!> @file init_3d_model.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Allocation of arrays and initialization of the 3D model via !> a) pre-run the 1D model !> or !> b) pre-set constant linear profiles !> or !> c) read values of a previous run !--------------------------------------------------------------------------------------------------! SUBROUTINE init_3d_model #if defined( __parallel ) USE MPI #endif USE advec_ws USE arrays_3d USE basic_constants_and_equations_mod, & ONLY: barometric_formula, c_p, exner_function, exner_function_invers, g, & ideal_gas_law_rho, ideal_gas_law_rho_pt, l_v, pi USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE chem_modules, & ONLY: max_pr_cs ! ToDo: this dependency needs to be removed cause it is ugly #new_dom USE control_parameters USE exchange_horiz_mod, & ONLY: exchange_horiz_2d USE grid_variables, & ONLY: dx, dy, ddx2_mg, ddy2_mg USE indices USE kinds USE lsf_nudging_mod, & ONLY: ls_forcing_surf USE model_1d_mod, & ONLY: init_1d_model, l1d, u1d, v1d USE module_interface, & ONLY: module_interface_init_arrays, & module_interface_init, & module_interface_init_checks USE multi_agent_system_mod, & ONLY: agents_active, mas_init USE netcdf_interface, & ONLY: dots_max USE netcdf_data_input_mod, & ONLY: add_ghost_layers, & char_fill, & check_existence, & close_input_file, & get_attribute, & get_variable, & init_3d, & input_pids_static, & inquire_num_variables, & inquire_variable_names, & input_file_static, & netcdf_data_input_init_3d, & num_var_pids, & open_read_file, & pids_id, & real_2d, & vars_pids USE nesting_offl_mod, & ONLY: nesting_offl_init USE palm_date_time_mod, & ONLY: init_date_time USE pegrid #if defined( __parallel ) USE pmc_interface, & ONLY: nested_run, & nesting_mode #endif USE random_function_mod USE random_generator_parallel, & ONLY: init_parallel_random_generator USE read_restart_data_mod, & ONLY: rrd_local, rrd_read_parts_of_global USE statistics, & ONLY: hom, hom_sum, mean_surface_level_height, pr_palm, rmask, statistic_regions, sums, & sums_divnew_l, sums_divold_l, sums_l, sums_l_l, sums_wsts_bc_l, ts_value, & weight_pres, weight_substep USE synthetic_turbulence_generator_mod, & ONLY: stg_init USE surface_layer_fluxes_mod, & ONLY: init_surface_layer_fluxes USE surface_mod, & ONLY : init_single_surface_properties, & init_surface_arrays, & init_surfaces, & surf_def_h, & surf_def_v, & surf_lsm_h, & surf_usm_h #if defined( _OPENACC ) USE surface_mod, & ONLY : bc_h #endif USE surface_data_output_mod, & ONLY: surface_data_output_init IMPLICIT NONE LOGICAL :: nesting_flag !< control flag indicating that the model run does not belong to a child domain or !< does not use vertical nesting INTEGER(iwp) :: i !< grid index in x direction INTEGER(iwp) :: ind_array(1) !< dummy used to determine start index for external pressure forcing INTEGER(iwp) :: j !< grid index in y direction INTEGER(iwp) :: k !< grid index in z direction INTEGER(iwp) :: k_surf !< surface level index INTEGER(iwp) :: l !< running index over surface orientation INTEGER(iwp) :: m !< index of surface element in surface data type INTEGER(iwp) :: nz_u_shift !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift !< topography-top index on scalar-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_u_shift_l !< topography-top index on u-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_v_shift_l !< topography-top index on v-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_w_shift_l !< topography-top index on w-grid, used to vertically shift initial profiles INTEGER(iwp) :: nz_s_shift_l !< topography-top index on scalar-grid, used to vertically shift initial profiles INTEGER(iwp) :: nzt_l !< index of top PE boundary for multigrid level INTEGER(iwp) :: sr !< index of statistic region INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !< toal number of horizontal grid points in statistical region on !< subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !< number of horizontal non-wall bounded grid points on !< subdomain INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !< number of horizontal non-topography grid points on !< subdomain REAL(wp) :: dx_l !< grid spacing along x on different multigrid level REAL(wp) :: dy_l !< grid spacing along y on different multigrid level REAL(wp), DIMENSION(:), ALLOCATABLE :: init_l !< dummy array used for averaging 3D data to obtain !< inital profiles REAL(wp), DIMENSION(:), ALLOCATABLE :: mean_surface_level_height_l !< mean surface level height on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !< total number of non-topography grid points on subdomain REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !< total number of non-topography grid points REAL(wp), DIMENSION(:), ALLOCATABLE :: p_hydrostatic !< hydrostatic pressure REAL(wp), DIMENSION(1:3) :: volume_flow_area_l !< area of lateral and top model domain surface on local subdomain REAL(wp), DIMENSION(1:3) :: volume_flow_initial_l !< initial volume flow into model domain TYPE(real_2d) :: tmp_2d !< temporary variable to input additional surface-data from static file CALL location_message( 'model initialization', 'start' ) ! !-- Set reference date-time CALL init_date_time( date_time_str=origin_date_time, & use_fixed_date=use_fixed_date, & use_fixed_time=use_fixed_time ) IF ( debug_output ) CALL debug_message( 'allocating arrays', 'start' ) ! !-- Allocate arrays ALLOCATE( mean_surface_level_height(0:statistic_regions), & mean_surface_level_height_l(0:statistic_regions), & ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & ngp_3d(0:statistic_regions), & ngp_3d_inner(0:statistic_regions), & ngp_3d_inner_l(0:statistic_regions), & ngp_3d_inner_tmp(0:statistic_regions), & sums_divnew_l(0:statistic_regions), & sums_divold_l(0:statistic_regions) ) ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & sums(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa), & sums_l(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:threads_per_task-1), & sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) ALLOCATE( ts_value(dots_max,0:statistic_regions) ) ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) IF ( .NOT. neutral ) THEN ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Pre-set masks for regional statistics. Default is the total model domain. !-- Ghost points are excluded because counting values at the ghost boundaries would bias the !-- statistics. rmask = 1.0_wp rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp ! !-- Following array is required for perturbation pressure within the iterative pressure solvers. For !