 34.0_wp - ta )
!
!-- Loss of radiational heat
z5 = 3.96e-8_wp * f_cl * ( ( t_clothing + degc_to_k )**4 - ( tmrt + degc_to_k )**4 )
IF ( ABS( t_clothing - tmrt ) > 0.0_wp ) THEN
hr = z5 / f_cl / ( t_clothing - tmrt )
ELSE
hr = 0.0_wp
ENDIF
!
!-- Heat loss through forced convection cc*(t_clothing-TT)
z6 = cc * ( t_clothing - ta )
!
!-- Predicted Mean Vote
pmva = z1 * ( activity - z2 - z3 - z4 - z5 - z6 )
END SUBROUTINE fanger
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> For pmva > 0 and clo =0.5 the increment (deltapmv) is calculated that converts pmva into Gagge's
!> et al. (1986) PMV*.
!--------------------------------------------------------------------------------------------------!
REAL(wp) FUNCTION deltapmv( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
IMPLICIT NONE
!
!-- Input variables of argument list:
REAL(wp), INTENT ( IN ) :: pmva !< Actual Predicted Mean Vote (PMV) according to Fanger
REAL(wp), INTENT ( IN ) :: svp_ta !< Saturation water vapour pressure (hPa) at ta
REAL(wp), INTENT ( IN ) :: ta !< Ambient temperature (degC) at screen level
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC) at screen level
REAL(wp), INTENT ( IN ) :: vp !< Water vapour pressure (hPa) at screen level
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s) 1 m above ground
!
!-- Output variables of argument list:
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error status / quality flag
!< 0 = o.k.
!< -2 = pmva outside valid regression range
!< -3 = rel. humidity set to 5 % or 95 %, respectively
!< -4 = deltapmv set to avoid pmvs < 0
!
!-- Internal variables:
INTEGER(iwp) :: nreg !<
REAL(wp) :: apa !< natural logarithm of pa (with hard lower border)
REAL(wp) :: dapa !< difference of apa and pa_p50
REAL(wp) :: dpmv_1 !<
REAL(wp) :: dpmv_2 !<
REAL(wp) :: dtmrt !< difference mean radiation to air temperature
REAL(wp) :: pa !< vapor pressure (hPa) with hard bounds
REAL(wp) :: pa_p50 !< ratio actual water vapour pressure to that of relative humidity of
!< 50 %
REAL(wp) :: pmv !< temp storage og predicted mean vote
REAL(wp) :: pmvs !<
REAL(wp) :: p10 !< lower bound for pa
REAL(wp) :: p95 !< upper bound for pa
REAL(wp) :: sqvel !< square root of local wind velocity
REAL(wp) :: weight !<
REAL(wp) :: weight2 !<
!
!-- Regression coefficients:
REAL(wp), DIMENSION(0:7), PARAMETER :: bpmv = (/ &
- 0.0556602_wp, - 0.1528680_wp, - 0.2336104_wp, - 0.2789387_wp, &
- 0.3551048_wp, - 0.4304076_wp, - 0.4884961_wp, - 0.4897495_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bpa_p50 = (/ &
- 0.1607154_wp, - 0.4177296_wp, - 0.4120541_wp, - 0.0886564_wp, &
0.4285938_wp, 0.6281256_wp, 0.5067361_wp, 0.3965169_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bpa = (/ &
0.0580284_wp, 0.0836264_wp, 0.1009919_wp, 0.1020777_wp, &
0.0898681_wp, 0.0839116_wp, 0.0853258_wp, 0.0866589_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bapa = (/ &
- 1.7838788_wp, - 2.9306231_wp, - 1.6350334_wp, 0.6211547_wp, &
3.3918083_wp, 5.5521025_wp, 8.4897418_wp, 16.6265851_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bdapa = (/ &
1.6752720_wp, 2.7379504_wp, 1.2940526_wp, - 1.0985759_wp, &
- 3.9054732_wp, - 6.0403012_wp, - 8.9437119_wp, - 17.0671201_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bsqvel = (/ &
- 0.0315598_wp, - 0.0286272_wp, - 0.0009228_wp, 0.0483344_wp, &
0.0992366_wp, 0.1491379_wp, 0.1951452_wp, 0.2133949_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bta = (/ &
0.0953986_wp, 0.1524760_wp, 0.0564241_wp, - 0.0893253_wp, &
- 0.2398868_wp, - 0.3515237_wp, - 0.5095144_wp, - 0.9469258_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: bdtmrt = (/ &
- 0.0004672_wp, - 0.0000514_wp, - 0.0018037_wp, - 0.0049440_wp, &
- 0.0069036_wp, - 0.0075844_wp, - 0.0079602_wp, - 0.0089439_wp /)
REAL(wp), DIMENSION(0:7), PARAMETER :: aconst = (/ &
1.8686215_wp, 3.4260713_wp, 2.0116185_wp, - 0.7777552_wp, &
- 4.6715853_wp, - 7.7314281_wp, - 11.7602578_wp, - 23.5934198_wp /)
!
!-- Test for compliance with regression range
IF ( pmva < -1.0_wp .OR. pmva > 7.0_wp ) THEN
nerr = -2_iwp
ELSE
nerr = 0_iwp
ENDIF
!
!-- Initialise classic PMV
pmv = pmva
!
!-- Water vapour pressure of air
p10 = 0.05_wp * svp_ta
p95 = 1.00_wp * svp_ta
IF ( vp >= p10 .AND. vp <= p95 ) THEN
pa = vp
ELSE
nerr = -3_iwp
IF ( vp < p10 ) THEN
!
!-- Due to conditions of regression: r.H. >= 5 %
pa = p10
ELSE
!
!-- Due to conditions of regression: r.H. <= 95 %
pa = p95
ENDIF
ENDIF
IF ( pa > 0.0_wp ) THEN
!
!-- Natural logarithm of pa
apa = LOG( pa )
ELSE
apa = -5.0_wp
ENDIF
!
!-- Ratio actual water vapour pressure to that of a r.H. of 50 %
pa_p50 = 0.5_wp * svp_ta
IF ( pa_p50 > 0.0_wp .AND. pa > 0.0_wp ) THEN
dapa = apa - LOG( pa_p50 )
pa_p50 = pa / pa_p50
ELSE
dapa = -5.0_wp
pa_p50 = 0.0_wp
ENDIF
!
!-- Square root of wind velocity
IF ( ws >= 0.0_wp ) THEN
sqvel = SQRT( ws )
ELSE
sqvel = 0.0_wp
ENDIF
!
!-- Difference mean radiation to air temperature
dtmrt = tmrt - ta
!
!-- Select the valid regression coefficients
nreg = INT( pmv )
IF ( nreg < 0_iwp ) THEN
!
!-- Value of the FUNCTION in the case pmv <= -1
deltapmv = 0.0_wp
RETURN
ENDIF
weight = MOD ( pmv, 1.0_wp )
IF ( weight < 0.0_wp ) weight = 0.0_wp
IF ( nreg > 5_iwp ) THEN
nreg = 5_iwp
weight = pmv - 5.0_wp
weight2 = pmv - 6.0_wp
IF ( weight2 > 0_iwp ) THEN
weight = ( weight - weight2 ) / weight
ENDIF
ENDIF
!
!-- Regression valid for 0. <= pmv <= 6., bounds are checked above
dpmv_1 = &
+ bpa(nreg) * pa &
+ bpmv(nreg) * pmv &
+ bapa(nreg) * apa &
+ bta(nreg) * ta &
+ bdtmrt(nreg) * dtmrt &
+ bdapa(nreg) * dapa &
+ bsqvel(nreg) * sqvel &
+ bpa_p50(nreg) * pa_p50 &
+ aconst(nreg)
! dpmv_2 = 0.0_wp
! IF ( nreg < 6_iwp ) THEN !< nreg is always <= 5, see above
dpmv_2 = &
+ bpa(nreg+1_iwp) * pa &
+ bpmv(nreg+1_iwp) * pmv &
+ bapa(nreg+1_iwp) * apa &
+ bta(nreg+1_iwp) * ta &
+ bdtmrt(nreg+1_iwp) * dtmrt &
+ bdapa(nreg+1_iwp) * dapa &
+ bsqvel(nreg+1_iwp) * sqvel &
+ bpa_p50(nreg+1_iwp) * pa_p50 &
+ aconst(nreg+1_iwp)
! ENDIF
!
!-- Calculate pmv modification
deltapmv = ( 1.0_wp - weight ) * dpmv_1 + weight * dpmv_2
pmvs = pmva + deltapmv
IF ( ( pmvs ) < 0.0_wp ) THEN
!
!-- Prevent negative pmv* due to problems with clothing insulation
nerr = -4_iwp
IF ( pmvs > -0.11_wp ) THEN
!
!-- Threshold from perct_regression for winter clothing insulation
deltapmv = deltapmv + 0.11_wp
ELSE
!
!-- Set pmvs to "0" for compliance with summer clothing insulation
deltapmv = -1.0_wp * pmva
ENDIF
ENDIF
END FUNCTION deltapmv
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> The subroutine "calc_sultr" returns a threshold value to perceived temperature allowing to decide
!> whether the actual perceived temperature is linked to perecption of sultriness. The threshold
!> values depends on the Fanger's classical PMV, expressed here as perceived temperature perct.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE calc_sultr( perct_ij, dperctm, dperctstd, sultr_res )
IMPLICIT NONE
!
