!> @virtual_measurement_mod.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! ! Authors: ! -------- ! @author Matthias Suehring ! @author Tobias Gronemeier ! ! Description: ! ------------ !> The module acts as an interface between 'real-world' observations and model simulations. !> Virtual measurements will be taken in the model at the coordinates representative for the !> 'real-world' observation coordinates. More precisely, coordinates and measured quanties will be !> read from a NetCDF file which contains all required information. In the model, the same !> quantities (as long as all the required PALM-modules are switched-on) will be sampled at the !> respective positions and output into an extra file, which allows for straight-forward comparison !> of model results with observations. !--------------------------------------------------------------------------------------------------! MODULE virtual_measurement_mod #if defined( __parallel ) USE MPI #endif USE arrays_3d, & ONLY: dzw, & exner, & hyp, & q, & ql, & pt, & rho_air, & s, & u, & v, & w, & zu, & zw USE basic_constants_and_equations_mod, & ONLY: convert_utm_to_geographic, & degc_to_k, & magnus, & pi, & rd_d_rv USE chem_gasphase_mod, & ONLY: nvar USE chem_modules, & ONLY: chem_species USE control_parameters, & ONLY: air_chemistry, & coupling_char, & debug_output, & dz, & end_time, & humidity, & land_surface, & message_string, & neutral, & origin_date_time, & passive_scalar, & rho_surface, & surface_pressure, & time_since_reference_point, & virtual_measurement USE cpulog, & ONLY: cpu_log, & log_point_s USE data_output_module USE grid_variables, & ONLY: ddx, & ddy, & dx, & dy USE indices, & ONLY: nbgp, & nzb, & nzt, & nxl, & nxlg, & nxr, & nxrg, & nys, & nysg, & nyn, & nyng, & topo_top_ind, & topo_flags USE kinds USE netcdf_data_input_mod, & ONLY: close_input_file, & coord_ref_sys, & crs_list, & get_attribute, & get_dimension_length, & get_variable, & init_model, & input_file_atts, & input_file_vm, & input_pids_static, & input_pids_vm, & inquire_fill_value, & open_read_file, & pids_id USE pegrid USE surface_mod, & ONLY: surf_lsm_h, & surf_usm_h USE land_surface_model_mod, & ONLY: m_soil_h, & nzb_soil, & nzt_soil, & t_soil_h, & zs USE radiation_model_mod, & ONLY: rad_lw_in, & rad_lw_out, & rad_sw_in, & rad_sw_in_diff, & rad_sw_out, & radiation_scheme USE urban_surface_mod, & ONLY: nzb_wall, & nzt_wall, & t_wall_h IMPLICIT NONE TYPE virt_general INTEGER(iwp) :: nvm = 0 !< number of virtual measurements END TYPE virt_general TYPE virt_var_atts CHARACTER(LEN=100) :: coordinates !< defined longname of the variable CHARACTER(LEN=100) :: grid_mapping !< defined longname of the variable CHARACTER(LEN=100) :: long_name !< defined longname of the variable CHARACTER(LEN=100) :: name !< variable name CHARACTER(LEN=100) :: standard_name !< defined standard name of the variable CHARACTER(LEN=100) :: units !< unit of the output variable REAL(wp) :: fill_value = -9999.0 !< _FillValue attribute END TYPE virt_var_atts TYPE virt_mea CHARACTER(LEN=100) :: feature_type !< type of the real-world measurement CHARACTER(LEN=100) :: feature_type_out = 'timeSeries' !< type of the virtual measurement !< (all will be timeSeries, even trajectories) CHARACTER(LEN=100) :: nc_filename !< name of the NetCDF output file for the station CHARACTER(LEN=100) :: site !< name of the measurement site CHARACTER(LEN=1000) :: data_content = REPEAT(' ', 1000) !< string of measured variables (data output only) INTEGER(iwp) :: end_coord_a = 0 !< end coordinate in NetCDF file for local atmosphere observations INTEGER(iwp) :: end_coord_s = 0 !< end coordinate in NetCDF file for local soil observations INTEGER(iwp) :: file_time_index = 0 !< time index in NetCDF output file INTEGER(iwp) :: ns = 0 !< number of observation coordinates on subdomain, for atmospheric measurements INTEGER(iwp) :: ns_tot = 0 !< total number of observation coordinates, for atmospheric measurements INTEGER(iwp) :: nst !< number of coordinate points given for a measurement INTEGER(iwp) :: nmeas !< number of measured variables (atmosphere + soil) INTEGER(iwp) :: ns_soil = 0 !< number of observation coordinates on subdomain, for soil measurements INTEGER(iwp) :: ns_soil_tot = 0 !< total number of observation coordinates, for soil measurements INTEGER(iwp) :: start_coord_a = 0 !< start coordinate in NetCDF file for local atmosphere observations INTEGER(iwp) :: start_coord_s = 0 !< start coordinate in NetCDF file for local soil observations INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: dim_t !< number observations individual for each trajectory !< or station that are no _FillValues INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: i !< grid index for measurement position in x-direction INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: j !< grid index for measurement position in y-direction INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k !< grid index for measurement position in k-direction INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: i_soil !