-- the multistep schemes (Runge-Kutta), array p holds the weighted average of the substeps and !-- cannot be used in the Poisson solver. IF ( psolver == 'sor' ) THEN ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ELSEIF ( psolver(1:9) == 'multigrid' ) THEN ! !-- For performance reasons, multigrid is using one ghost layer only ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) ENDIF IF ( humidity ) THEN ! !-- 3D-humidity ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF IF ( passive_scalar ) THEN ! !-- 3D scalar arrays ALLOCATE( s_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & s_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ! !-- Allocate and set 1d-profiles for Stokes drift velocity. It may be set to non-zero values later !-- in ocean_init. ALLOCATE( u_stokes_zu(nzb:nzt+1), u_stokes_zw(nzb:nzt+1), & v_stokes_zu(nzb:nzt+1), v_stokes_zw(nzb:nzt+1) ) u_stokes_zu(:) = 0.0_wp u_stokes_zw(:) = 0.0_wp v_stokes_zu(:) = 0.0_wp v_stokes_zw(:) = 0.0_wp ! !-- Allocation of anelastic and Boussinesq approximation specific arrays ALLOCATE( p_hydrostatic(nzb:nzt+1) ) ALLOCATE( rho_air(nzb:nzt+1) ) ALLOCATE( rho_air_zw(nzb:nzt+1) ) ALLOCATE( drho_air(nzb:nzt+1) ) ALLOCATE( drho_air_zw(nzb:nzt+1) ) ! !-- Density profile calculation for anelastic and Boussinesq approximation. !-- In case of a Boussinesq approximation, a constant density is calculated mainly for output !-- purposes. This density does not need to be considered in the model's system of equations. IF ( TRIM( approximation ) == 'anelastic' ) THEN DO k = nzb, nzt+1 p_hydrostatic(k) = barometric_formula(zu(k), pt_surface * & exner_function(surface_pressure * 100.0_wp), & surface_pressure * 100.0_wp) rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(k)) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ELSE DO k = nzb, nzt+1 p_hydrostatic(k) = barometric_formula(zu(nzb), pt_surface * & exner_function(surface_pressure * 100.0_wp), & surface_pressure * 100.0_wp) rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(nzb)) ENDDO DO k = nzb, nzt rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) ENDDO rho_air_zw(nzt+1) = rho_air_zw(nzt) + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) ENDIF ! !-- Compute the inverse density array in order to avoid expencive divisions drho_air = 1.0_wp / rho_air drho_air_zw = 1.0_wp / rho_air_zw ! !-- Allocation of flux conversion arrays ALLOCATE( heatflux_input_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_input_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_input_conversion(nzb:nzt+1) ) ALLOCATE( heatflux_output_conversion(nzb:nzt+1) ) ALLOCATE( waterflux_output_conversion(nzb:nzt+1) ) ALLOCATE( momentumflux_output_conversion(nzb:nzt+1) ) ! !-- Calculate flux conversion factors according to approximation and in-/output mode DO k = nzb, nzt+1 IF ( TRIM( flux_input_mode ) == 'kinematic' ) THEN heatflux_input_conversion(k) = rho_air_zw(k) waterflux_input_conversion(k) = rho_air_zw(k) momentumflux_input_conversion(k) = rho_air_zw(k) ELSEIF ( TRIM( flux_input_mode ) == 'dynamic' ) THEN heatflux_input_conversion(k) = 1.0_wp / c_p waterflux_input_conversion(k) = 1.0_wp / l_v momentumflux_input_conversion(k) = 1.0_wp ENDIF IF ( TRIM( flux_output_mode ) == 'kinematic' ) THEN heatflux_output_conversion(k) = drho_air_zw(k) waterflux_output_conversion(k) = drho_air_zw(k) momentumflux_output_conversion(k) = drho_air_zw(k) ELSEIF ( TRIM( flux_output_mode ) == 'dynamic' ) THEN heatflux_output_conversion(k) = c_p waterflux_output_conversion(k) = l_v momentumflux_output_conversion(k) = 1.0_wp ENDIF IF ( .NOT. humidity ) THEN waterflux_input_conversion(k) = 1.0_wp waterflux_output_conversion(k) = 1.0_wp ENDIF ENDDO ! !-- In case of multigrid method, compute grid lengths and grid factors for the grid levels with !-- respective density on each grid. IF ( psolver(1:9) == 'multigrid' ) THEN ALLOCATE( ddx2_mg(maximum_grid_level) ) ALLOCATE( ddy2_mg(maximum_grid_level) ) ALLOCATE( dzu_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( dzw_mg(nzb+1:nzt+1,maximum_grid_level) ) ALLOCATE( f1_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f2_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( f3_mg(nzb+1:nzt,maximum_grid_level) ) ALLOCATE( rho_air_mg(nzb:nzt+1,maximum_grid_level) ) ALLOCATE( rho_air_zw_mg(nzb:nzt+1,maximum_grid_level) ) dzu_mg(:,maximum_grid_level) = dzu rho_air_mg(:,maximum_grid_level) = rho_air ! !-- Next line to ensure an equally spaced grid. dzu_mg(1,maximum_grid_level) = dzu(2) rho_air_mg(nzb,maximum_grid_level) = rho_air(nzb) + (rho_air(nzb) - rho_air(nzb+1)) dzw_mg(:,maximum_grid_level) = dzw rho_air_zw_mg(:,maximum_grid_level) = rho_air_zw nzt_l = nzt DO l = maximum_grid_level-1, 1, -1 dzu_mg(nzb+1,l) = 2.0_wp * dzu_mg(nzb+1,l+1) dzw_mg(nzb+1,l) = 2.0_wp * dzw_mg(nzb+1,l+1) rho_air_mg(nzb,l) = rho_air_mg(nzb,l+1) + ( rho_air_mg(nzb,l+1) - & rho_air_mg(nzb+1,l+1) ) rho_air_zw_mg(nzb,l) = rho_air_zw_mg(nzb,l+1) + ( rho_air_zw_mg(nzb,l+1) - & rho_air_zw_mg(nzb+1,l+1) ) rho_air_mg(nzb+1,l) = rho_air_mg(nzb+1,l+1) rho_air_zw_mg(nzb+1,l) = rho_air_zw_mg(nzb+1,l+1) nzt_l = nzt_l / 2 DO k = 2, nzt_l+1 dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) rho_air_mg(k,l) = rho_air_mg(2*k-1,l+1) rho_air_zw_mg(k,l) = rho_air_zw_mg(2*k-1,l+1) ENDDO ENDDO nzt_l = nzt dx_l = dx dy_l = dy DO l = maximum_grid_level, 1, -1 ddx2_mg(l) = 1.0_wp / dx_l**2 ddy2_mg(l) = 1.0_wp / dy_l**2 DO k = nzb+1, nzt_l f2_mg(k,l) = rho_air_zw_mg(k,l) / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) f3_mg(k,l) = rho_air_zw_mg(k-1,l) / ( dzu_mg(k,l) * dzw_mg(k,l) ) f1_mg(k,l) = 2.0_wp * ( ddx2_mg(l) + ddy2_mg(l) ) & * rho_air_mg(k,l) + f2_mg(k,l) + f3_mg(k,l) ENDDO nzt_l = nzt_l / 2 dx_l = dx_l * 2.0_wp dy_l = dy_l * 2.0_wp ENDDO ENDIF ! !-- 1D-array for large scale subsidence velocity IF ( .NOT. ALLOCATED( w_subs ) ) THEN ALLOCATE ( w_subs(nzb:nzt+1) ) w_subs = 0.0_wp ENDIF ! !-- Initial assignment of the pointers IF ( .NOT. neutral ) THEN pt => pt_1; pt_p => pt_2; tpt_m => pt_3 ELSE pt => pt_1; pt_p => pt_1; tpt_m => pt_3 ENDIF u => u_1; u_p => u_2; tu_m => u_3 v => v_1; v_p => v_2; tv_m => v_3 w => w_1; w_p => w_2; tw_m => w_3 IF ( humidity ) THEN q => q_1; q_p => q_2; tq_m => q_3 vpt => vpt_1 ENDIF IF ( passive_scalar ) THEN s => s_1; s_p => s_2; ts_m => s_3 ENDIF ! !-- Initialize surface arrays CALL init_surface_arrays ! !-- Allocate arrays for other modules CALL module_interface_init_arrays ! !-- Allocate arrays containing the RK coefficient for calculation of perturbation pressure and !