!-- Input of the argument list:
REAL(wp), INTENT ( IN ) :: perct_ij !< Classical perceived temperature: Base is Fanger's PMV
!
!-- Additional output variables of argument list:
REAL(wp), INTENT ( OUT ) :: dperctm !< Mean deviation perct (classical gt) to gt* (rational
!< gt calculated based on Gagge's rational PMV*)
REAL(wp), INTENT ( OUT ) :: dperctstd !< dperctm plus its standard deviation times a factor
!< determining the significance to perceive sultriness
REAL(wp), INTENT ( OUT ) :: sultr_res
!
!-- Types of coefficients mean deviation: third order polynomial
REAL(wp), PARAMETER :: dperctka = 7.5776086_wp
REAL(wp), PARAMETER :: dperctkb = - 0.740603_wp
REAL(wp), PARAMETER :: dperctkc = 0.0213324_wp
REAL(wp), PARAMETER :: dperctkd = - 0.00027797237_wp
!
!-- Types of coefficients mean deviation plus standard deviation
!-- regression coefficients: third order polynomial
REAL(wp), PARAMETER :: dperctsa = 0.0268918_wp
REAL(wp), PARAMETER :: dperctsb = 0.0465957_wp
REAL(wp), PARAMETER :: dperctsc = - 0.00054709752_wp
REAL(wp), PARAMETER :: dperctsd = 0.0000063714823_wp
!
!-- Factor to mean standard deviation defining SIGNificance for
!-- sultriness
REAL(wp), PARAMETER :: faktor = 1.0_wp
!
!-- Initialise
sultr_res = 99.0_wp
dperctm = 0.0_wp
dperctstd = 999999.0_wp
IF ( perct_ij < 16.826_wp .OR. perct_ij > 56.0_wp ) THEN
!
!-- Unallowed value of classical perct!
RETURN
ENDIF
!
!-- Mean deviation dependent on perct
dperctm = dperctka + dperctkb * perct_ij + dperctkc * perct_ij**2.0_wp + dperctkd * &
perct_ij**3.0_wp
!
!-- Mean deviation plus its standard deviation
dperctstd = dperctsa + dperctsb * perct_ij + dperctsc * perct_ij**2.0_wp + dperctsd * &
perct_ij**3.0_wp
!
!-- Value of the FUNCTION
sultr_res = dperctm + faktor * dperctstd
IF ( ABS( sultr_res ) > 99.0_wp ) sultr_res = +99.0_wp
END SUBROUTINE calc_sultr
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Multiple linear regression to calculate an increment delta_cold, to adjust Fanger's classical PMV
!> (pmva) by Gagge's 2 node model, applying Fanger's convective heat transfer coefficient, hcf.
!> Wind velocitiy of the reference environment is 0.10 m/s
!--------------------------------------------------------------------------------------------------!
SUBROUTINE dpmv_cold( pmva, ta, ws, tmrt, nerr, dpmv_cold_res )
IMPLICIT NONE
!
!-- Type of input arguments
REAL(wp), INTENT ( IN ) :: pmva !< Fanger's classical predicted mean vote
REAL(wp), INTENT ( IN ) :: ta !< Air temperature 2 m above ground (degC)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degC)
REAL(wp), INTENT ( IN ) :: ws !< Relative wind velocity 1 m above ground (m/s)
!
!-- Type of output argument
INTEGER(iwp), INTENT ( OUT ) :: nerr !< Error indicator: 0 = o.k., +1 = denominator for
!< intersection = 0
REAL(wp), INTENT ( OUT ) :: dpmv_cold_res !< Increment to adjust pmva according to the
!< results of Gagge's 2 node model depending on the input
!
!-- Type of program variables
INTEGER(iwp) :: i !< running index
INTEGER(iwp) :: i_bin !< result row number
REAL(wp) :: delta_cold(3)
REAL(wp) :: dtmrt !< delta mean radiant temperature
REAL(wp) :: pmv_cross(2)
REAL(wp) :: reg_a(3)
REAL(wp) :: r_denominator !< the regression equations denominator
REAL(wp) :: sqrt_ws !< sqare root of wind speed
! REAL(wp) :: coeff(3,5) !< unsafe! array is (re-)writable!
! coeff(1,1:5) = &
! (/ +0.161_wp, +0.130_wp, -1.125E-03_wp, +1.106E-03_wp, -4.570E-04_wp /)
! coeff(2,1:5) = &
! (/ 0.795_wp, 0.713_wp, -8.880E-03_wp, -1.803E-03_wp, -2.816E-03_wp /)
! coeff(3,1:5) = &
! (/ +0.05761_wp, +0.458_wp, -1.829E-02_wp, -5.577E-03_wp, -1.970E-03_wp /)
!
!-- Coefficient of the 3 regression lines:
! 1:const 2:*pmva 3:*ta 4:*sqrt_ws 5:*dtmrt
REAL(wp), DIMENSION(1:3,1:5), PARAMETER :: coeff = RESHAPE( (/ &
0.161_wp, 0.130_wp, -1.125E-03_wp, 1.106E-03_wp, -4.570E-04_wp, &
0.795_wp, 0.713_wp, -8.880E-03_wp, -1.803E-03_wp, -2.816E-03_wp, &
0.05761_wp, 0.458_wp, -1.829E-02_wp, -5.577E-03_wp, -1.970E-03_wp &
/), SHAPE( coeff ), order=(/ 2, 1 /) )
!
!-- Initialise
nerr = 0_iwp
dpmv_cold_res = 0.0_wp
dtmrt = tmrt - ta
sqrt_ws = ws
IF ( sqrt_ws < 0.1_wp ) THEN
sqrt_ws = 0.1_wp
ELSE
sqrt_ws = SQRT( sqrt_ws )
ENDIF
delta_cold = 0.0_wp
pmv_cross = pmva
!
!-- Determine regression constant for given meteorological conditions
DO i = 1, 3
reg_a(i) = coeff(i,1) + coeff(i,3) * ta + coeff(i,4) * sqrt_ws + coeff(i,5)*dtmrt
delta_cold(i) = reg_a(i) + coeff(i,2) * pmva
ENDDO
!
!-- Intersection points of regression lines in terms of Fanger's PMV
DO i = 1, 2
r_denominator = coeff(i,2) - coeff(i+1,2)
IF ( ABS( r_denominator ) > 0.00001_wp ) THEN
pmv_cross(i) = ( reg_a(i+1) - reg_a(i) ) / r_denominator
ELSE
nerr = 1_iwp
RETURN
ENDIF
ENDDO
!
!-- Select result row number
i_bin = 3
DO i = 1, 2
IF ( pmva > pmv_cross(i) ) THEN
i_bin = i
EXIT
ENDIF
ENDDO
!
!-- Adjust to operative temperature scaled according to classical PMV (Fanger)
dpmv_cold_res = delta_cold(i_bin) - dpmv_cold_adj(pmva)
END SUBROUTINE dpmv_cold
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates the summand dpmv_cold_adj adjusting to the operative temperature scaled according to
!> classical PMV (Fanger) for cold conditions. Valid for reference environment: v (1m) = 0.10 m/s,
!> dTMRT = 0 K, r.h. = 50 %
!--------------------------------------------------------------------------------------------------!
REAL(wp) FUNCTION dpmv_cold_adj( pmva )
IMPLICIT NONE
INTEGER(iwp) :: i !< running index
INTEGER(iwp) :: thr !< thermal range
REAL(wp), INTENT ( IN ) :: pmva !< (adjusted) Predicted Mean Vote
REAL(wp) :: pmv !< pmv-part of the regression
!
!-- Provide regression coefficients for three thermal ranges:
!-- slightly cold cold very cold
REAL(wp), DIMENSION(1:3,0:3), PARAMETER :: coef = RESHAPE( (/ &
0.0941540_wp, -0.1506620_wp, -0.0871439_wp, &
0.0783162_wp, -1.0612651_wp, 0.1695040_wp, &
0.1350144_wp, -1.0049144_wp, -0.0167627_wp, &
0.1104037_wp, -0.2005277_wp, -0.0003230_wp &
/), SHAPE(coef), order=(/ 1, 2 /) )
!
!-- Select thermal range
IF ( pmva <= -2.1226_wp ) THEN !< very cold
thr = 3_iwp
ELSE IF ( pmva <= -1.28_wp ) THEN !< cold
thr = 2_iwp
ELSE !< slightly cold
thr = 1_iwp
ENDIF
!
!-- Initialize
dpmv_cold_adj = coef(thr,0)
pmv = 1.0_wp
!
!-- Calculate pmv adjustment (dpmv_cold_adj)
DO i = 1, 3
pmv = pmv * pmva
dpmv_cold_adj = dpmv_cold_adj + coef(thr,i) * pmv
ENDDO
RETURN
END FUNCTION dpmv_cold_adj
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Based on perceived temperature (perct) as input, ireq_neutral determines the required clothing
!> insulation (clo) for thermally neutral conditions (neither body cooling nor body heating). It is
!> related to the Klima-Michel activity level (134.682 W/m2). IREQ_neutral is only defined for perct
!> < 10 (degC)
!--------------------------------------------------------------------------------------------------!
REAL(wp) FUNCTION ireq_neutral( perct_ij, ireq_minimal, nerr )
IMPLICIT NONE
!
!-- Type declaration of arguments
INTEGER(iwp), INTENT ( OUT ) :: nerr
REAL(wp), INTENT ( IN ) :: perct_ij
REAL(wp), INTENT ( OUT ) :: ireq_minimal
!