< grid index for measurement position in x-direction INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: j_soil !< grid index for measurement position in y-direction INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: k_soil !< grid index for measurement position in k-direction LOGICAL :: soil_sampling = .FALSE. !< flag indicating that soil state variables were sampled LOGICAL :: trajectory = .FALSE. !< flag indicating that the observation is a mobile observation LOGICAL :: timseries = .FALSE. !< flag indicating that the observation is a stationary point measurement LOGICAL :: timseries_profile = .FALSE. !< flag indicating that the observation is a stationary profile measurement REAL(wp) :: fill_eutm !< fill value for UTM coordinates in case of missing values REAL(wp) :: fill_nutm !< fill value for UTM coordinates in case of missing values REAL(wp) :: fill_zar !< fill value for heigth coordinates in case of missing values REAL(wp) :: fillout = -9999.0 !< fill value for output in case an observation is taken e.g. from inside a building REAL(wp) :: origin_x_obs !< origin of the observation in UTM coordiates in x-direction REAL(wp) :: origin_y_obs !< origin of the observation in UTM coordiates in y-direction REAL(wp), DIMENSION(:), ALLOCATABLE :: depth !< measurement depth in soil REAL(wp), DIMENSION(:), ALLOCATABLE :: zar !< measurement height above ground level REAL(wp), DIMENSION(:,:), ALLOCATABLE :: measured_vars !< measured variables REAL(wp), DIMENSION(:,:), ALLOCATABLE :: measured_vars_soil !< measured variables TYPE( virt_var_atts ), DIMENSION(:), ALLOCATABLE :: var_atts !< variable attributes END TYPE virt_mea CHARACTER(LEN=5) :: char_eutm = 'E_UTM' !< dimension name for UTM coordinate easting CHARACTER(LEN=11) :: char_feature = 'featureType' !< attribute name for feature type ! This need to be generalized CHARACTER(LEN=10) :: char_fill = '_FillValue' !< attribute name for fill value CHARACTER(LEN=6) :: char_height = 'height' !< attribute name indicating height above surface (for trajectories only) CHARACTER(LEN=9) :: char_long = 'long_name' !< attribute name for long_name CHARACTER(LEN=18) :: char_mv = 'measured_variables' !< variable name for the array with the measured variable names CHARACTER(LEN=5) :: char_nutm = 'N_UTM' !< dimension name for UTM coordinate northing CHARACTER(LEN=18) :: char_numstations = 'number_of_stations' !< attribute name for number of stations CHARACTER(LEN=8) :: char_origx = 'origin_x' !< attribute name for station coordinate in x CHARACTER(LEN=8) :: char_origy = 'origin_y' !< attribute name for station coordinate in y CHARACTER(LEN=4) :: char_site = 'site' !< attribute name for site name CHARACTER(LEN=11) :: char_soil = 'soil_sample' !< attribute name for soil sampling indication CHARACTER(LEN=13) :: char_standard = 'standard_name' !< attribute name for standard_name CHARACTER(LEN=9) :: char_station_h = 'station_h' !< variable name indicating height of the site CHARACTER(LEN=5) :: char_unit = 'units' !< attribute name for standard_name CHARACTER(LEN=1) :: char_zar = 'z' !< attribute name indicating height above reference level CHARACTER(LEN=10) :: type_ts = 'timeSeries' !< name of stationary point measurements CHARACTER(LEN=10) :: type_traj = 'trajectory' !< name of line measurements CHARACTER(LEN=17) :: type_tspr = 'timeSeriesProfile' !< name of stationary profile measurements CHARACTER(LEN=6), DIMENSION(1:5) :: soil_vars = (/ 't_soil', & !< list of soil variables 'm_soil', & 'lwc ', & 'lwcs ', & 'smp ' /) CHARACTER(LEN=10), DIMENSION(0:1,1:9) :: chem_vars = RESHAPE( (/ 'mcpm1 ', 'PM1 ', & 'mcpm2p5 ', 'PM2.5 ', & 'mcpm10 ', 'PM10 ', & 'mfno2 ', 'NO2 ', & 'mfno ', 'NO ', & 'mcno2 ', 'NO2 ', & 'mcno ', 'NO ', & 'tro3 ', 'O3 ', & 'ncaa ', 'PM10 ' & !simply assume ncaa to be PM10 /), (/ 2, 9 /) ) INTEGER(iwp) :: maximum_name_length = 32 !< maximum name length of station names INTEGER(iwp) :: ntimesteps !< number of timesteps defined in NetCDF output file INTEGER(iwp) :: off_pr = 1 !< number of neighboring grid points (in horizontal direction) where virtual profile !< measurements shall be taken, in addition to the given coordinates in the driver INTEGER(iwp) :: off_pr_z = 0 !< number of additional grid points (in each upwardd and downward direction) where !< virtual profile measurements shall be taken, in addition to the given z coordinates in the driver INTEGER(iwp) :: off_ts = 1 !< number of neighboring grid points (in horizontal direction) where virtual profile !< measurements shall be taken, in addition to the given coordinates in the driver INTEGER(iwp) :: off_ts_z = 1 !< number of additional grid points (in each upwardd and downward direction) where !< virtual profile measurements shall be taken, in addition to the given z coordinates in the driver INTEGER(iwp) :: off_tr = 1 !< number of neighboring grid points (in horizontal direction) where virtual profile !< measurements shall be taken, in addition to the given coordinates in the driver INTEGER(iwp) :: off_tr_z = 1 !