-- turbulent fluxes. At this point values are set for pressure calculation during initialization !-- (where no timestep is done). Further below the values needed within the timestep scheme will be !-- set. ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & weight_pres(1:intermediate_timestep_count_max) ) weight_substep = 1.0_wp weight_pres = 1.0_wp intermediate_timestep_count = 0 ! needed when simulated_time = 0.0 IF ( debug_output ) CALL debug_message( 'allocating arrays', 'end' ) ! !-- Initialize time series ts_value = 0.0_wp ! !-- Initialize local summation arrays for routine flow_statistics. !-- This is necessary because they may not yet have been initialized when they are called from !-- flow_statistics (or - depending on the chosen model run - are never initialized) sums_divnew_l = 0.0_wp sums_divold_l = 0.0_wp sums_l_l = 0.0_wp sums_wsts_bc_l = 0.0_wp ! !-- Initialize model variables IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- Initialization with provided input data derived from larger-scale model IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'start' ) ! !-- Read initial 1D profiles or 3D data from NetCDF file, depending on the provided !-- level-of-detail. !-- At the moment, only u, v, w, pt and q are provided. CALL netcdf_data_input_init_3d ! !-- Please note, Inifor provides data from nzb+1 to nzt. !-- Bottom and top boundary conditions for Inifor profiles are already set (just after !-- reading), so that this is not necessary here. !-- Depending on the provided level-of-detail, initial Inifor data is either stored on data !-- type (lod=1), or directly on 3D arrays (lod=2). !-- In order to obtain also initial profiles in case of lod=2 (which is required for e.g. !-- damping), average over 3D data. IF( init_3d%lod_u == 1 ) THEN u_init = init_3d%u_init ELSEIF( init_3d%lod_u == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( u(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, u_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else u_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( init_3d%lod_v == 1 ) THEN v_init = init_3d%v_init ELSEIF( init_3d%lod_v == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( v(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, v_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else v_init = init_l #endif DEALLOCATE( init_l ) ENDIF IF( .NOT. neutral ) THEN IF( init_3d%lod_pt == 1 ) THEN pt_init = init_3d%pt_init ELSEIF( init_3d%lod_pt == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( pt(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, pt_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else pt_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF IF( humidity ) THEN IF( init_3d%lod_q == 1 ) THEN q_init = init_3d%q_init ELSEIF( init_3d%lod_q == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( q(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, q_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else q_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF IF( passive_scalar ) THEN IF( init_3d%lod_s == 1 ) THEN s_init = init_3d%s_init ELSEIF( init_3d%lod_s == 2 ) THEN ALLOCATE( init_l(nzb:nzt+1) ) DO k = nzb, nzt+1 init_l(k) = SUM( s(k,nys:nyn,nxl:nxr) ) ENDDO init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) #if defined( __parallel ) CALL MPI_ALLREDUCE( init_l, s_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else s_init = init_l #endif DEALLOCATE( init_l ) ENDIF ENDIF ! !-- Write initial profiles onto 3D arrays. !-- Work-around, 3D initialization of u,v,w creates artificial structures which correlate with !-- the processor grid. The reason for this is still unknown. To work-around this, 3D !-- initialization will be effectively reduce to a 1D initialization where no such artificial !-- structures appear. DO i = nxlg, nxrg DO j = nysg, nyng IF( init_3d%lod_u == 1 .OR. init_3d%lod_u == 2 ) u(:,j,i) = u_init(:) IF( init_3d%lod_v == 1 .OR. init_3d%lod_u == 2 ) v(:,j,i) = v_init(:) IF( .NOT. neutral .AND. ( init_3d%lod_pt == 1 .OR. init_3d%lod_pt == 2 ) ) & pt(:,j,i) = pt_init(:) IF( humidity .AND. ( init_3d%lod_q == 1 .OR. init_3d%lod_q == 2 ) ) & q(:,j,i) = q_init(:) ENDDO ENDDO ! !-- Set geostrophic wind components. IF ( init_3d%from_file_ug ) THEN ug(:) = init_3d%ug_init(:) ENDIF IF ( init_3d%from_file_vg ) THEN vg(:) = init_3d%vg_init(:) ENDIF ! !-- Set bottom and top boundary condition for geostrophic wind ug(nzt+1) = ug(nzt) vg(nzt+1) = vg(nzt) ug(nzb) = ug(nzb+1) vg(nzb) = vg(nzb+1) ! !-- Set inital w to 0 w = 0.0_wp IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Set velocity components at non-atmospheric / oceanic grid points to zero. u = MERGE( u, 0.0_wp, BTEST( topo_flags, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( topo_flags, 2 ) ) w = MERGE( w, 0.0_wp, BTEST( topo_flags, 3 ) ) ! !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'end' ) ! !-- Initialization via computed 1D-model profiles ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'start' ) ! !-- Use solutions of the 1D model as initial profiles, !-- start 1D model CALL init_1d_model ! !-- Transfer initial profiles to the arrays of the 3D model DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u1d v(:,j,i) = v1d ENDDO ENDDO IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Store initial profiles for output purposes etc. IF ( .NOT. constant_diffusion ) THEN hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) ENDIF ! !-- Set velocities back to zero u = MERGE( u, 0.0_wp, BTEST( topo_flags, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( topo_flags, 2 ) ) ! !-- WARNING: The extra boundary conditions set after running the 1D model impose an error on !-- -------- the divergence one layer below the topography; need to correct later !-- ATTENTION: Provisional correction for Piacsek & Williams advection scheme: keep u and v !-- ---------- zero one layer below the topography. IF ( ibc_uv_b == 1 ) THEN ! !-- Neumann condition DO i = nxl-1, nxr+1 DO j = nys-1, nyn+1 u(nzb,j,i) = u(nzb+1,j,i) v(nzb,j,i) = v(nzb+1,j,i) ENDDO ENDDO ENDIF ! !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'end' ) ELSEIF ( ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) .OR. & ( INDEX(initializing_actions, 'interpolate_from_parent') /= 0 ) ) THEN IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'start' ) ! !-- Use constructed initial profiles (velocity constant with height, temperature profile with !-- constant gradient) DO i = nxlg, nxrg DO j = nysg, nyng pt(:,j,i) = pt_init u(:,j,i) = u_init v(:,j,i) = v_init ENDDO ENDDO ! !