!-- Type declaration for internal varables
REAL(wp) :: perct02
!
!-- Initialise
nerr = 0_iwp
!
!-- Convert perceived temperature from basis 0.1 m/s to basis 0.2 m/s
perct02 = 1.8788_wp + 0.9296_wp * perct_ij
!
!-- IREQ neutral conditions (thermal comfort)
ireq_neutral = 1.62_wp - 0.0564_wp * perct02
!
!-- Regression only defined for perct <= 10 (degC)
IF ( ireq_neutral < 0.5_wp ) THEN
IF ( ireq_neutral < 0.48_wp ) THEN
nerr = 1_iwp
ENDIF
ireq_neutral = 0.5_wp
ENDIF
!
!-- Minimal required clothing insulation: maximal acceptable body cooling
ireq_minimal = 1.26_wp - 0.0588_wp * perct02
IF ( nerr > 0_iwp ) THEN
ireq_minimal = ireq_neutral
ENDIF
RETURN
END FUNCTION ireq_neutral
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE surface area calculates the surface area of the individual according to its height
!> (m), weight (kg), and age (y)
!--------------------------------------------------------------------------------------------------!
SUBROUTINE surface_area( height_cm, weight, age, surf )
IMPLICIT NONE
INTEGER(iwp), INTENT(in) :: age
REAL(wp) , INTENT(in) :: height_cm
REAL(wp) , INTENT(in) :: weight
REAL(wp) , INTENT(out) :: surf
REAL(wp) :: height
height = height_cm * 100.0_wp
!
!-- According to Gehan-George, for children
IF ( age < 19_iwp ) THEN
IF ( age < 5_iwp ) THEN
surf = 0.02667_wp * height**0.42246_wp * weight**0.51456_wp
RETURN
ENDIF
surf = 0.03050_wp * height**0.35129_wp * weight**0.54375_wp
RETURN
ENDIF
!
!-- DuBois D, DuBois EF: A formula to estimate the approximate surface area if height and weight be
!> known. In: Arch. Int. Med.. 17, 1916, pp. 863:871.
surf = 0.007184_wp * height**0.725_wp * weight**0.425_wp
RETURN
END SUBROUTINE surface_area
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> The SUBROUTINE persdat calculates
!> - the total internal energy production = metabolic + workload,
!> - the total internal energy production for a standardized surface (actlev)
!> - the DuBois - area (a_surf [m2])
!> from
!> - the persons age (years),
!> - weight (kg),
!> - height (m),
!> - sex (1 = male, 2 = female),
!> - work load (W)
!> for a sample human.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE persdat( age, weight, height, sex, work, a_surf, actlev )
IMPLICIT NONE
INTEGER(iwp), INTENT(in) :: sex
REAL(wp), INTENT(in) :: age
REAL(wp), INTENT(in) :: height
REAL(wp), INTENT(in) :: weight
REAL(wp), INTENT(in) :: work
REAL(wp), INTENT(out) :: actlev
REAL(wp) :: a_surf
REAL(wp) :: basic_heat_prod
REAL(wp) :: energy_prod
REAL(wp) :: factor
REAL(wp) :: s
CALL surface_area( height, weight, INT( age ), a_surf )
s = height * 100.0_wp / ( weight**( 1.0_wp / 3.0_wp ) )
factor = 1.0_wp + .004_wp * ( 30.0_wp - age )
basic_heat_prod = 0.0_wp
IF ( sex == 1_iwp ) THEN
basic_heat_prod = 3.45_wp * weight**( 3.0_wp / 4.0_wp ) * ( factor + 0.01_wp &
* ( s - 43.4_wp ) )
ELSE IF ( sex == 2_iwp ) THEN
basic_heat_prod = 3.19_wp * weight**( 3.0_wp / 4.0_wp ) * ( factor + 0.018_wp &
* ( s - 42.1_wp ) )
ENDIF
energy_prod = work + basic_heat_prod
actlev = energy_prod / a_surf
END SUBROUTINE persdat
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE ipt_init
!> initializes the instationary perceived temperature
!--------------------------------------------------------------------------------------------------!
SUBROUTINE ipt_init( age, weight, height, sex, work, actlev, clo, ta, vp, ws, tmrt, pair, dt, &
storage, t_clothing, ipt )
IMPLICIT NONE
!
!-- Input parameters
INTEGER(iwp), INTENT(in) :: sex !< Persons sex (1 = male, 2 = female)
REAL(wp), INTENT(in) :: age !< Persons age (years)
REAL(wp), INTENT(in) :: dt !< Timestep (s)
REAL(wp), INTENT(in) :: height !< Persons height (m)7
REAL(wp), INTENT(in) :: pair !< Air pressure (hPa)
REAL(wp), INTENT(in) :: ta !< Air Temperature (degree_C)
REAL(wp), INTENT(in) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT(in) :: vp !< Vapor pressure (hPa)
REAL(wp), INTENT(in) :: weight !< Persons weight (kg)
REAL(wp), INTENT(in) :: work !< Current workload (W)
REAL(wp), INTENT(in) :: ws !< Wind speed in approx. 1.1m (m/s)
!
!-- Output parameters
REAL(wp), INTENT(out) :: actlev
REAL(wp), INTENT(out) :: clo
REAL(wp), INTENT(out) :: ipt
REAL(wp), INTENT(out) :: storage
REAL(wp), INTENT(out) :: t_clothing
!
!-- Internal variables
REAL(wp), PARAMETER :: eps = 0.0005_wp
REAL(wp), PARAMETER :: eta = 0.0_wp
INTEGER(iwp) :: ncount
INTEGER(iwp) :: nerr_cold
INTEGER(iwp) :: nerr
LOGICAL :: sultrieness
! REAL(wp) :: acti
REAL(wp) :: a_surf
! REAL(wp) :: clo_fanger
REAL(wp) :: clon
REAL(wp) :: d_pmv
REAL(wp) :: d_std
REAL(wp) :: dgtcm
REAL(wp) :: dgtcstd
REAL(wp) :: ireq_minimal
REAL(wp) :: pmv_s
REAL(wp) :: pmv_w
REAL(wp) :: pmva
REAL(wp) :: pmvs
REAL(wp) :: ptc
REAL(wp) :: sclo
REAL(wp) :: sult_lim
REAL(wp) :: svp_ta
REAL(wp) :: wclo
storage = 0.0_wp
CALL persdat( age, weight, height, sex, work, a_surf, actlev )
!
!-- Initialise
t_clothing = bio_fill_value
ipt = bio_fill_value
nerr = 0_wp
ncount = 0_wp
sultrieness = .FALSE.
!
!-- Tresholds: clothing insulation (account for model inaccuracies)
!-- Summer clothing
sclo = 0.44453_wp
!-- Winter clothing
wclo = 1.76267_wp
!
!-- Decision: firstly calculate for winter or summer clothing
IF ( ta <= 10.0_wp ) THEN
!
!-- First guess: winter clothing insulation: cold stress
clo = wclo
t_clothing = bio_fill_value ! force initial run
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
pmv_w = pmva
IF ( pmva > 0.0_wp ) THEN
!
!-- Case summer clothing insulation: heat load ?
clo = sclo
t_clothing = bio_fill_value ! force initial run
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
pmv_s = pmva
IF ( pmva <= 0.0_wp ) THEN
!
!-- Case: comfort achievable by varying clothing insulation between winter and summer set
!-- values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta , sclo, pmv_s, wclo, pmv_w, eps,&
pmva, ncount, clo )
IF ( ncount < 0_iwp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, &
dt, pmva )
ENDIF
ELSE IF ( pmva < - 0.11_wp ) THEN
clo = 1.75_wp
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
ENDIF
ELSE
!
!-- First guess: summer clothing insulation: heat load
clo = sclo
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
pmv_s = pmva
IF ( pmva < 0.0_wp ) THEN
!
!-- Case winter clothing insulation: cold stress ?
clo = wclo
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
pmv_w = pmva
IF ( pmva >= 0.0_wp ) THEN
!
!-- Case: comfort achievable by varying clothing insulation between winter and summer set
!-- values
CALL iso_ridder ( ta, tmrt, vp, ws, pair, actlev, eta, sclo, pmv_s, wclo, pmv_w, eps, &
pmva, ncount, clo )
IF ( ncount < 0_wp ) THEN
nerr = -1_iwp
RETURN
ENDIF
ELSE IF ( pmva < - 0.11_wp ) THEN
clo = 1.75_wp
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, &
dt, pmva )
ENDIF
ELSE IF ( pmva > 0.06_wp ) THEN
clo = 0.5_wp
t_clothing = bio_fill_value
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, &
pmva )
ENDIF
ENDIF
!
!-- Determine perceived temperature by regression equation + adjustments
pmvs = pmva
CALL perct_regression( pmva, clo, ipt )
ptc = ipt
IF ( clo >= 1.75_wp .AND. pmva <= - 0.11_wp ) THEN
!
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > - 0.11_wp ) THEN
d_pmv = 0.0_wp
pmvs = - 0.11_wp
ENDIF
CALL perct_regression( pmvs, clo, ipt )
ENDIF
! clo_fanger = clo
clon = clo
IF ( clo > 0.5_wp .AND. ipt <= 8.73_wp ) THEN
!