< number of additional grid points (in each upwardd and downward direction) where !< virtual profile measurements shall be taken, in addition to the given z coordinates in the driver LOGICAL :: global_attribute = .TRUE. !< flag indicating a global attribute LOGICAL :: initial_write_coordinates = .FALSE. !< flag indicating a global attribute REAL(wp) :: dt_virtual_measurement = 0.0_wp !< sampling interval REAL(wp) :: time_virtual_measurement = 0.0_wp !< time since last sampling REAL(wp) :: vm_time_start = 0.0 !< time after which sampling shall start TYPE( virt_general ) :: vmea_general !< data structure which encompasses global variables TYPE( virt_mea ), DIMENSION(:), ALLOCATABLE :: vmea !< data structure containing station-specific variables INTERFACE vm_check_parameters MODULE PROCEDURE vm_check_parameters END INTERFACE vm_check_parameters INTERFACE vm_data_output MODULE PROCEDURE vm_data_output END INTERFACE vm_data_output INTERFACE vm_init MODULE PROCEDURE vm_init END INTERFACE vm_init INTERFACE vm_init_output MODULE PROCEDURE vm_init_output END INTERFACE vm_init_output INTERFACE vm_parin MODULE PROCEDURE vm_parin END INTERFACE vm_parin INTERFACE vm_sampling MODULE PROCEDURE vm_sampling END INTERFACE vm_sampling SAVE PRIVATE ! !-- Public interfaces PUBLIC vm_check_parameters, & vm_data_output, & vm_init, & vm_init_output, & vm_parin, & vm_sampling ! !-- Public variables PUBLIC dt_virtual_measurement, & time_virtual_measurement, & vmea, & vmea_general, & vm_time_start CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters for virtual measurement module !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_check_parameters IF ( .NOT. virtual_measurement ) RETURN ! !-- Virtual measurements require a setup file. IF ( .NOT. input_pids_vm ) THEN message_string = 'If virtual measurements are taken, a setup input ' // & 'file for the site locations is mandatory.' CALL message( 'vm_check_parameters', 'PA0533', 1, 2, 0, 6, 0 ) ENDIF ! !-- In case virtual measurements are taken, a static input file is required. !-- This is because UTM coordinates for the PALM domain origin are required for correct mapping of !-- the measurements. !-- ToDo: Revise this later and remove this requirement. IF ( .NOT. input_pids_static ) THEN message_string = 'If virtual measurements are taken, a static input file is mandatory.' CALL message( 'vm_check_parameters', 'PA0534', 1, 2, 0, 6, 0 ) ENDIF #if !defined( __netcdf4_parallel ) ! !-- In case of non-parallel NetCDF the virtual measurement output is not !-- working. This is only designed for parallel NetCDF. message_string = 'If virtual measurements are taken, parallel NetCDF is required.' CALL message( 'vm_check_parameters', 'PA0708', 1, 2, 0, 6, 0 ) #endif ! !-- Check if the given number of neighboring grid points do not exceed the number !-- of ghost points. IF ( off_pr > nbgp - 1 .OR. off_ts > nbgp - 1 .OR. off_tr > nbgp - 1 ) THEN WRITE(message_string,*) & 'If virtual measurements are taken, the number ' // & 'of surrounding grid points must not be larger ' // & 'than the number of ghost points - 1, which is: ', nbgp - 1 CALL message( 'vm_check_parameters', 'PA0705', 1, 2, 0, 6, 0 ) ENDIF IF ( dt_virtual_measurement <= 0.0 ) THEN message_string = 'dt_virtual_measurement must be > 0.0' CALL message( 'check_parameters', 'PA0706', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE vm_check_parameters !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defines variable attributes according to UC2 standard. Note, later this list can be !> moved to the data-output module where it can be re-used also for other output. !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_set_attributes( output_variable ) TYPE( virt_var_atts ), INTENT(INOUT) :: output_variable !< data structure with attributes that need to be set output_variable%long_name = 'none' output_variable%standard_name = 'none' output_variable%units = 'none' output_variable%coordinates = 'lon lat E_UTM N_UTM x y z time station_name' output_variable%grid_mapping = 'crs' SELECT CASE ( TRIM( output_variable%name ) ) CASE ( 's' ) output_variable%long_name = 'passive_scalar' output_variable%units = 'kg kg-1' CASE ( 'ws' ) output_variable%long_name = 'passive_scalar_flux' output_variable%units = 'm s-1 kg kg-1' CASE ( 'u' ) output_variable%long_name = 'u wind component' output_variable%units = 'm s-1' CASE ( 'uu' ) output_variable%long_name = 'uu' output_variable%units = 'm2 s-2' CASE ( 'ua' ) output_variable%long_name = 'eastward wind' output_variable%standard_name = 'eastward_wind' output_variable%units = 'm s-1' CASE ( 'v' ) output_variable%long_name = 'v wind component' output_variable%units = 'm s-1' CASE ( 'vv' ) output_variable%long_name = 'vv' output_variable%units = 'm2 s-2' CASE ( 'va' ) output_variable%long_name = 'northward wind' output_variable%standard_name = 'northward_wind' output_variable%units = 'm s-1' CASE ( 'w' ) output_variable%long_name = 'w wind component' output_variable%standard_name = 