-- Mask topography u = MERGE( u, 0.0_wp, BTEST( topo_flags, 1 ) ) v = MERGE( v, 0.0_wp, BTEST( topo_flags, 2 ) ) ! !-- Set initial horizontal velocities at the lowest computational grid levels to zero in order !-- to avoid too small time steps caused by the diffusion limit in the initial phase of a run !-- (at k=1, dz/2 occurs in the limiting formula!). !-- Please note, in case land- or urban-surface model is used and a spinup is applied, masking !-- the lowest computational level is not possible as MOST as well as energy-balance !-- parametrizations will not work with zero wind velocity. IF ( ibc_uv_b /= 1 .AND. .NOT. spinup ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, BTEST( topo_flags(k,j,i), 20 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, BTEST( topo_flags(k,j,i), 21 ) ) ENDDO ENDDO ENDDO ENDIF IF ( humidity ) THEN DO i = nxlg, nxrg DO j = nysg, nyng q(:,j,i) = q_init ENDDO ENDDO ENDIF IF ( passive_scalar ) THEN DO i = nxlg, nxrg DO j = nysg, nyng s(:,j,i) = s_init ENDDO ENDDO ENDIF ! !-- Compute initial temperature field and other constants used in case of a sloping surface. IF ( sloping_surface ) CALL init_slope ! !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. CALL init_surfaces IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'end' ) ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) THEN IF ( debug_output ) CALL debug_message( 'initializing by user', 'start' ) ! !-- Pre-initialize surface variables, i.e. setting start- and end-indices at each !-- (j,i)-location. Please note, this does not supersede user-defined initialization of !-- surface quantities. CALL init_surfaces ! !-- Initialization will completely be done by the user CALL user_init_3d_model IF ( debug_output ) CALL debug_message( 'initializing by user', 'end' ) ENDIF IF ( debug_output ) THEN CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'start' ) ENDIF ! !-- Bottom boundary IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN u(nzb,:,:) = 0.0_wp v(nzb,:,:) = 0.0_wp ENDIF ! !-- Apply channel flow boundary condition IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN u(nzt+1,:,:) = 0.0_wp v(nzt+1,:,:) = 0.0_wp ENDIF ! !-- Calculate virtual potential temperature IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) ! !-- Store initial profiles for output purposes etc.. Please note, in case of initialization of u, !-- v, w, pt, and q via output data derived from larger scale models, data will not be !-- horizontally homogeneous. Actually, a mean profile should be calculated before. hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN hom(nzb,1,5,:) = 0.0_wp hom(nzb,1,6,:) = 0.0_wp ENDIF hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) IF ( humidity ) THEN ! !-- Store initial profile of total water content, virtual potential temperature hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) ! !-- Store initial profile of mixing ratio and potential temperature IF ( bulk_cloud_model .OR. cloud_droplets ) THEN hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ENDIF ! !-- Store initial scalar profile IF ( passive_scalar ) THEN hom(:,1,121,:) = SPREAD( s(:,nys,nxl), 2, statistic_regions+1 ) ENDIF ! !-- Initialize the random number generators (from numerical recipes) CALL random_function_ini IF ( random_generator == 'random-parallel' ) THEN CALL init_parallel_random_generator( nx, nys, nyn, nxl, nxr ) ENDIF ! !-- Set the reference state to be used in the buoyancy terms (for ocean runs the reference state !-- will be set (overwritten) in init_ocean). IF ( use_single_reference_value ) THEN IF ( .NOT. humidity ) THEN ref_state(:) = pt_reference ELSE ref_state(:) = vpt_reference ENDIF ELSE IF ( .NOT. humidity ) THEN ref_state(:) = pt_init(:) ELSE ref_state(:) = vpt(:,nys,nxl) ENDIF ENDIF ! !-- For the moment, vertical velocity is zero w = 0.0_wp ! !-- Initialize array sums (must be defined in first call of pres) sums = 0.0_wp ! !-- In case of iterative solvers, p must get an initial value IF ( psolver(1:9) == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp ! !-- Impose vortex with vertical axis on the initial velocity profile IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN CALL init_rankine ENDIF ! !-- Impose temperature anomaly (advection test only) or warm air bubble close to surface. IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 .OR. & INDEX( initializing_actions, 'initialize_bubble' ) /= 0 ) THEN CALL init_pt_anomaly ENDIF ! !-- If required, change the surface temperature at the start of the 3D run IF ( pt_surface_initial_change /= 0.0_wp ) THEN pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change ENDIF ! !-- If required, change the surface humidity/scalar at the start of the 3D !-- run IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) & q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change IF ( passive_scalar .AND. s_surface_initial_change /= 0.0_wp ) & s(nzb,:,:) = s(nzb,:,:) + s_surface_initial_change ! !-- Initialize old and new time levels. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN tq_m = 0.0_wp q_p = q ENDIF IF ( passive_scalar ) THEN ts_m = 0.0_wp s_p = s ENDIF IF ( debug_output ) THEN CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'end' ) ENDIF ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & TRIM( initializing_actions ) == 'cyclic_fill' ) & THEN IF ( debug_output ) THEN CALL debug_message( 'initializing in case of restart / cyclic_fill', 'start' ) ENDIF ! !-- Initialize surface elements and its attributes, e.g. heat- and momentumfluxes, roughness, !-- scaling parameters. As number of surface elements might be different between runs, e.g. in !-- case of cyclic fill, and not all surface elements are read, surface elements need to be !-- initialized before. !-- Please note, in case of cyclic fill, surfaces should be initialized after restart data is !-- read, else, individual settings of surface parameters will be overwritten from data of !-- precursor run, hence, init_surfaces is called a second time after reading the restart data. CALL init_surfaces ! !-- When reading data for cyclic fill of 3D prerun data files, read some of the global variables !-- from the restart file which are required for initializing the inflow IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN ! !-- Blockwise I/O does not work together with MPI-I/O IF ( restart_data_format_input(1:3) == 'mpi' ) THEN CALL rrd_read_parts_of_global ELSE DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_read_parts_of_global ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ENDIF ENDIF ! !