!-- Required clothing insulation (ireq) is exclusively defined for perceived temperatures (ipt)
!-- less 10 (C) for a reference wind of 0.2 m/s according to 8.73 (C) for 0.1 m/s
clon = ireq_neutral ( ipt, ireq_minimal, nerr )
clo = clon
ENDIF
CALL calc_sultr( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = - 99.0_wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression( pmvs, clo, ipt )
IF ( sult_lim < 99.0_wp ) THEN
IF ( (ipt - ptc) > sult_lim ) sultrieness = .TRUE.
ENDIF
ENDIF
END SUBROUTINE ipt_init
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE ipt_cycle
!> Calculates one timestep for the instationary version of perceived temperature (iPT, degree_C) for
!> - standard measured/predicted meteorological values and TMRT as input;
!> - regressions for determination of PT;
!> - adjustment to Gagge's PMV* (2-node-model, 1986) as base of PT under warm/humid conditions
!> (Icl= 0.50 clo) and under cold conditions (Icl= 1.75 clo)
!--------------------------------------------------------------------------------------------------!
SUBROUTINE ipt_cycle( ta, vp, ws, tmrt, pair, dt, storage, t_clothing, clo, actlev, work, ipt )
IMPLICIT NONE
!
!-- Type of input of the argument list
REAL(wp), INTENT ( IN ) :: actlev !< Internal heat production (W)
REAL(wp), INTENT ( IN ) :: clo !< Clothing index (no dim)
REAL(wp), INTENT ( IN ) :: dt !< Timestep (s)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT ( IN ) :: vp !< Vapor pressure (hPa)
REAL(wp), INTENT ( IN ) :: work !< Mechanical work load (W)
REAL(wp), INTENT ( IN ) :: ws !< Wind speed (m/s)
!
!-- In and output parameters
REAL(wp), INTENT (INOUT) :: storage !< Heat storage (W)
REAL(wp), INTENT (INOUT) :: t_clothing !< Clothig temperature (degree_C)
!
!-- Type of output of the argument list
REAL(wp), INTENT ( OUT ) :: ipt !< Instationary perceived temperature (degree_C)
!
!-- Type of internal variables
INTEGER(iwp) :: nerr
INTEGER(iwp) :: nerr_cold
LOGICAL :: sultrieness
REAL(wp) :: d_pmv
REAL(wp) :: d_std
REAL(wp) :: dgtcm
REAL(wp) :: dgtcstd
REAL(wp) :: pmva
REAL(wp) :: pmvs
REAL(wp) :: ptc
REAL(wp) :: sult_lim
REAL(wp) :: svp_ta
!
!-- Initialise
ipt = bio_fill_value
nerr = 0_iwp
sultrieness = .FALSE.
!
!-- Determine pmv_adjusted for current conditions
CALL fanger_s_acti ( ta, tmrt, vp, ws, pair, clo, actlev, work, t_clothing, storage, dt, pmva )
!
!-- Determine perceived temperature by regression equation + adjustments
CALL perct_regression( pmva, clo, ipt )
!
!-- Consider cold conditions
IF ( clo >= 1.75_wp .AND. pmva <= -0.11_wp ) THEN
!
!-- Adjust for cold conditions according to Gagge 1986
CALL dpmv_cold ( pmva, ta, ws, tmrt, nerr_cold, d_pmv )
IF ( nerr_cold > 0_iwp ) nerr = -5_iwp
pmvs = pmva - d_pmv
IF ( pmvs > - 0.11_wp ) THEN
d_pmv = 0.0_wp
pmvs = - 0.11_wp
ENDIF
CALL perct_regression( pmvs, clo, ipt )
ENDIF
!
!-- Consider sultriness if appropriate
ptc = ipt
CALL calc_sultr( ptc, dgtcm, dgtcstd, sult_lim )
sultrieness = .FALSE.
d_std = - 99.0_wp
IF ( pmva > 0.06_wp .AND. clo <= 0.5_wp ) THEN
!
!-- Adjust for warm/humid conditions according to Gagge 1986
CALL saturation_vapor_pressure ( ta, svp_ta )
d_pmv = deltapmv ( pmva, ta, vp, svp_ta, tmrt, ws, nerr )
pmvs = pmva + d_pmv
CALL perct_regression( pmvs, clo, ipt )
IF ( sult_lim < 99.0_wp ) THEN
IF ( (ipt - ptc) > sult_lim ) sultrieness = .TRUE.
ENDIF
ENDIF
END SUBROUTINE ipt_cycle
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> SUBROUTINE fanger_s calculates the actual Predicted Mean Vote (dimensionless) according to Fanger
!> corresponding to meteorological (ta,tmrt,pa,ws,pair) and individual variables (clo, actlev, eta)
!> considering a storage and clothing temperature for a given timestep.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE fanger_s_acti( ta, tmrt, pa, in_ws, pair, in_clo, actlev, activity, t_cloth, s, dt, &
pmva )
IMPLICIT NONE
!
!-- Input argument types
REAL(wp), INTENT ( IN ) :: activity !< Work load (W/m²)
REAL(wp), INTENT ( IN ) :: actlev !< Metabolic + work energy (W/m²)
REAL(wp), INTENT ( IN ) :: dt !< Timestep (s)
REAL(wp), INTENT ( IN ) :: in_clo !< Clothing index (clo) (no dim)
REAL(wp), INTENT ( IN ) :: in_ws !< Wind speed (m/s)
REAL(wp), INTENT ( IN ) :: pa !< Vapour pressure (hPa)
REAL(wp), INTENT ( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT ( IN ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT ( IN ) :: tmrt !< Mean radiant temperature (degree_C)
!
!-- Output argument types
REAL(wp), INTENT ( OUT ) :: pmva !< actual Predicted Mean Vote (no dim)
REAL(wp), INTENT (INOUT) :: s !< storage var. of energy balance (W/m2)
REAL(wp), INTENT (INOUT) :: t_cloth !< clothing temperature (degree_C)
!
!-- Internal variables
REAL(wp), PARAMETER :: time_equil = 7200.0_wp
INTEGER(iwp) :: i !< running index
INTEGER(iwp) :: niter !< Running index
REAL(wp) :: adjustrate !< Max storage adjustment rate
REAL(wp) :: adjustrate_cloth !< max clothing temp. adjustment rate
REAL(wp) :: bc !< preliminary result storage
REAL(wp) :: cc !< preliminary result storage
REAL(wp) :: clo !< clothing insulation index (clo)
REAL(wp) :: d_s !< Storage delta (W)
REAL(wp) :: dc !< preliminary result storage
REAL(wp) :: en !< Energy ballance (W)
REAL(wp) :: ec !< preliminary result storage
REAL(wp) :: f_cl !< Increase in surface due to clothing (factor)
REAL(wp) :: gc !< preliminary result storage
REAL(wp) :: heat_convection !< energy loss by autocnvection (W)
! REAL(wp) :: hr !< radiational heat resistence
REAL(wp) :: t_clothing !< clothing temperature (degree_C)
REAL(wp) :: t_skin_aver !< average skin temperature (degree_C)
REAL(wp) :: ws !< wind speed (m/s)
REAL(wp) :: z1 !< Empiric factor for the adaption of the heat
!< ballance equation to the psycho-physical scale
!< (Equ. 40 in FANGER)
REAL(wp) :: z2 !< Water vapour diffution through the skin
REAL(wp) :: z3 !< Sweat evaporation from the skin surface
REAL(wp) :: z4 !< Loss of latent heat through respiration
REAL(wp) :: z5 !< Loss of radiational heat
REAL(wp) :: z6 !< Heat loss through forced convection
!
!-- Clo must be > 0. to avoid div. by 0!
clo = in_clo
IF ( clo < 001.0_wp ) clo = 0.001_wp
!
!-- Increase in surface due to clothing
f_cl = 1.0_wp + 0.15_wp * clo
!
!-- Case of free convection (ws < 0.1 m/s ) not considered
ws = in_ws
IF ( ws < 0.1_wp ) THEN
ws = 0.1_wp
ENDIF
!
!-- Heat_convection = forced convection
heat_convection = 12.1_wp * SQRT( ws * pair / 1013.25_wp )
!
!-- Average skin temperature
t_skin_aver = 35.7_wp - 0.0275_wp * activity
!
!-- Calculation of constants for evaluation below
bc = 0.155_wp * clo * 3.96_wp * 10.0_wp**( -8.0_wp ) * f_cl
cc = f_cl * heat_convection
ec = 0.155_wp * clo
dc = ( 1.0_wp + ec * cc ) / bc
gc = ( t_skin_aver + bc * ( tmrt + 273.2_wp )**4.0_wp + ec * cc * ta ) / bc
!
!-- Calculation of clothing surface temperature (t_clothing) based on Newton-approximation with air
!-- temperature as initial guess
niter = INT( dt * 10.0_wp, KIND=iwp )
IF ( niter < 1 ) niter = 1_iwp
adjustrate = 1.0_wp - EXP( -1.0_wp * ( 10.0_wp / time_equil ) * dt )
IF ( adjustrate >= 1.0_wp ) adjustrate = 1.0_wp
adjustrate_cloth = adjustrate * 30.0_wp
t_clothing = t_cloth
!
!-- Set initial values for niter, adjustrates and t_clothing if this is the first call
IF ( t_cloth <= -998.0_wp ) THEN ! If initial run
niter = 3_iwp
adjustrate = 1.0_wp
adjustrate_cloth = 1.0_wp
t_clothing = ta
ENDIF
!
!-- Update clothing temperature
DO i = 1, niter
t_clothing = t_clothing - adjustrate_cloth * ( ( t_clothing + 273.2_wp )**4.0_wp + &
t_clothing * dc - gc ) / ( 4.0_wp * ( t_clothing + 273.2_wp )**3.0_wp + dc )
ENDDO
!