'upward_air_velocity' output_variable%units = 'm s-1' CASE ( 'ww' ) output_variable%long_name = 'ww' output_variable%units = 'm2 s-2' CASE ( 'wspeed' ) output_variable%long_name = 'wind speed' output_variable%standard_name = 'wind_speed' output_variable%units = 'm s-1' CASE ( 'wdir' ) output_variable%long_name = 'wind from direction' output_variable%standard_name = 'wind_from_direction' output_variable%units = 'degrees' CASE ( 'theta' ) output_variable%long_name = 'air potential temperature' output_variable%standard_name = 'air_potential_temperature' output_variable%units = 'K' CASE ( 'utheta' ) output_variable%long_name = 'eastward kinematic sensible heat flux in air' output_variable%units = 'K m s-1' CASE ( 'vtheta' ) output_variable%long_name = 'northward kinematic sensible heat flux in air' output_variable%units = 'K m s-1' CASE ( 'wtheta' ) output_variable%long_name = 'upward kinematic sensible heat flux in air' output_variable%units = 'K m s-1' CASE ( 'ta' ) output_variable%long_name = 'air temperature' output_variable%standard_name = 'air_temperature' output_variable%units = 'degree_C' CASE ( 't_va' ) output_variable%long_name = 'virtual acoustic temperature' output_variable%units = 'K' CASE ( 'haa' ) output_variable%long_name = 'absolute atmospheric humidity' output_variable%units = 'kg m-3' CASE ( 'hus' ) output_variable%long_name = 'specific humidity' output_variable%standard_name = 'specific_humidity' output_variable%units = 'kg kg-1' CASE ( 'hur' ) output_variable%long_name = 'relative humidity' output_variable%standard_name = 'relative_humidity' output_variable%units = '1' CASE ( 'rlu' ) output_variable%long_name = 'upwelling longwave flux in air' output_variable%standard_name = 'upwelling_longwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rlus' ) output_variable%long_name = 'surface upwelling longwave flux in air' output_variable%standard_name = 'surface_upwelling_longwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rld' ) output_variable%long_name = 'downwelling longwave flux in air' output_variable%standard_name = 'downwelling_longwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rsddif' ) output_variable%long_name = 'diffuse downwelling shortwave flux in air' output_variable%standard_name = 'diffuse_downwelling_shortwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rsd' ) output_variable%long_name = 'downwelling shortwave flux in air' output_variable%standard_name = 'downwelling_shortwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rnds' ) output_variable%long_name = 'surface net downward radiative flux' output_variable%standard_name = 'surface_net_downward_radiative_flux' output_variable%units = 'W m-2' CASE ( 'rsu' ) output_variable%long_name = 'upwelling shortwave flux in air' output_variable%standard_name = 'upwelling_shortwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rsus' ) output_variable%long_name = 'surface upwelling shortwave flux in air' output_variable%standard_name = 'surface_upwelling_shortwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'rsds' ) output_variable%long_name = 'surface downwelling shortwave flux in air' output_variable%standard_name = 'surface_downwelling_shortwave_flux_in_air' output_variable%units = 'W m-2' CASE ( 'hfss' ) output_variable%long_name = 'surface upward sensible heat flux' output_variable%standard_name = 'surface_upward_sensible_heat_flux' output_variable%units = 'W m-2' CASE ( 'hfls' ) output_variable%long_name = 'surface upward latent heat flux' output_variable%standard_name = 'surface_upward_latent_heat_flux' output_variable%units = 'W m-2' CASE ( 'ts' ) output_variable%long_name = 'surface temperature' output_variable%standard_name = 'surface_temperature' output_variable%units = 'K' CASE ( 'thetas' ) output_variable%long_name = 'surface layer temperature scale' output_variable%units = 'K' CASE ( 'us' ) output_variable%long_name = 'friction velocity' output_variable%units = 'm s-1' CASE ( 'uw' ) output_variable%long_name = 'upward eastward kinematic momentum flux in air' output_variable%units = 'm2 s-2' CASE ( 'vw' ) output_variable%long_name = 'upward northward kinematic momentum flux in air' output_variable%units = 'm2 s-2' CASE ( 'uv' ) output_variable%long_name = 'eastward northward kinematic momentum flux in air' output_variable%units = 'm2 s-2' CASE ( 'm_soil' ) output_variable%long_name = 'soil moisture volumetric' output_variable%units = 'm3 m-3' CASE ( 't_soil' ) output_variable%long_name = 'soil temperature' output_variable%standard_name = 'soil_temperature' output_variable%units = 'degree_C' CASE ( 'hfdg' ) output_variable%long_name = 'downward heat flux at ground level in soil' output_variable%standard_name = 'downward_heat_flux_at_ground_level_in_soil' output_variable%units = 'W m-2' CASE ( 'hfds' ) output_variable%long_name = 'downward heat flux in soil' output_variable%standard_name = 'downward_heat_flux_in_soil' output_variable%units = 'W m-2' CASE ( 'hfla' ) output_variable%long_name = 'upward latent heat flux