-- Read processor specific binary data from restart file. !-- Blockwise I/O does not work together with MPI-I/O IF ( restart_data_format_input(1:3) == 'mpi' ) THEN CALL rrd_local ELSE DO i = 0, io_blocks-1 IF ( i == io_group ) THEN CALL rrd_local ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ENDIF IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN ! !-- In case of cyclic fill, call init_surfaces a second time, so that surface properties such !-- as heat fluxes are initialized as prescribed. CALL init_surfaces ! !-- Overwrite u_init, v_init, pt_init, q_init and s_init with the horizontally mean (hom) !-- vertical profiles from the end of the prerun, because these profiles shall be used as the !-- reference state for the rayleigh damping and the pt_damping. This is especially important !-- for the use of large_scale_subsidence, because the reference temperature in the free !-- atmosphere changes in time. u_init(:) = hom_sum(:,1,0) v_init(:) = hom_sum(:,2,0) pt_init(:) = hom_sum(:,4,0) IF ( humidity ) q_init(:) = hom_sum(:,41,0) IF ( passive_scalar ) s_init(:) = hom_sum(:,115,0) ENDIF ! !-- In case of complex terrain and cyclic fill method as initialization, shift initial data in !-- the vertical direction for each point in the x-y-plane depending on local surface height. IF ( complex_terrain .AND. TRIM( initializing_actions ) == 'cyclic_fill' ) THEN DO i = nxlg, nxrg DO j = nysg, nyng nz_u_shift = topo_top_ind(j,i,1) nz_v_shift = topo_top_ind(j,i,2) nz_w_shift = topo_top_ind(j,i,3) nz_s_shift = topo_top_ind(j,i,0) u(nz_u_shift:nzt+1,j,i) = u(0:nzt+1-nz_u_shift,j,i) v(nz_v_shift:nzt+1,j,i) = v(0:nzt+1-nz_v_shift,j,i) w(nz_w_shift:nzt+1,j,i) = w(0:nzt+1-nz_w_shift,j,i) p(nz_s_shift:nzt+1,j,i) = p(0:nzt+1-nz_s_shift,j,i) pt(nz_s_shift:nzt+1,j,i) = pt(0:nzt+1-nz_s_shift,j,i) ENDDO ENDDO ENDIF ! !-- Initialization of the turbulence recycling method IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. turbulent_inflow ) THEN ! !-- First store the profiles to be used at the inflow. !-- These profiles are the (temporally) and horizontally averaged vertical profiles from the !-- prerun. Alternatively, prescribed profiles for u,v-components can be used. ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) IF ( use_prescribed_profile_data ) THEN mean_inflow_profiles(:,1) = u_init ! u mean_inflow_profiles(:,2) = v_init ! v ELSE mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v ENDIF mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt IF ( humidity ) mean_inflow_profiles(:,6) = hom_sum(:,41,0) ! q IF ( passive_scalar ) mean_inflow_profiles(:,7) = hom_sum(:,115,0) ! s ! !-- In case of complex terrain, determine vertical displacement at inflow boundary and adjust !-- mean inflow profiles IF ( complex_terrain ) THEN IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. nysg <= 0 .AND. nyng >= 0 ) THEN nz_u_shift_l = topo_top_ind(j,i,1) nz_v_shift_l = topo_top_ind(j,i,2) nz_w_shift_l = topo_top_ind(j,i,3) nz_s_shift_l = topo_top_ind(j,i,0) ELSE nz_u_shift_l = 0 nz_v_shift_l = 0 nz_w_shift_l = 0 nz_s_shift_l = 0 ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( nz_u_shift_l, nz_u_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( nz_v_shift_l, nz_v_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( nz_w_shift_l, nz_w_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) #else nz_u_shift = nz_u_shift_l nz_v_shift = nz_v_shift_l nz_w_shift = nz_w_shift_l nz_s_shift = nz_s_shift_l #endif mean_inflow_profiles(:,1) = 0.0_wp mean_inflow_profiles(nz_u_shift:nzt+1,1) = hom_sum(0:nzt+1-nz_u_shift,1,0) ! u mean_inflow_profiles(:,2) = 0.0_wp mean_inflow_profiles(nz_v_shift:nzt+1,2) = hom_sum(0:nzt+1-nz_v_shift,2,0) ! v mean_inflow_profiles(nz_s_shift:nzt+1,4) = hom_sum(0:nzt+1-nz_s_shift,4,0) ! pt ENDIF ! !-- If necessary, adjust the horizontal flow field to the prescribed profiles IF ( use_prescribed_profile_data ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) ENDDO ENDDO ENDDO ENDIF ! !-- Use these mean profiles at the inflow (provided that Dirichlet conditions are used) IF ( bc_dirichlet_l ) THEN DO j = nysg, nyng DO k = nzb, nzt+1 u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) w(k,j,nxlg:-1) = 0.0_wp pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) IF ( humidity ) q(k,j,nxlg:-1) = mean_inflow_profiles(k,6) IF ( passive_scalar ) s(k,j,nxlg:-1) = mean_inflow_profiles(k,7) ENDDO ENDDO ENDIF ! !-- Calculate the damping factors to be used at the inflow. For a turbulent inflow the !-- turbulent fluctuations have to be limited vertically because otherwise the turbulent !-- inflow layer will grow in time. IF ( inflow_damping_height == 9999999.9_wp ) THEN ! !-- Default: use the inversion height calculated by the prerun; if this is zero, !-- inflow_damping_height must be explicitly specified. IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN inflow_damping_height = hom_sum(nzb+6,pr_palm,0) ELSE WRITE( message_string, * ) 'inflow_damping_height must be ', & 'explicitly specified because&the inversion height ', & 'calculated by the prerun is zero.' CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) ENDIF ENDIF IF ( inflow_damping_width == 9999999.9_wp ) THEN ! !-- Default for the transition range: one tenth of the undamped layer inflow_damping_width = 0.1_wp * inflow_damping_height ENDIF ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) DO k = nzb, nzt+1 IF ( zu(k) <= inflow_damping_height ) THEN inflow_damping_factor(k) = 1.0_wp ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN inflow_damping_factor(k) = 1.0_wp - & ( zu(k) - inflow_damping_height ) / inflow_damping_width ELSE inflow_damping_factor(k) = 0.0_wp ENDIF ENDDO ENDIF ! !-- Inside buildings set velocities back to zero IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. topography /= 'flat' ) THEN ! !-- Inside buildings set velocities back to zero. !-- Other scalars (pt, q, s, p, sa, ...) are ignored at present, !-- maybe revise later. DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, BTEST( topo_flags(k,j,i), 1 ) ) v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, BTEST( topo_flags(k,j,i), 2 ) ) w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, BTEST( topo_flags(k,j,i), 3 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Calculate initial temperature field and other constants used in case of a sloping surface IF ( sloping_surface ) CALL init_slope ! !-- Initialize new time levels (only done in order to set boundary values including ghost points) pt_p = pt; u_p = u; v_p = v; w_p = w IF ( humidity ) THEN q_p = q ENDIF IF ( passive_scalar ) s_p = s ! !