!-- Empiric factor for the adaption of the heat ballance equation to the psycho-physical scale
!-- (Equ. 40 in FANGER)
z1 = ( 0.303_wp * EXP( - 0.036_wp * actlev ) + 0.0275_wp )
!
!-- Water vapour diffution through the skin
z2 = 0.31_wp * ( 57.3_wp - 0.07_wp * activity-pa )
!
!-- Sweat evaporation from the skin surface
z3 = 0.42_wp * ( activity - 58.0_wp )
!
!-- Loss of latent heat through respiration
z4 = 0.0017_wp * actlev * ( 58.7_wp - pa ) + 0.0014_wp * actlev * ( 34.0_wp - ta )
!
!-- Loss of radiational heat
z5 = 3.96e-8_wp * f_cl * ( ( t_clothing + 273.2_wp )**4 - ( tmrt + 273.2_wp )**4 )
!
!-- Heat loss through forced convection
z6 = cc * ( t_clothing - ta )
!
!-- Write together as energy ballance
en = activity - z2 - z3 - z4 - z5 - z6
!
!-- Manage storage
d_s = adjustrate * en + ( 1.0_wp - adjustrate ) * s
!
!-- Predicted Mean Vote
pmva = z1 * d_s
!
!-- Update storage
s = d_s
t_cloth = t_clothing
END SUBROUTINE fanger_s_acti
!--------------------------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Physiologically Equivalent Temperature (PET),
!> stationary (calculated based on MEMI),
!> Subroutine based on PETBER vers. 1.5.1996 by P. Hoeppe
!--------------------------------------------------------------------------------------------------!
SUBROUTINE calculate_pet_static( ta, vpa, v, tmrt, pair, pet_ij )
IMPLICIT NONE
!
!-- Input arguments:
REAL(wp), INTENT( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT( IN ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT( IN ) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT( IN ) :: v !< Wind speed (m/s)
REAL(wp), INTENT( IN ) :: vpa !< Vapor pressure (hPa)
!
!-- Output arguments:
REAL(wp), INTENT ( OUT ) :: pet_ij !< PET (degree_C)
!
!-- Internal variables:
REAL(wp) :: acl !< clothing area (m²)
REAL(wp) :: adu !< Du Bois area (m²)
REAL(wp) :: aeff !< effective area (m²)
REAL(wp) :: ere !< energy ballance (W)
REAL(wp) :: erel !< latent energy ballance (W)
REAL(wp) :: esw !< Energy-loss through sweat evap. (W)
REAL(wp) :: facl !< Surface area extension through clothing (factor)
REAL(wp) :: feff !< Surface modification by posture (factor)
REAL(wp) :: rdcl !< Diffusion resistence of clothing (factor)
REAL(wp) :: rdsk !< Diffusion resistence of skin (factor)
REAL(wp) :: rtv
REAL(wp) :: vpts !< Sat. vapor pressure over skin (hPa)
REAL(wp) :: tcl !< Clothing temperature (degree_C)
REAL(wp) :: tsk !< Skin temperature (degree_C)
REAL(wp) :: wetsk !< Fraction of wet skin (factor)
!
!-- Variables:
REAL(wp) :: int_heat !< Internal heat (W)
!
!-- MEMI configuration
REAL(wp) :: age !< Persons age (a)
REAL(wp) :: clo !< Clothing insulation index (clo)
REAL(wp) :: eta !< Work efficiency (dimensionless)
REAL(wp) :: fcl !< Surface area modification by clothing (factor)
REAL(wp) :: ht !< Persons height (m)
REAL(wp) :: mbody !< Persons body mass (kg)
REAL(wp) :: work !< Work load (W)
! INTEGER(iwp) :: pos !< Posture: 1 = standing, 2 = sitting
! INTEGER(iwp) :: sex !< Sex: 1 = male, 2 = female
!
!-- Configuration, keep standard parameters!
age = 35.0_wp
mbody = 75.0_wp
ht = 1.75_wp
work = 80.0_wp
eta = 0.0_wp
clo = 0.9_wp
fcl = 1.15_wp
!
!-- Call subfunctions
CALL in_body( age, eta, ere, erel, ht, int_heat, mbody, pair, rtv, ta, vpa, work )
CALL heat_exch( acl, adu, aeff, clo, ere, erel, esw, facl, fcl, feff, ht, int_heat, mbody, &
pair, rdcl, rdsk, ta, tcl, tmrt, tsk, v, vpa, vpts, wetsk )
CALL pet_iteration( acl, adu, aeff, esw, facl, feff, int_heat, pair, rdcl, rdsk, rtv, ta, tcl, &
tsk, pet_ij, vpts, wetsk )
END SUBROUTINE calculate_pet_static
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate internal energy ballance
!--------------------------------------------------------------------------------------------------!
SUBROUTINE in_body( age, eta, ere, erel, ht, int_heat, mbody, pair, rtv, ta, vpa, work )
!
!-- Input arguments:
REAL(wp), INTENT( IN ) :: age !< Persons age (a)
REAL(wp), INTENT( IN ) :: eta !< Work efficiency (dimensionless)
REAL(wp), INTENT( IN ) :: ht !< Persons height (m)
REAL(wp), INTENT( IN ) :: mbody !< Persons body mass (kg)
REAL(wp), INTENT( IN ) :: pair !< air pressure (hPa)
REAL(wp), INTENT( IN ) :: ta !< air temperature (degree_C)
REAL(wp), INTENT( IN ) :: vpa !< vapor pressure (hPa)
REAL(wp), INTENT( IN ) :: work !< Work load (W)
!
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: ere !< energy ballance (W)
REAL(wp), INTENT( OUT ) :: erel !< latent energy ballance (W)
REAL(wp), INTENT( OUT ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( OUT ) :: rtv !< respiratory volume
!
!-- Internal variables:
REAL(wp) :: eres !< Sensible respiratory heat flux (W)
REAL(wp) :: met
REAL(wp) :: tex
REAL(wp) :: vpex
!
!-- Metabolic heat production
met = 3.45_wp * mbody**( 3.0_wp / 4.0_wp ) * (1.0_wp + 0.004_wp * &
( 30.0_wp - age) + 0.010_wp * ( ( ht * 100.0_wp / &
( mbody**( 1.0_wp / 3.0_wp ) ) ) - 43.4_wp ) )
met = work + met
int_heat = met * (1.0_wp - eta)
!
!-- Sensible respiration energy
tex = 0.47_wp * ta + 21.0_wp
rtv = 1.44_wp * 10.0_wp**(-6.0_wp) * met
eres = c_p * (ta - tex) * rtv
!
!-- Latent respiration energy
vpex = 6.11_wp * 10.0_wp**( 7.45_wp * tex / ( 235.0_wp + tex ) )
erel = 0.623_wp * l_v / pair * ( vpa - vpex ) * rtv
!
!-- Sum of the results
ere = eres + erel
END SUBROUTINE in_body
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate heat gain or loss
!--------------------------------------------------------------------------------------------------!
SUBROUTINE heat_exch( acl, adu, aeff, clo, ere, erel, esw, facl, fcl, feff, ht, int_heat, mbody, &
pair, rdcl, rdsk, ta, tcl, tmrt, tsk, v, vpa, vpts, wetsk )
!
!-- Input arguments:
REAL(wp), INTENT( IN ) :: clo !< clothing insulation (clo)
REAL(wp), INTENT( IN ) :: fcl !< factor for surface area increase by clothing
REAL(wp), INTENT( IN ) :: ere !< Energy ballance (W)
REAL(wp), INTENT( IN ) :: erel !< Latent energy ballance (W)
REAL(wp), INTENT( IN ) :: ht !< height (m)
REAL(wp), INTENT( IN ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( IN ) :: mbody !< body mass (kg)
REAL(wp), INTENT( IN ) :: pair !< Air pressure (hPa)
REAL(wp), INTENT( IN ) :: ta !< Air temperature (degree_C)
REAL(wp), INTENT( IN ) :: tmrt !< Mean radiant temperature (degree_C)
REAL(wp), INTENT( IN ) :: v !< Wind speed (m/s)
REAL(wp), INTENT( IN ) :: vpa !< Vapor pressure (hPa)
!
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: acl !< Clothing surface area (m²)
REAL(wp), INTENT( OUT ) :: adu !< Du-Bois area (m²)
REAL(wp), INTENT( OUT ) :: aeff !< Effective surface area (m²)
REAL(wp), INTENT( OUT ) :: esw !< Energy-loss through sweat evap. (W)
REAL(wp), INTENT( OUT ) :: facl !< Surface area extension through clothing (factor)
REAL(wp), INTENT( OUT ) :: feff !< Surface modification by posture (factor)
REAL(wp), INTENT( OUT ) :: rdcl !< Diffusion resistence of clothing (factor)
REAL(wp), INTENT( OUT ) :: rdsk !< Diffusion resistence of skin (factor)
REAL(wp), INTENT( OUT ) :: tcl !< Clothing temperature (degree_C)
REAL(wp), INTENT( OUT ) :: tsk !< Skin temperature (degree_C)
REAL(wp), INTENT( OUT ) :: vpts !< Sat. vapor pressure over skin (hPa)
REAL(wp), INTENT( OUT ) :: wetsk !< Fraction of wet skin (dimensionless)
!