in air' output_variable%standard_name = 'upward_latent_heat_flux_in_air' output_variable%units = 'W m-2' CASE ( 'hfsa' ) output_variable%long_name = 'upward latent heat flux in air' output_variable%standard_name = 'upward_sensible_heat_flux_in_air' output_variable%units = 'W m-2' CASE ( 'jno2' ) output_variable%long_name = 'photolysis rate of nitrogen dioxide' output_variable%standard_name = 'photolysis_rate_of_nitrogen_dioxide' output_variable%units = 's-1' CASE ( 'lwcs' ) output_variable%long_name = 'liquid water content of soil layer' output_variable%standard_name = 'liquid_water_content_of_soil_layer' output_variable%units = 'kg m-2' CASE ( 'lwp' ) output_variable%long_name = 'liquid water path' output_variable%standard_name = 'atmosphere_mass_content_of_cloud_liquid_water' output_variable%units = 'kg m-2' CASE ( 'ps' ) output_variable%long_name = 'surface air pressure' output_variable%standard_name = 'surface_air_pressure' output_variable%units = 'hPa' CASE ( 'pwv' ) output_variable%long_name = 'water vapor partial pressure in air' output_variable%standard_name = 'water_vapor_partial_pressure_in_air' output_variable%units = 'hPa' CASE ( 't_lw' ) output_variable%long_name = 'land water temperature' output_variable%units = 'degree_C' CASE ( 'tb' ) output_variable%long_name = 'brightness temperature' output_variable%standard_name = 'brightness_temperature' output_variable%units = 'K' CASE ( 'uqv' ) output_variable%long_name = 'eastward kinematic latent heat flux in air' output_variable%units = 'g kg-1 m s-1' CASE ( 'vqv' ) output_variable%long_name = 'northward kinematic latent heat flux in air' output_variable%units = 'g kg-1 m s-1' CASE ( 'wqv' ) output_variable%long_name = 'upward kinematic latent heat flux in air' output_variable%units = 'g kg-1 m s-1' CASE ( 'mcpm1' ) output_variable%long_name = 'mass concentration of pm1 ambient aerosol particles in air' output_variable%standard_name = 'mass_concentration_of_pm1_ambient_aerosol_particles_in_air' output_variable%units = 'kg m-3' CASE ( 'mcpm10' ) output_variable%long_name = 'mass concentration of pm10 ambient aerosol particles in air' output_variable%standard_name = 'mass_concentration_of_pm10_ambient_aerosol_particles_in_air' output_variable%units = 'kg m-3' CASE ( 'mcpm2p5' ) output_variable%long_name = 'mass concentration of pm2p5 ambient aerosol particles in air' output_variable%standard_name = 'mass_concentration_of_pm2p5_ambient_aerosol_particles_in_air' output_variable%units = 'kg m-3' CASE ( 'mfno', 'mcno' ) output_variable%long_name = 'mole fraction of nitrogen monoxide in air' output_variable%standard_name = 'mole_fraction_of_nitrogen_monoxide_in_air' output_variable%units = 'ppm' !'mol mol-1' CASE ( 'mfno2', 'mcno2' ) output_variable%long_name = 'mole fraction of nitrogen dioxide in air' output_variable%standard_name = 'mole_fraction_of_nitrogen_dioxide_in_air' output_variable%units = 'ppm' !'mol mol-1' CASE ( 'ncaa' ) output_variable%long_name = 'number concentration of ambient aerosol particles in air' output_variable%standard_name = 'number_concentration_of_ambient_aerosol_particles_in_air' output_variable%units = 'm-3' !'mol mol-1' CASE ( 'tro3' ) output_variable%long_name = 'mole fraction of ozone in air' output_variable%standard_name = 'mole_fraction_of_ozone_in_air' output_variable%units = 'ppm' !'mol mol-1' CASE DEFAULT END SELECT END SUBROUTINE vm_set_attributes !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Read namelist for the virtual measurement module !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_parin CHARACTER(LEN=100) :: line !< dummy string that contains the current line of the parameter file INTEGER(iwp) :: io_status !< status after reading the namelist file LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module !< although the respective module namelist appears in !< the namelist file NAMELIST /virtual_measurement_parameters/ dt_virtual_measurement, & off_pr, & off_pr_z, & off_tr, & off_tr_z, & off_ts, & off_ts_z, & switch_off_module, & vm_time_start ! !-- Move to the beginning of the namelist file and try to find and read the namelist. REWIND( 11 ) READ( 11, virtual_measurement_parameters, IOSTAT=io_status ) ! !-- Action depending on the READ status IF ( io_status == 0 ) THEN ! !-- virtual_measurements_parameters namelist was found and read correctly. Enable the !-- virtual measurements. IF ( .NOT. switch_off_module ) virtual_measurement = .TRUE. ELSEIF ( io_status > 0 ) THEN ! !-- virtual_measurement_parameters namelist was found but contained errors. Print an error !-- message including the line that caused the problem. BACKSPACE( 11 ) READ( 11 , '(A)' ) line CALL parin_fail_message( 'virtual_measurement_parameters', line ) ENDIF END SUBROUTINE vm_parin !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialize virtual measurements: read coordiante arrays and measured variables, set indicies !> indicating the measurement points, read further attributes, etc.. !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_init CHARACTER(LEN=5) :: dum !