-- Allthough tendency arrays are set in prognostic_equations, they have have to be predefined !-- here because they are used (but multiplied with 0) there before they are set. tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp IF ( humidity ) THEN tq_m = 0.0_wp ENDIF IF ( passive_scalar ) ts_m = 0.0_wp IF ( debug_output ) THEN CALL debug_message( 'initializing in case of restart / cyclic_fill', 'end' ) ENDIF ELSE ! !-- Actually this part of the programm should not be reached message_string = 'unknown initializing problem' CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) ENDIF ! !-- Calculate the initial volume flow at the right and north boundary IF ( conserve_volume_flow ) THEN IF ( use_prescribed_profile_data ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nxr), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nxr), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v_init(k) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,nyn,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,nyn,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & hom_sum(k,1,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & hom_sum(k,2,0) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN volume_flow_initial_l = 0.0_wp volume_flow_area_l = 0.0_wp IF ( nxr == nx ) THEN DO j = nys, nyn DO k = nzb+1, nzt volume_flow_initial_l(1) = volume_flow_initial_l(1) + & u(k,j,nx) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nx), 1 ) & ) volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,nx), 1 ) & ) ENDDO ENDDO ENDIF IF ( nyn == ny ) THEN DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_initial_l(2) = volume_flow_initial_l(2) + & v(k,ny,i) * dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,ny,i), 2 ) & ) volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,ny,i), 2 ) & ) ENDDO ENDDO ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & comm2d, ierr ) #else volume_flow_initial = volume_flow_initial_l volume_flow_area = volume_flow_area_l #endif ENDIF ! !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated from u|v_bulk instead IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN volume_flow_initial(1) = u_bulk * volume_flow_area(1) volume_flow_initial(2) = v_bulk * volume_flow_area(2) ENDIF ENDIF ! !-- In the following, surface properties can be further initialized with input from static driver !-- file. !-- At the moment this affects only default surfaces. For example, roughness length or sensible / !-- latent heat fluxes can be initialized heterogeneously for default surfaces. Therefore, a generic !-- routine from netcdf_data_input_mod is called to read a 2D array. IF ( input_pids_static ) THEN ! !-- Allocate memory for possible static input ALLOCATE( tmp_2d%var(nys:nyn,nxl:nxr) ) tmp_2d%var = 0.0_wp ! !-- Open the static input file #if defined( __netcdf ) CALL open_read_file( TRIM( input_file_static ) // & TRIM( coupling_char ), pids_id ) CALL inquire_num_variables( pids_id, num_var_pids ) ! !-- Allocate memory to store variable names and read them ALLOCATE( vars_pids(1:num_var_pids) ) CALL inquire_variable_names( pids_id, vars_pids ) ! !-- Input roughness length. IF ( check_existence( vars_pids, 'z0' ) ) THEN ! !-- Read _FillValue attribute CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'z0' ) ! !-- Read variable CALL get_variable( pids_id, 'z0', tmp_2d%var, nxl, nxr, nys, nyn ) CALL add_ghost_layers( tmp_2d%var ) CALL exchange_horiz_2d( tmp_2d%var ) ! !-- Initialize roughness length. Note, z0 will be only initialized at default-type surfaces. !-- At natural or urban z0 is implicitly initialized by the respective parameter lists. !-- Initialize horizontal surface elements. CALL init_single_surface_properties( surf_def_h(0)%z0, tmp_2d%var, surf_def_h(0)%ns, & tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) ! !-- Initialize roughness also at vertical surface elements. !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the !-- index arrays with their respective offset values. DO l = 0, 3 CALL init_single_surface_properties( surf_def_v(l)%z0, tmp_2d%var, surf_def_v(l)%ns, & tmp_2d%fill, surf_def_v(l)%i+surf_def_v(l)%ioff, & surf_def_v(l)%j+surf_def_v(l)%joff ) ENDDO ENDIF ! !-- Input surface sensible heat flux. IF ( check_existence( vars_pids, 'shf' ) ) THEN ! !-- Read _FillValue attribute CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'shf' ) ! !-- Read variable CALL get_variable( pids_id, 'shf', tmp_2d%var, nxl, nxr, nys, nyn ) CALL add_ghost_layers( tmp_2d%var ) CALL exchange_horiz_2d( tmp_2d%var ) ! !-- Initialize heat flux. Note, shf will be only initialized at default-type surfaces. At !-- natural or urban shf is implicitly initialized by the respective parameter lists. !-- Initialize horizontal surface elements. CALL init_single_surface_properties( surf_def_h(0)%shf, tmp_2d%var, surf_def_h(0)%ns, & tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) ! !-- Initialize heat flux also at vertical surface elements. !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the !-- index arrays with their respective offset values. DO l = 0, 3 CALL init_single_surface_properties( surf_def_v(l)%shf, tmp_2d%var, surf_def_v(l)%ns, & tmp_2d%fill, surf_def_v(l)%i+surf_def_v(l)%ioff, & surf_def_v(l)%j+surf_def_v(l)%joff ) ENDDO ENDIF ! !-- Input surface latent heat flux. IF ( humidity ) THEN IF ( check_existence( vars_pids, 'qsws' ) ) THEN ! !-- Read _FillValue attribute CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'qsws' ) ! !-- Read variable CALL get_variable( pids_id, 'qsws', tmp_2d%var, nxl, nxr, nys, nyn ) CALL add_ghost_layers( tmp_2d%var ) CALL exchange_horiz_2d( tmp_2d%var ) ! !-- Initialize latent heat flux. Note, qsws will be only initialized at default-type surfaces. !-- At natural or urban qsws is implicitly initialized by the respective parameter lists. !-- Initialize horizontal surface elements. CALL init_single_surface_properties( surf_def_h(0)%qsws, tmp_2d%var, surf_def_h(0)%ns,& tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) ! !-- Initialize latent heat flux also at vertical surface elements. !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the !-- index arrays with their respective offset values. DO l = 0, 3 CALL init_single_surface_properties( surf_def_v(l)%qsws, tmp_2d%var, & surf_def_v(l)%ns, tmp_2d%fill, & surf_def_v(l)%i+surf_def_v(l)%ioff, & surf_def_v(l)%j+surf_def_v(l)%joff ) ENDDO ENDIF ENDIF ! !-- Input passive scalar flux. IF ( passive_scalar ) THEN IF ( check_existence( vars_pids, 'ssws' ) ) THEN ! !