!-- Cconstants:
! REAL(wp), PARAMETER :: cair = 1010.0_wp !< replaced by c_p
REAL(wp), PARAMETER :: cb = 3640.0_wp !<
REAL(wp), PARAMETER :: emcl = 0.95_wp !< Longwave emission coef. of cloth
REAL(wp), PARAMETER :: emsk = 0.99_wp !< Longwave emission coef. of skin
! REAL(wp), PARAMETER :: evap = 2.42_wp * 10.0_wp **6.0_wp !< replaced by l_v
REAL(wp), PARAMETER :: food = 0.0_wp !< Heat gain by food (W)
REAL(wp), PARAMETER :: po = 1013.25_wp !< Air pressure at sea level (hPa)
REAL(wp), PARAMETER :: rob = 1.06_wp !<
!
!-- Internal variables
INTEGER(iwp) :: count1 !< running index
INTEGER(iwp) :: count3 !< running index
INTEGER(iwp) :: j !< running index
INTEGER(iwp) :: i !< running index
LOGICAL :: skipincreasecount !< iteration control flag
REAL(wp) :: cbare !< Convection through bare skin
REAL(wp) :: cclo !< Convection through clothing
REAL(wp) :: csum !< Convection in total
REAL(wp) :: di !< difference between r1 and r2
REAL(wp) :: ed !< energy transfer by diffusion (W)
REAL(wp) :: enbal !< energy ballance (W)
REAL(wp) :: enbal2 !< energy ballance (storage, last cycle)
REAL(wp) :: eswdif !< difference between sweat production and evaporation potential
REAL(wp) :: eswphy !< sweat created by physiology
REAL(wp) :: eswpot !< potential sweat evaporation
REAL(wp) :: fec !<
REAL(wp) :: hc !<
REAL(wp) :: he !<
REAL(wp) :: htcl !<
REAL(wp) :: r1 !<
REAL(wp) :: r2 !<
REAL(wp) :: rbare !< Radiational loss of bare skin (W/m²)
REAL(wp) :: rcl !<
REAL(wp) :: rclo !< Radiational loss of clothing (W/m²)
REAL(wp) :: rclo2 !< Longwave radiation gain or loss (W/m²)
REAL(wp) :: rsum !< Radiational loss or gain (W/m²)
REAL(wp) :: sw !<
! REAL(wp) :: swf !< female factor, currently unused
REAL(wp) :: swm !<
REAL(wp) :: tbody !<
REAL(wp) :: vb !<
REAL(wp) :: vb1 !<
REAL(wp) :: vb2 !<
REAL(wp) :: wd !<
REAL(wp) :: wr !<
REAL(wp) :: ws !<
REAL(wp) :: wsum !<
REAL(wp) :: xx !< modification step (K)
REAL(wp) :: y !< fraction of bare skin
REAL(wp) :: c(0:10) !< Core temperature array (degree_C)
REAL(wp) :: tcore(1:7) !<
!
!-- Initialize
wetsk = 0.0_wp !< skin is dry everywhere on init (no non-evaporated sweat)
!
!-- Set Du Bois Area for the sample person
adu = 0.203_wp * mbody**0.425_wp * ht**0.725_wp
!
!-- Initialize convective heat considering local air preassure
hc = 2.67_wp + ( 6.5_wp * v**0.67_wp )
hc = hc * ( pair / po )**0.55_wp
!
!-- Set surface modification by posture (the person will always stand)
feff = 0.725_wp !< Posture: 0.725 for stading
!
!-- Set surface modification by clothing
facl = ( - 2.36_wp + 173.51_wp * clo - 100.76_wp * clo * clo + 19.28_wp * ( clo**3.0_wp ) ) &
/ 100.0_wp
IF ( facl > 1.0_wp ) facl = 1.0_wp
!
!-- Initialize heat resistences
rcl = ( clo / 6.45_wp ) / facl
IF ( clo >= 2.0_wp ) y = 1.0_wp
IF ( ( clo > 0.6_wp ) .AND. ( clo < 2.0_wp ) ) y = ( ht - 0.2_wp ) / ht
IF ( ( clo <= 0.6_wp ) .AND. ( clo > 0.3_wp ) ) y = 0.5_wp
IF ( ( clo <= 0.3_wp ) .AND. ( clo > 0.0_wp ) ) y = 0.1_wp
r2 = adu * ( fcl - 1.0_wp + facl ) / ( 2.0_wp * 3.14_wp * ht * y )
r1 = facl * adu / ( 2.0_wp * 3.14_wp * ht * y )
di = r2 - r1
!
!-- Estimate skin temperatur
DO j = 1, 7
tsk = 34.0_wp
count1 = 0_iwp
tcl = ( ta + tmrt + tsk ) / 3.0_wp
count3 = 1_iwp
enbal2 = 0.0_wp
DO i = 1, 100 ! allow for 100 iterations max
acl = adu * facl + adu * ( fcl - 1.0_wp )
rclo2 = emcl * sigma_sb * ( ( tcl + degc_to_k )**4.0_wp - &
( tmrt + degc_to_k )**4.0_wp ) * feff
htcl = 6.28_wp * ht * y * di / ( rcl * LOG( r2 / r1 ) * acl )
tsk = 1.0_wp / htcl * ( hc * ( tcl - ta ) + rclo2 ) + tcl
!
!-- Radiation saldo
aeff = adu * feff
rbare = aeff * ( 1.0_wp - facl ) * emsk * sigma_sb * &
( ( tmrt + degc_to_k )**4.0_wp - ( tsk + degc_to_k )**4.0_wp )
rclo = feff * acl * emcl * sigma_sb * &
( ( tmrt + degc_to_k )**4.0_wp - ( tcl + degc_to_k )**4.0_wp )
rsum = rbare + rclo
!
!-- Convection
cbare = hc * ( ta - tsk ) * adu * ( 1.0_wp - facl )
cclo = hc * ( ta - tcl ) * acl
csum = cbare + cclo
!
!-- Core temperature
c(0) = int_heat + ere
c(1) = adu * rob * cb
c(2) = 18.0_wp - 0.5_wp * tsk
c(3) = 5.28_wp * adu * c(2)
c(4) = 0.0208_wp * c(1)
c(5) = 0.76075_wp * c(1)
c(6) = c(3) - c(5) - tsk * c(4)
c(7) = - c(0) * c(2) - tsk * c(3) + tsk * c(5)
c(8) = c(6) * c(6) - 4.0_wp * c(4) * c(7)
c(9) = 5.28_wp * adu - c(5) - c(4) * tsk
c(10) = c(9) * c(9) - 4.0_wp * c(4) * ( c(5) * tsk - c(0) - 5.28_wp * adu * tsk )
IF ( ABS( tsk - 36.0_wp ) < 0.00001_wp ) tsk = 36.01_wp
tcore(7) = c(0) / ( 5.28_wp * adu + c(1) * 6.3_wp / 3600.0_wp ) + tsk
tcore(3) = c(0) / ( 5.28_wp * adu + ( c(1) * 6.3_wp / 3600.0_wp ) / &
( 1.0_wp + 0.5_wp * ( 34.0_wp - tsk ) ) ) + tsk
IF ( c(10) >= 0.0_wp ) THEN
tcore(6) = ( - c(9) - c(10)**0.5_wp ) / ( 2.0_wp * c(4) )
tcore(1) = ( - c(9) + c(10)**0.5_wp ) / ( 2.0_wp * c(4) )
ENDIF
IF ( c(8) >= 0.0_wp ) THEN
tcore(2) = ( - c(6) + ABS( c(8) )**0.5_wp ) / ( 2.0_wp * c(4) )
tcore(5) = ( - c(6) - ABS( c(8) )**0.5_wp ) / ( 2.0_wp * c(4) )
tcore(4) = c(0) / ( 5.28_wp * adu + c(1) * 1.0_wp / 40.0_wp ) + tsk
ENDIF
!
!-- Transpiration
tbody = 0.1_wp * tsk + 0.9_wp * tcore(j)
swm = 304.94_wp * ( tbody - 36.6_wp ) * adu / 3600000.0_wp
vpts = 6.11_wp * 10.0_wp**( 7.45_wp * tsk / ( 235.0_wp + tsk ) )
IF ( tbody <= 36.6_wp ) swm = 0.0_wp !< no need for sweating
sw = swm
eswphy = - sw * l_v
he = 0.633_wp * hc / ( pair * c_p )
fec = 1.0_wp / ( 1.0_wp + 0.92_wp * hc * rcl )
eswpot = he * ( vpa - vpts ) * adu * l_v * fec
wetsk = eswphy / eswpot
IF ( wetsk > 1.0_wp ) wetsk = 1.0_wp
!
!-- Sweat production > evaporation?
eswdif = eswphy - eswpot
IF ( eswdif <= 0.0_wp ) esw = eswpot !< Limit is evaporation
IF ( eswdif > 0.0_wp ) esw = eswphy !< Limit is sweat production
IF ( esw > 0.0_wp ) esw = 0.0_wp !< Sweat can't be evaporated, no more cooling
!< effect
!
!-- Diffusion
rdsk = 0.79_wp * 10.0_wp**7.0_wp
rdcl = 0.0_wp
ed = l_v / ( rdsk + rdcl ) * adu * ( 1.0_wp - wetsk ) * ( vpa - vpts )
!
!-- Max vb
vb1 = 34.0_wp - tsk
vb2 = tcore(j) - 36.6_wp
IF ( vb2 < 0.0_wp ) vb2 = 0.0_wp
IF ( vb1 < 0.0_wp ) vb1 = 0.0_wp
vb = ( 6.3_wp + 75.0_wp * vb2 ) / ( 1.0_wp + 0.5_wp * vb1 )
!