< dummy string indicating station id CHARACTER(LEN=100), DIMENSION(200) :: measured_variables_file = '' !< array with all measured variables read from NetCDF CHARACTER(LEN=100), DIMENSION(200) :: measured_variables = '' !< dummy array with all measured variables that are allowed INTEGER(iwp) :: i !< grid index of virtual observation point in x-direction INTEGER(iwp) :: is !< grid index of real observation point of the respective station in x-direction INTEGER(iwp) :: j !< grid index of observation point in x-direction INTEGER(iwp) :: js !< grid index of real observation point of the respective station in y-direction INTEGER(iwp) :: k !< grid index of observation point in x-direction INTEGER(iwp) :: kl !< lower vertical index of surrounding grid points of an observation coordinate INTEGER(iwp) :: ks !< grid index of real observation point of the respective station in z-direction INTEGER(iwp) :: ksurf !< topography top index INTEGER(iwp) :: ku !< upper vertical index of surrounding grid points of an observation coordinate INTEGER(iwp) :: l !< running index over all stations INTEGER(iwp) :: len_char !< character length of single measured variables without Null character INTEGER(iwp) :: ll !< running index over all measured variables in file INTEGER(iwp) :: m !< running index for surface elements #if defined( __netcdf4_parallel ) INTEGER(iwp) :: n !< running index over all cores #endif INTEGER(iwp) :: nofill !< dummy for nofill return value (not used) INTEGER(iwp) :: ns !< counter variable for number of observation points on subdomain INTEGER(iwp) :: off !< number of horizontally surrounding grid points to be sampled INTEGER(iwp) :: off_z !< number of vertically surrounding grid points to be sampled INTEGER(iwp) :: t !< running index over number of trajectories INTEGER(KIND=1) :: soil_dum !< dummy variable to input a soil flag INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ns_all !< dummy array used to sum-up the number of observation coordinates #if defined( __netcdf4_parallel ) INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ns_atmos !< number of observation points for each station on each mpi rank INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ns_soil !< number of observation points for each station on each mpi rank #endif INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: meas_flag !< mask array indicating measurement positions LOGICAL :: on_pe !< flag indicating that the respective measurement coordinate is on subdomain REAL(wp) :: fill_height !< _FillValue for height coordinate (for trajectories) REAL(wp) :: fill_eutm !< _FillValue for coordinate array E_UTM REAL(wp) :: fill_nutm !< _FillValue for coordinate array N_UTM REAL(wp) :: fill_zar !< _FillValue for zar coordinate REAL(wp), DIMENSION(:), ALLOCATABLE :: e_utm !< easting UTM coordinate, temporary variable REAL(wp), DIMENSION(:), ALLOCATABLE :: e_utm_tmp !< EUTM coordinate before rotation REAL(wp), DIMENSION(:), ALLOCATABLE :: height !< observation height above ground (for trajectories) REAL(wp), DIMENSION(:), ALLOCATABLE :: n_utm !< northing UTM coordinate, temporary variable REAL(wp), DIMENSION(:), ALLOCATABLE :: n_utm_tmp !< NUTM coordinate before rotation REAL(wp), DIMENSION(:), ALLOCATABLE :: station_h !< station height above reference REAL(wp), DIMENSION(:), ALLOCATABLE :: zar !< observation height above reference IF ( debug_output ) CALL debug_message( 'vm_init', 'start' ) #if defined( __netcdf ) ! !-- Open the input file. CALL open_read_file( TRIM( input_file_vm ) // TRIM( coupling_char ), pids_id ) ! !-- Obtain number of sites. CALL get_attribute( pids_id, char_numstations, vmea_general%nvm, global_attribute ) ! !-- Allocate data structure which encompasses all required information, such as grid points indicies, !-- absolute UTM coordinates, the measured quantities, etc. . ALLOCATE( vmea(1:vmea_general%nvm) ) ! !-- Allocate flag array. This dummy array is used to identify grid points where virtual measurements !-- should be taken. Please note, in order to include also the surrounding grid points of the !-- original coordinate, ghost points are required. ALLOCATE( meas_flag(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) meas_flag = 0 ! !-- Loop over all sites in the setup file. DO l = 1, vmea_general%nvm ! !-- Determine suffix which contains the ID, ordered according to the number of measurements. IF( l < 10 ) THEN WRITE( dum, '(I1)') l ELSEIF( l < 100 ) THEN WRITE( dum, '(I2)') l ELSEIF( l < 1000 ) THEN WRITE( dum, '(I3)') l ELSEIF( l < 10000 ) THEN WRITE( dum, '(I4)') l ELSEIF( l < 100000 ) THEN WRITE( dum, '(I5)') l ENDIF ! !-- Read the origin site coordinates (UTM). CALL get_attribute( pids_id, char_origx // TRIM( dum ), vmea(l)%origin_x_obs, global_attribute ) CALL get_attribute( pids_id, char_origy // TRIM( dum ), vmea(l)%origin_y_obs, global_attribute ) ! !-- Read site name. CALL get_attribute( pids_id, char_site // TRIM( dum ), vmea(l)%site, global_attribute ) ! !