-- Read _FillValue attribute CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'ssws' ) ! !-- Read variable CALL get_variable( pids_id, 'ssws', tmp_2d%var, nxl, nxr, nys, nyn ) CALL add_ghost_layers( tmp_2d%var ) CALL exchange_horiz_2d( tmp_2d%var ) ! !-- Initialize passive scalar flux. Initialize horizontal surface elements. CALL init_single_surface_properties( surf_def_h(0)%ssws, tmp_2d%var, surf_def_h(0)%ns,& tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) DO l = 0, 3 CALL init_single_surface_properties( surf_def_v(l)%ssws, tmp_2d%var, & surf_def_v(l)%ns, tmp_2d%fill, & surf_def_v(l)%i+surf_def_v(l)%ioff, & surf_def_v(l)%j+surf_def_v(l)%joff ) ENDDO ENDIF ENDIF ! !-- Additional variables, can be initialized the !-- same way. ! !-- Finally, close the input file and deallocate temporary arrays DEALLOCATE( vars_pids ) CALL close_input_file( pids_id ) #endif DEALLOCATE( tmp_2d%var ) ENDIF ! !-- Finally, if random_heatflux is set, disturb shf at horizontal surfaces. Actually, this should be !-- done in surface_mod, where all other initializations of surface quantities are done. However, !-- this would create a ring dependency, hence, it is done here. Maybe delete disturb_heatflux and !-- tranfer the respective code directly into the initialization in surface_mod. IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN IF ( use_surface_fluxes .AND. constant_heatflux .AND. random_heatflux ) THEN IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) IF ( surf_lsm_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h(0) ) IF ( surf_usm_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_usm_h(0) ) ENDIF ENDIF ! !-- Compute total sum of grid points and the mean surface level height for each statistic region. !-- These are mainly used for horizontal averaging of turbulence statistics. !-- ngp_2dh: number of grid points of a horizontal cross section through the respective statistic !-- region !-- ngp_3d: number of grid points of the respective statistic region ngp_2dh_outer_l = 0 ngp_2dh_outer = 0 ngp_2dh_s_inner_l = 0 ngp_2dh_s_inner = 0 ngp_2dh_l = 0 ngp_2dh = 0 ngp_3d_inner_l = 0.0_wp ngp_3d_inner = 0 ngp_3d = 0 ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) mean_surface_level_height = 0.0_wp mean_surface_level_height_l = 0.0_wp ! !-- To do: New concept for these non-topography grid points! DO sr = 0, statistic_regions DO i = nxl, nxr DO j = nys, nyn IF ( rmask(j,i,sr) == 1.0_wp ) THEN ! !-- All xy-grid points ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 ! !-- Determine mean surface-level height. In case of downward-facing walls are present, !-- more than one surface level exist. !-- In this case, use the lowest surface-level height. IF ( surf_def_h(0)%start_index(j,i) <= surf_def_h(0)%end_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) k = surf_def_h(0)%k(m) mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) k = surf_lsm_h(0)%k(m) mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) ENDIF IF ( surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) k = surf_usm_h(0)%k(m) mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) ENDIF k_surf = k - 1 DO k = nzb, nzt+1 ! !-- xy-grid points above topography ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + & MERGE( 1, 0, BTEST( topo_flags(k,j,i), 24 ) ) ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + & MERGE( 1, 0, BTEST( topo_flags(k,j,i), 22 ) ) ENDDO ! !-- All grid points of the total domain above topography ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + ( nz - k_surf + 2 ) ENDIF ENDDO ENDDO ENDDO sr = statistic_regions + 1 #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, MPI_INTEGER, MPI_SUM, & comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), (nz+2)*sr, MPI_INTEGER, & MPI_SUM, comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, MPI_SUM, comm2d, & ierr ) ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( mean_surface_level_height_l(0), mean_surface_level_height(0), sr, MPI_REAL,& MPI_SUM, comm2d, ierr ) mean_surface_level_height = mean_surface_level_height / REAL( ngp_2dh ) #else ngp_2dh = ngp_2dh_l ngp_2dh_outer = ngp_2dh_outer_l ngp_2dh_s_inner = ngp_2dh_s_inner_l ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) mean_surface_level_height = mean_surface_level_height_l / REAL( ngp_2dh_l ) #endif ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) ! !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, buoyancy, etc. A !-- zero value will occur for cases where all grid points of the respective subdomain lie below the !-- surface topography ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), ngp_3d_inner(:) ) ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) DEALLOCATE( mean_surface_level_height_l, ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, & ngp_3d_inner_tmp ) ! !-- Compute number of prognostic w-grid points. This is only required for mean vertical velocity !-- removal in case of bottom and top Neumann boundary conditions (not in nested setups) before !-- the pressure solver is invoked. Note, the removal will not be done for offline or online nested !-- simulations. !-- To check for the nesting status, store the logical on a temporary varialbe. This is necessary !-- to compile the code also without MPI (nesting mode is only available in parallel mode). nesting_flag = .TRUE. #if defined( __parallel ) nesting_flag = .NOT. ( child_domain .AND. nesting_mode /= 'vertical' ) #endif IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 .AND. .NOT. nesting_offline .AND. & nesting_flag ) THEN ALLOCATE( ngp_2dh_wgrid(nzb+1:nzt) ) ngp_2dh_wgrid = 0 DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt ngp_2dh_wgrid(k) = ngp_2dh_wgrid(k) + MERGE( 1, 0, BTEST( topo_flags(k,j,i), 3 ) ) ENDDO ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, ngp_2dh_wgrid(1), nzt-nzb+1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #endif ! !-- To avoid divisions by zero (this may happen if an entire prognostic level is occupied by !-- topography) but also to avoid recurrent checks on this, set a minimum value of 1 !-- (at these levels there won't be any correction at all). ngp_2dh_wgrid = MERGE( 1, ngp_2dh_wgrid, ngp_2dh_wgrid == 0 ) ENDIF ! !-- Initializae 3D offline nesting in COSMO model and read data from !-- external NetCDF file. IF ( nesting_offline ) CALL nesting_offl_init ! !-- Initialize quantities for special advections schemes CALL init_advec ! !-- Impose random perturbation on the horizontal velocity field and then !