!-- Energy ballence
enbal = int_heat + ed + ere + esw + csum + rsum + food
!
!-- Clothing temperature
xx = 0.001_wp
IF ( count1 == 0_iwp ) xx = 1.0_wp
IF ( count1 == 1_iwp ) xx = 0.1_wp
IF ( count1 == 2_iwp ) xx = 0.01_wp
IF ( count1 == 3_iwp ) xx = 0.001_wp
IF ( enbal > 0.0_wp ) tcl = tcl + xx
IF ( enbal < 0.0_wp ) tcl = tcl - xx
skipincreasecount = .FALSE.
IF ( ( (enbal <= 0.0_wp ) .AND. (enbal2 > 0.0_wp ) ) .OR. &
( ( enbal >= 0.0_wp ) .AND. ( enbal2 < 0.0_wp ) ) ) THEN
skipincreasecount = .TRUE.
ELSE
enbal2 = enbal
count3 = count3 + 1_iwp
ENDIF
IF ( ( count3 > 200_iwp ) .OR. skipincreasecount ) THEN
IF ( count1 < 3_iwp ) THEN
count1 = count1 + 1_iwp
enbal2 = 0.0_wp
ELSE
EXIT
ENDIF
ENDIF
ENDDO
IF ( count1 == 3_iwp ) THEN
SELECT CASE ( j )
CASE ( 2, 5)
IF ( .NOT. ( ( tcore(j) >= 36.6_wp ) .AND. ( tsk <= 34.050_wp ) ) ) CYCLE
CASE ( 6, 1 )
IF ( c(10) < 0.0_wp ) CYCLE
IF ( .NOT. ( ( tcore(j) >= 36.6_wp ) .AND. ( tsk > 33.850_wp ) ) ) CYCLE
CASE ( 3 )
IF ( .NOT. ( ( tcore(j) < 36.6_wp ) .AND. ( tsk <= 34.000_wp ) ) ) CYCLE
CASE ( 7 )
IF ( .NOT. ( ( tcore(j) < 36.6_wp ) .AND. ( tsk > 34.000_wp ) ) ) CYCLE
CASE default
END SELECT
ENDIF
IF ( ( j /= 4_iwp ) .AND. ( vb >= 91.0_wp ) ) CYCLE
IF ( ( j == 4_iwp ) .AND. ( vb < 89.0_wp ) ) CYCLE
IF ( vb > 90.0_wp ) vb = 90.0_wp
!
!-- Loses by water
ws = sw * 3600.0_wp * 1000.0_wp
IF ( ws > 2000.0_wp ) ws = 2000.0_wp
wd = ed / l_v * 3600.0_wp * ( -1000.0_wp )
wr = erel / l_v * 3600.0_wp * ( -1000.0_wp )
wsum = ws + wr + wd
RETURN
ENDDO
END SUBROUTINE heat_exch
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculate PET
!--------------------------------------------------------------------------------------------------!
SUBROUTINE pet_iteration( acl, adu, aeff, esw, facl, feff, int_heat, pair, rdcl, rdsk, rtv, ta, &
tcl, tsk, pet_ij, vpts, wetsk )
!
!-- Input arguments:
REAL(wp), INTENT( IN ) :: acl !< clothing surface area (m²)
REAL(wp), INTENT( IN ) :: adu !< Du-Bois area (m²)
REAL(wp), INTENT( IN ) :: esw !< energy-loss through sweat evap. (W)
REAL(wp), INTENT( IN ) :: facl !< surface area extension through clothing (factor)
REAL(wp), INTENT( IN ) :: feff !< surface modification by posture (factor)
REAL(wp), INTENT( IN ) :: int_heat !< internal heat production (W)
REAL(wp), INTENT( IN ) :: pair !< air pressure (hPa)
REAL(wp), INTENT( IN ) :: rdcl !< diffusion resistence of clothing (factor)
REAL(wp), INTENT( IN ) :: rdsk !< diffusion resistence of skin (factor)
REAL(wp), INTENT( IN ) :: rtv !< respiratory volume
REAL(wp), INTENT( IN ) :: ta !< air temperature (degree_C)
REAL(wp), INTENT( IN ) :: tcl !< clothing temperature (degree_C)
REAL(wp), INTENT( IN ) :: tsk !< skin temperature (degree_C)
REAL(wp), INTENT( IN ) :: vpts !< sat. vapor pressure over skin (hPa)
REAL(wp), INTENT( IN ) :: wetsk !< fraction of wet skin (dimensionless)
!
!-- Output arguments:
REAL(wp), INTENT( OUT ) :: aeff !< effective surface area (m²)
REAL(wp), INTENT( OUT ) :: pet_ij !< PET (degree_C)
!
!-- Cconstants:
REAL(wp), PARAMETER :: emcl = 0.95_wp !< Longwave emission coef. of cloth
REAL(wp), PARAMETER :: emsk = 0.99_wp !< Longwave emission coef. of skin
REAL(wp), PARAMETER :: po = 1013.25_wp !< Air pressure at sea level (hPa)
!
!-- Internal variables
INTEGER ( iwp ) :: count1 !< running index
INTEGER ( iwp ) :: i !< running index
REAL ( wp ) :: cbare !< Convection through bare skin
REAL ( wp ) :: cclo !< Convection through clothing
REAL ( wp ) :: csum !< Convection in total
REAL ( wp ) :: ed !< Diffusion (W)
REAL ( wp ) :: enbal !< Energy ballance (W)
REAL ( wp ) :: enbal2 !< Energy ballance (last iteration cycle)
REAL ( wp ) :: ere !< Energy ballance result (W)
REAL ( wp ) :: erel !< Latent energy ballance (W)
REAL ( wp ) :: eres !< Sensible respiratory heat flux (W)
REAL ( wp ) :: hc !<
REAL ( wp ) :: rbare !< Radiational loss of bare skin (W/m²)
REAL ( wp ) :: rclo !< Radiational loss of clothing (W/m²)
REAL ( wp ) :: rsum !< Radiational loss or gain (W/m²)
REAL ( wp ) :: tex !< Temperat. of exhaled air (degree_C)
REAL ( wp ) :: vpex !< Vapor pressure of exhaled air (hPa)
REAL ( wp ) :: xx !< Delta PET per iteration (K)
pet_ij = ta
enbal2 = 0.0_wp
DO count1 = 0, 3
DO i = 1, 125 ! 500 / 4
hc = 2.67_wp + 6.5_wp * 0.1_wp**0.67_wp
hc = hc * ( pair / po )**0.55_wp
!
!-- Radiation
aeff = adu * feff
rbare = aeff * ( 1.0_wp - facl ) * emsk * sigma_sb * &
( ( pet_ij + degc_to_k )**4.0_wp - ( tsk + degc_to_k )**4.0_wp )
rclo = feff * acl * emcl * sigma_sb * &
( ( pet_ij + degc_to_k )**4.0_wp - ( tcl + degc_to_k )**4.0_wp )
rsum = rbare + rclo
!
!-- Covection
cbare = hc * ( pet_ij - tsk ) * adu * ( 1.0_wp - facl )
cclo = hc * ( pet_ij - tcl ) * acl
csum = cbare + cclo
!
!-- Diffusion
ed = l_v / ( rdsk + rdcl ) * adu * ( 1.0_wp - wetsk ) * ( 12.0_wp - vpts )
!
!-- Respiration
tex = 0.47_wp * pet_ij + 21.0_wp
eres = c_p * ( pet_ij - tex ) * rtv
vpex = 6.11_wp * 10.0_wp**( 7.45_wp * tex / ( 235.0_wp + tex ) )
erel = 0.623_wp * l_v / pair * ( 12.0_wp - vpex ) * rtv
ere = eres + erel
!
!-- Energy ballance
enbal = int_heat + ed + ere + esw + csum + rsum
!
!-- Iteration concerning ta
xx = 0.001_wp
IF ( count1 == 0_iwp ) xx = 1.0_wp
IF ( count1 == 1_iwp ) xx = 0.1_wp
IF ( count1 == 2_iwp ) xx = 0.01_wp
! IF ( count1 == 3_iwp ) xx = 0.001_wp
IF ( enbal > 0.0_wp ) pet_ij = pet_ij - xx
IF ( enbal < 0.0_wp ) pet_ij = pet_ij + xx
IF ( ( enbal <= 0.0_wp ) .AND. ( enbal2 > 0.0_wp ) ) EXIT
IF ( ( enbal >= 0.0_wp ) .AND. ( enbal2 < 0.0_wp ) ) EXIT
enbal2 = enbal
ENDDO
ENDDO
END SUBROUTINE pet_iteration
!
!-- UVEM specific subroutines
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Module-specific routine for new module
!--------------------------------------------------------------------------------------------------!