-- Read a flag which indicates that also soil quantities are take at the respective site !-- (is part of the virtual measurement driver). CALL get_attribute( pids_id, char_soil // TRIM( dum ), soil_dum, global_attribute ) ! !-- Set flag indicating soil-sampling. IF ( soil_dum == 1 ) vmea(l)%soil_sampling = .TRUE. ! !-- Read type of the measurement (trajectory, profile, timeseries). CALL get_attribute( pids_id, char_feature // TRIM( dum ), vmea(l)%feature_type, global_attribute ) ! !--- Set logicals depending on the type of the measurement IF ( INDEX( vmea(l)%feature_type, type_tspr ) /= 0 ) THEN vmea(l)%timseries_profile = .TRUE. ELSEIF ( INDEX( vmea(l)%feature_type, type_ts ) /= 0 ) THEN vmea(l)%timseries = .TRUE. ELSEIF ( INDEX( vmea(l)%feature_type, type_traj ) /= 0 ) THEN vmea(l)%trajectory = .TRUE. ! !-- Give error message in case the type matches non of the pre-defined types. ELSE message_string = 'Attribue featureType = ' // TRIM( vmea(l)%feature_type ) // ' is not allowed.' CALL message( 'vm_init', 'PA0535', 1, 2, 0, 6, 0 ) ENDIF ! !-- Read string with all measured variables at this site. measured_variables_file = '' CALL get_variable( pids_id, char_mv // TRIM( dum ), measured_variables_file ) ! !-- Count the number of measured variables. !-- Please note, for some NetCDF interal reasons, characters end with a NULL, i.e. also empty !-- characters contain a NULL. Therefore, check the strings for a NULL to get the correct !-- character length in order to compare them with the list of allowed variables. vmea(l)%nmeas = 1 DO ll = 1, SIZE( measured_variables_file ) IF ( measured_variables_file(ll)(1:1) /= CHAR(0) .AND. & measured_variables_file(ll)(1:1) /= ' ') THEN ! !-- Obtain character length of the character len_char = 1 DO WHILE ( measured_variables_file(ll)(len_char:len_char) /= CHAR(0) .AND. & measured_variables_file(ll)(len_char:len_char) /= ' ' ) len_char = len_char + 1 ENDDO len_char = len_char - 1 measured_variables(vmea(l)%nmeas) = measured_variables_file(ll)(1:len_char) vmea(l)%nmeas = vmea(l)%nmeas + 1 ENDIF ENDDO vmea(l)%nmeas = vmea(l)%nmeas - 1 ! !-- Allocate data-type array for the measured variables names and attributes at the respective !-- site. ALLOCATE( vmea(l)%var_atts(1:vmea(l)%nmeas) ) ! !-- Store the variable names in a data structure, which assigns further attributes to this name. !-- Further, for data output reasons, create a string of output variables, which will be written !-- into the attribute data_content. DO ll = 1, vmea(l)%nmeas vmea(l)%var_atts(ll)%name = TRIM( measured_variables(ll) ) ! vmea(l)%data_content = TRIM( vmea(l)%data_content ) // " " // & ! TRIM( vmea(l)%var_atts(ll)%name ) ENDDO ! !-- Read all the UTM coordinates for the site. Based on the coordinates, define the grid-index !-- space on each subdomain where virtual measurements should be taken. Note, the entire !-- coordinate array (on the entire model domain) won't be stored as this would exceed memory !-- requirements, particularly for trajectories. IF ( vmea(l)%nmeas > 0 ) THEN ! !-- For stationary and mobile measurements UTM coordinates are just one value and its dimension !-- is "station". CALL get_dimension_length( pids_id, vmea(l)%nst, "station" // TRIM( dum ) ) ! !-- Allocate temporary arrays for UTM and height coordinates. Note, on file UTM coordinates !-- might be 1D or 2D variables ALLOCATE( e_utm(1:vmea(l)%nst) ) ALLOCATE( n_utm(1:vmea(l)%nst) ) ALLOCATE( station_h(1:vmea(l)%nst) ) ALLOCATE( zar(1:vmea(l)%nst) ) IF ( vmea(l)%trajectory ) ALLOCATE( height(1:vmea(l)%nst) ) e_utm = 0.0_wp n_utm = 0.0_wp station_h = 0.0_wp zar = 0.0_wp IF ( vmea(l)%trajectory ) height = 0.0_wp ALLOCATE( e_utm_tmp(1:vmea(l)%nst) ) ALLOCATE( n_utm_tmp(1:vmea(l)%nst) ) ! !-- Read UTM and height coordinates for all trajectories and times. Note, in case !-- these obtain any missing values, replace them with default _FillValues. CALL inquire_fill_value( pids_id, char_eutm // TRIM( dum ), nofill, fill_eutm ) CALL inquire_fill_value( pids_id, char_nutm // TRIM( dum ), nofill, fill_nutm ) CALL inquire_fill_value( pids_id, char_zar // TRIM( dum ), nofill, fill_zar ) IF ( vmea(l)%trajectory ) & CALL inquire_fill_value( pids_id, char_height // TRIM( dum ), nofill, fill_height ) ! !-- Further line is just to avoid compiler warnings. nofill might be used in future. IF ( nofill == 0 .OR. nofill /= 0 ) CONTINUE ! !-- Read observation coordinates. Please note, for trajectories the observation height is !-- stored directly in z, while for timeSeries it is stored in z - station_h, according to !-- UC2-standard. IF ( vmea(l)%trajectory ) THEN CALL get_variable( pids_id, char_eutm // TRIM( dum ), e_utm(:) ) CALL get_variable( pids_id, char_nutm // TRIM( dum ), n_utm(:) ) CALL get_variable( pids_id, char_height // TRIM( dum ), height(:) ) ELSE CALL get_variable( pids_id, char_eutm // TRIM( dum ), e_utm(:) ) CALL get_variable( pids_id, char_nutm // TRIM( dum ), n_utm(:) ) CALL get_variable( pids_id, char_station_h // TRIM( dum ), station_h(:) ) CALL get_variable( pids_id, char_zar // TRIM( dum ), zar(:) ) ENDIF e_utm = MERGE( e_utm, vmea(l)%fillout, e_utm /= fill_eutm ) n_utm = MERGE( n_utm, vmea(l)%fillout, n_utm /= fill_nutm ) zar = MERGE( zar, vmea(l)%fillout, zar /= fill_zar ) IF ( vmea(l)%trajectory ) & height = MERGE( height, vmea(l)%fillout, height /= fill_height ) ! !