-- remove the divergences from the velocity field at the initial stage IF ( create_disturbances .AND. disturbance_energy_limit /= 0.0_wp .AND. & TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN IF ( debug_output ) THEN CALL debug_message( 'creating disturbances + applying pressure solver', 'start' ) ENDIF ! !-- Needed for both disturb_field and pres !$ACC DATA & !$ACC CREATE(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) CALL disturb_field( 'u', tend, u ) CALL disturb_field( 'v', tend, v ) !$ACC DATA & !$ACC CREATE(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(rho_air(nzb:nzt+1), rho_air_zw(nzb:nzt+1)) & !$ACC COPYIN(ddzu(1:nzt+1), ddzw(1:nzt+1)) & !$ACC COPYIN(topo_flags(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & !$ACC COPYIN(bc_h(0:1)) & !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) n_sor = nsor_ini CALL pres n_sor = nsor !$ACC END DATA !$ACC END DATA IF ( debug_output ) THEN CALL debug_message( 'creating disturbances + applying pressure solver', 'end' ) ENDIF ENDIF IF ( .NOT. ocean_mode ) THEN ALLOCATE( hyp(nzb:nzt+1) ) ALLOCATE( d_exner(nzb:nzt+1) ) ALLOCATE( exner(nzb:nzt+1) ) ALLOCATE( hyrho(nzb:nzt+1) ) ! !-- Check temperature in case of too large domain height DO k = nzb, nzt+1 IF ( ( pt_surface * exner_function( surface_pressure * 100.0_wp ) - g/c_p * zu(k) ) & < 0.0_wp ) THEN WRITE( message_string, * ) 'absolute temperature < 0.0 at zu(', k, ') = ', zu(k) CALL message( 'init_3d_model', 'PA0142', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Calculate vertical profile of the hydrostatic pressure (hyp) hyp = barometric_formula( zu, pt_surface * exner_function( surface_pressure * 100.0_wp ),& surface_pressure * 100.0_wp ) d_exner = exner_function_invers( hyp ) exner = 1.0_wp / exner_function_invers( hyp ) hyrho = ideal_gas_law_rho_pt( hyp, pt_init ) ! !-- Compute reference density rho_surface = ideal_gas_law_rho( surface_pressure * 100.0_wp, & pt_surface * exner_function( surface_pressure * 100.0_wp ) ) ENDIF ! !-- If required, initialize particles IF ( agents_active ) CALL mas_init ! !-- Initialization of synthetic turbulence generator IF ( syn_turb_gen ) CALL stg_init ! !-- Initializing actions for all other modules CALL module_interface_init ! !-- Initialize surface layer (done after LSM as roughness length are required for initialization IF ( constant_flux_layer ) CALL init_surface_layer_fluxes ! !-- Initialize surface data output IF ( surface_output ) CALL surface_data_output_init ! !-- Initialize the ws-scheme. IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init ! !-- Perform post-initializing checks for all other modules CALL module_interface_init_checks ! !-- Initialize surface forcing corresponding to large-scale forcing. Therein, !-- initialize heat-fluxes, etc. via datatype. Revise it later! IF ( large_scale_forcing .AND. lsf_surf ) THEN IF ( use_surface_fluxes .AND. constant_heatflux ) THEN CALL ls_forcing_surf( simulated_time ) ENDIF ENDIF ! !-- Setting weighting factors for calculation of perturbation pressure and turbulent quantities from !-- the RK substeps. IF ( TRIM( timestep_scheme ) == 'runge-kutta-3' ) THEN ! for RK3-method weight_substep(1) = 1._wp/6._wp weight_substep(2) = 3._wp/10._wp weight_substep(3) = 8._wp/15._wp weight_pres(1) = 1._wp/3._wp weight_pres(2) = 5._wp/12._wp weight_pres(3) = 1._wp/4._wp ELSEIF ( TRIM( timestep_scheme ) == 'runge-kutta-2' ) THEN ! for RK2-method weight_substep(1) = 1._wp/2._wp weight_substep(2) = 1._wp/2._wp weight_pres(1) = 1._wp/2._wp weight_pres(2) = 1._wp/2._wp ELSE ! for Euler-method weight_substep(1) = 1.0_wp weight_pres(1) = 1.0_wp ENDIF ! !-- Initialize Rayleigh damping factors rdf = 0.0_wp rdf_sc = 0.0_wp IF ( rayleigh_damping_factor /= 0.0_wp ) THEN IF ( .NOT. ocean_mode ) THEN DO k = nzb+1, nzt IF ( zu(k) >= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & / ( zu(nzt) - rayleigh_damping_height ) ) & )**2 ENDIF ENDDO ELSE ! !-- In ocean mode, rayleigh damping is applied in the lower part of the model domain DO k = nzt, nzb+1, -1 IF ( zu(k) <= rayleigh_damping_height ) THEN rdf(k) = rayleigh_damping_factor * & ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & / ( rayleigh_damping_height - zu(nzb+1) ) ) & )**2 ENDIF ENDDO ENDIF ENDIF IF ( scalar_rayleigh_damping ) rdf_sc = rdf ! !-- Initialize the starting level and the vertical smoothing factor used for the external pressure !-- gradient dp_smooth_factor = 1.0_wp IF ( dp_external ) THEN ! !-- Set the starting level dp_level_ind_b only if it has not been set before (e.g. in init_grid). IF ( dp_level_ind_b == 0 ) THEN ind_array = MINLOC( ABS( dp_level_b - zu ) ) dp_level_ind_b = ind_array(1) - 1 + nzb ! MINLOC uses lower array bound 1 ENDIF IF ( dp_smooth ) THEN dp_smooth_factor(:dp_level_ind_b) = 0.0_wp DO k = dp_level_ind_b+1, nzt dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & ( REAL( k - dp_level_ind_b, KIND=wp ) / & REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) ENDDO ENDIF ENDIF ! !-- Initialize damping zone for the potential temperature in case of non-cyclic lateral boundaries. !-- The damping zone has the maximum value at the inflow boundary and decreases to zero at !-- pt_damping_width. ptdf_x = 0.0_wp ptdf_y = 0.0_wp IF ( bc_lr_dirrad ) THEN DO i = nxl, nxr IF ( ( i * dx ) < pt_damping_width ) THEN ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & REAL( pt_damping_width - i * dx, KIND=wp ) / & REAL( pt_damping_width, KIND=wp ) ) )**2 ENDIF ENDDO ELSEIF ( bc_lr_raddir ) THEN DO i = nxl, nxr IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN ptdf_x(i) = pt_damping_factor * SIN( pi * 0.5_wp * & ( ( i - nx ) * dx + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_dirrad ) THEN DO j = nys, nyn IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN ptdf_y(j) = pt_damping_factor * SIN( pi * 0.5_wp * & ( ( j - ny ) * dy + pt_damping_width ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ELSEIF ( bc_ns_raddir ) THEN DO j = nys, nyn IF ( ( j * dy ) < pt_damping_width ) THEN ptdf_y(j) = pt_damping_factor * SIN( pi * 0.5_wp * & ( pt_damping_width - j * dy ) / & REAL( pt_damping_width, KIND=wp ) )**2 ENDIF ENDDO ENDIF ! !-- Input binary data file is not needed anymore. This line must be placed after call of user_init! CALL close_file( 13 ) ! !-- In case of nesting, put an barrier to assure that all parent and child domains finished !-- initialization. #if defined( __parallel ) IF ( nested_run ) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) #endif CALL location_message( 'model initialization', 'finished' ) END SUBROUTINE init_3d_model