SUBROUTINE uvem_solar_position
USE control_parameters, &
ONLY: latitude, longitude, time_since_reference_point
IMPLICIT NONE
INTEGER(iwp) :: day_of_year = 0 !< day of year
REAL(wp) :: alpha = 0.0_wp !< solar azimuth angle in radiant
REAL(wp) :: declination = 0.0_wp !< declination
REAL(wp) :: dtor = 0.0_wp !< factor to convert degree to radiant
REAL(wp) :: js = 0.0_wp !< parameter for solar position calculation
REAL(wp) :: lat = 52.39_wp !< latitude
REAL(wp) :: lon = 9.7_wp !< longitude
REAL(wp) :: second_of_day = 0.0_wp !< current second of the day
REAL(wp) :: thetar = 0.0_wp !< angle for solar zenith angle calculation
REAL(wp) :: thetasr = 0.0_wp !< angle for solar azimuth angle calculation
REAL(wp) :: zgl = 0.0_wp !< calculated exposure by direct beam
REAL(wp) :: woz = 0.0_wp !< calculated exposure by diffuse radiation
REAL(wp) :: wsp = 0.0_wp !< calculated exposure by direct beam
CALL get_date_time( time_since_reference_point, day_of_year = day_of_year, &
second_of_day = second_of_day )
dtor = pi / 180.0_wp
lat = latitude
lon = longitude
!
!-- Calculation of js, necessary for calculation of equation of time (zgl) :
js= 72.0_wp * ( REAL( day_of_year, KIND = wp ) + ( second_of_day / 86400.0_wp ) ) / 73.0_wp
!
!-- Calculation of equation of time (zgl):
zgl = 0.0066_wp + 7.3525_wp * COS( ( js + 85.9_wp ) * dtor ) + 9.9359_wp * &
COS( ( 2.0_wp * js + 108.9_wp ) * dtor ) + 0.3387_wp * COS( ( 3 * js + 105.2_wp ) * dtor )
!
!-- Calculation of apparent solar time woz:
woz = ( ( second_of_day / 3600.0_wp ) - ( 4.0_wp * ( 15.0_wp - lon ) ) / 60.0_wp ) + &
( zgl / 60.0_wp )
!
!-- Calculation of hour angle (wsp):
wsp = ( woz - 12.0_wp ) * 15.0_wp
!
!-- Calculation of declination:
declination = 0.3948_wp - 23.2559_wp * COS( ( js + 9.1_wp ) * dtor ) - &
0.3915_wp * COS( ( 2.0_wp * js + 5.4_wp ) * dtor ) - 0.1764_wp * &
COS( ( 3.0_wp * js + 26.0_wp ) * dtor )
!
!-- Calculation of solar zenith angle
thetar = ACOS( SIN( lat * dtor) * SIN( declination * dtor ) + COS( wsp * dtor ) * &
COS( lat * dtor ) * COS( declination * dtor ) )
thetasr = ASIN( SIN( lat * dtor) * SIN( declination * dtor ) + COS( wsp * dtor ) * &
COS( lat * dtor ) * COS( declination * dtor ) )
sza = thetar / dtor
!
!-- calculation of solar azimuth angle
IF (woz <= 12.0_wp) alpha = pi - ACOS( ( SIN(thetasr) * SIN( lat * dtor ) - &
SIN( declination * dtor ) ) / ( COS(thetasr) * COS( lat * dtor ) ) )
IF (woz > 12.0_wp) alpha = pi + ACOS( ( SIN(thetasr) * SIN( lat * dtor ) - &
SIN( declination * dtor ) ) / ( COS(thetasr) * COS( lat * dtor ) ) )
saa = alpha / dtor
END SUBROUTINE uvem_solar_position
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Module-specific routine for new module
!--------------------------------------------------------------------------------------------------!
SUBROUTINE bio_calculate_uv_exposure
USE indices, &
ONLY: nxl, nxr, nyn, nys
IMPLICIT NONE
INTEGER(iwp) :: i !< loop index in x direction
INTEGER(iwp) :: j !< loop index in y direction
INTEGER(iwp) :: szai !< loop index for different sza values
CALL uvem_solar_position
IF (sza >= 90) THEN
vitd3_exposure(:,:) = 0.0_wp
ELSE
DO ai = 0, 35
DO zi = 0, 9
projection_area_lookup_table(ai,zi) = uvem_projarea_f%var(clothing,zi,ai)
ENDDO
ENDDO
DO ai = 0, 35
DO zi = 0, 9
integration_array(ai,zi) = uvem_integration_f%var(zi,ai)
ENDDO
ENDDO
DO ai = 0, 2
DO zi = 0, 90
irradiance_lookup_table(ai,zi) = uvem_irradiance_f%var(zi,ai)
ENDDO
ENDDO
DO ai = 0, 35
DO zi = 0, 9
DO szai = 0, 90
radiance_lookup_table(ai,zi,szai) = uvem_radiance_f%var(szai,zi,ai)
ENDDO
ENDDO
ENDDO
!-- Rotate 3D-Model human to desired direction
projection_area_temp( 0:35,:) = projection_area_lookup_table
projection_area_temp(36:71,:) = projection_area_lookup_table
IF ( .NOT. turn_to_sun ) startpos_human = orientation_angle / 10.0_wp
IF ( turn_to_sun ) startpos_human = saa / 10.0_wp
DO ai = 0, 35
xfactor = ( startpos_human ) - INT( startpos_human )
DO zi = 0, 9
projection_area(ai,zi) = ( projection_area_temp( 36 - &
INT( startpos_human ) - 1 + ai , zi)&
* ( xfactor ) ) &
+ ( projection_area_temp( 36 - &
INT( startpos_human ) + ai , zi) &
* ( 1.0_wp - xfactor ) )
ENDDO
ENDDO
!
!
!-- Interpolate to accurate Solar Zenith Angle
DO ai = 0, 35
xfactor = ( sza )-INT( sza )
DO zi = 0, 9
radiance_array(ai,zi) = ( radiance_lookup_table(ai, zi, INT( sza ) ) * &
( 1.0_wp - xfactor) ) + &
( radiance_lookup_table(ai,zi,INT( sza ) + 1) * xfactor )
ENDDO
ENDDO
DO iq = 0, 2
irradiance(iq) = ( irradiance_lookup_table(iq, INT( sza ) ) * ( 1.0_wp - xfactor)) + &
( irradiance_lookup_table(iq, INT( sza ) + 1) * xfactor )
ENDDO
!
!-- Interpolate to accurate Solar Azimuth Angle
IF ( sun_in_south ) THEN
startpos_saa_float = 180.0_wp / 10.0_wp
ELSE
startpos_saa_float = saa / 10.0_wp
ENDIF
radiance_array_temp( 0:35,:) = radiance_array
radiance_array_temp(36:71,:) = radiance_array
xfactor = (startpos_saa_float) - INT( startpos_saa_float )
DO ai = 0, 35
DO zi = 0, 9
radiance_array(ai,zi) = ( radiance_array_temp(36 - &
INT( startpos_saa_float ) - 1 + ai, zi) &
* ( xfactor ) ) &
+ ( radiance_array_temp(36 - &
INT( startpos_saa_float ) + ai, zi) &
* ( 1.0_wp - xfactor ) )
ENDDO
ENDDO
!
!-- Calculate Projectionarea for direct beam
projection_area_direct_temp( 0:35,:) = projection_area
projection_area_direct_temp(36:71,:) = projection_area
yfactor = ( sza / 10.0_wp ) - INT( sza / 10.0_wp )
xfactor = ( startpos_saa_float ) - INT( startpos_saa_float )
projection_area_direct_beam = ( projection_area_direct_temp( INT(startpos_saa_float) ,INT(sza/10.0_wp) ) * &
( 1.0_wp - xfactor ) * ( 1.0_wp - yfactor ) ) + &
( projection_area_direct_temp( INT(startpos_saa_float) + 1,INT(sza/10.0_wp) ) * &
( xfactor ) * ( 1.0_wp - yfactor ) ) + &
( projection_area_direct_temp( INT(startpos_saa_float) ,INT(sza/10.0_wp)+1) * &
( 1.0_wp - xfactor ) * ( yfactor ) ) + &
( projection_area_direct_temp( INT(startpos_saa_float) + 1,INT(sza/10.0_wp)+1) * &
( xfactor ) * ( yfactor ) )
DO i = nxl, nxr
DO j = nys, nyn
!
!-- Extract obstruction from IBSET-Integer_Array
IF (consider_obstructions ) THEN
obstruction_temp1 = building_obstruction_f%var_3d(:,j,i)
IF ( obstruction_temp1(0) /= 9 ) THEN
DO pobi = 0, 44
DO bi = 0, 7
IF ( BTEST( obstruction_temp1(pobi), bi ) .EQV. .TRUE.) THEN
obstruction_temp2( ( pobi * 8 ) + bi ) = 1
ELSE
obstruction_temp2( ( pobi * 8 ) + bi ) = 0
ENDIF
ENDDO
ENDDO
DO zi = 0, 9
obstruction(:,zi) = obstruction_temp2( zi * 36 :( zi * 36) + 35 )
ENDDO
ELSE
obstruction(:,:) = 0
ENDIF
ENDIF
!
!-- Calculated human exposure
diffuse_exposure = SUM( radiance_array * projection_area * integration_array * &
obstruction )
obstruction_direct_beam = obstruction( NINT( startpos_saa_float), &
NINT( sza / 10.0_wp ) )
IF (sza >= 89.99_wp) THEN
sza = 89.99999_wp
ENDIF
!
!-- Calculate direct normal irradiance (direct beam)
direct_exposure = ( irradiance(1) / COS( pi * sza / 180.0_wp ) ) * &
projection_area_direct_beam * obstruction_direct_beam
vitd3_exposure(j,i) = ( diffuse_exposure + direct_exposure ) / 1000.0_wp * 70.97_wp
! unit = international units vitamin D per second
ENDDO
ENDDO
ENDIF
END SUBROUTINE bio_calculate_uv_exposure
END MODULE biometeorology_mod