-- Compute observation height above ground. Note, for trajectory measurements the height !-- above the surface is actually stored in 'height'. IF ( vmea(l)%trajectory ) THEN zar = height fill_zar = fill_height ELSE zar = zar - station_h ENDIF ! !-- Based on UTM coordinates, check if the measurement station or parts of the trajectory are !-- on subdomain. This case, setup grid index space sample these quantities. meas_flag = 0 DO t = 1, vmea(l)%nst ! !-- First, compute relative x- and y-coordinates with respect to the lower-left origin of !-- the model domain, which is the difference between UTM coordinates. Note, if the origin !-- is not correct, the virtual sites will be misplaced. Further, in case of an rotated !-- model domain, the UTM coordinates must also be rotated. e_utm_tmp(t) = e_utm(t) - init_model%origin_x n_utm_tmp(t) = n_utm(t) - init_model%origin_y e_utm(t) = COS( init_model%rotation_angle * pi / 180.0_wp ) & * e_utm_tmp(t) & - SIN( init_model%rotation_angle * pi / 180.0_wp ) & * n_utm_tmp(t) n_utm(t) = SIN( init_model%rotation_angle * pi / 180.0_wp ) & * e_utm_tmp(t) & + COS( init_model%rotation_angle * pi / 180.0_wp ) & * n_utm_tmp(t) ! !-- Compute grid indices relative to origin and check if these are on the subdomain. Note, !-- virtual measurements will be taken also at grid points surrounding the station, hence, !-- check also for these grid points. The number of surrounding grid points is set !-- according to the featureType. IF ( vmea(l)%timseries_profile ) THEN off = off_pr off_z = off_pr_z ELSEIF ( vmea(l)%timseries ) THEN off = off_ts off_z = off_ts_z ELSEIF ( vmea(l)%trajectory ) THEN off = off_tr off_z = off_tr_z ENDIF is = INT( e_utm(t) * ddx, KIND = iwp ) js = INT( n_utm(t) * ddy, KIND = iwp ) ! !-- Is the observation point on subdomain? on_pe = ( is >= nxl .AND. is <= nxr .AND. js >= nys .AND. js <= nyn ) ! !-- Check if observation coordinate is on subdomain. IF ( on_pe ) THEN ! !-- Determine vertical index which corresponds to the observation height. ksurf = topo_top_ind(js,is,0) ks = MINLOC( ABS( zu - zw(ksurf) - zar(t) ), DIM = 1 ) - 1 ! !-- Set mask array at the observation coordinates. Also, flag the surrounding !-- coordinate points, but first check whether the surrounding coordinate points are !-- on the subdomain. kl = MERGE( ks-off_z, ksurf, ks-off_z >= nzb .AND. ks-off_z >= ksurf ) ku = MERGE( ks+off_z, nzt, ks+off_z < nzt+1 ) DO i = is-off, is+off DO j = js-off, js+off DO k = kl, ku meas_flag(k,j,i) = MERGE( IBSET( meas_flag(k,j,i), 0 ), 0, & BTEST( topo_flags(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ENDIF ENDDO ! !-- Based on the flag array, count the number of sampling coordinates. Please note, sampling !-- coordinates in atmosphere and soil may be different, as within the soil all levels will be !-- measured. Hence, count individually. Start with atmoshere. ns = 0 DO i = nxl-off, nxr+off DO j = nys-off, nyn+off DO k = nzb, nzt+1 ns = ns + MERGE( 1, 0, BTEST( meas_flag(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ! !-- Store number of observation points on subdomain and allocate index arrays as well as array !-- containing height information. vmea(l)%ns = ns ALLOCATE( vmea(l)%i(1:vmea(l)%ns) ) ALLOCATE( vmea(l)%j(1:vmea(l)%ns) ) ALLOCATE( vmea(l)%k(1:vmea(l)%ns) ) ALLOCATE( vmea(l)%zar(1:vmea(l)%ns) ) ! !-- Based on the flag array store the grid indices which correspond to the observation !-- coordinates. ns = 0 DO i = nxl-off, nxr+off DO j = nys-off, nyn+off DO k = nzb, nzt+1 IF ( BTEST( meas_flag(k,j,i), 0 ) ) THEN ns = ns + 1 vmea(l)%i(ns) = i vmea(l)%j(ns) = j vmea(l)%k(ns) = k vmea(l)%zar(ns) = zu(k) - zw(topo_top_ind(j,i,0)) ENDIF ENDDO ENDDO ENDDO ! !-- Same for the soil. Based on the flag array, count the number of sampling coordinates in !-- soil. Sample at all soil levels in this case. Please note, soil variables can only be !-- sampled on subdomains, not on ghost layers. IF ( vmea(l)%soil_sampling ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( ANY( BTEST( meas_flag(:,j,i), 0 ) ) ) THEN IF ( surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) ) THEN vmea(l)%ns_soil = vmea(l)%ns_soil + nzt_soil - nzb_soil + 1 ENDIF IF ( surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i) ) THEN vmea(l)%ns_soil = vmea(l)%ns_soil + nzt_wall - nzb_wall + 1 ENDIF ENDIF ENDDO ENDDO ENDIF ! !-- Allocate index arrays as well as array containing height information for soil. IF ( vmea(l)%soil_sampling ) THEN ALLOCATE( vmea(l)%i_soil(1:vmea(l)%ns_soil) ) ALLOCATE( vmea(l)%j_soil(1:vmea(l)%ns_soil) ) ALLOCATE( vmea(l)%k_soil(1:vmea(l)%ns_soil) ) ALLOCATE( vmea(l)%depth(1:vmea(l)%ns_soil) ) ENDIF ! !-- For soil, store the grid indices. ns = 0 IF ( vmea(l)%soil_sampling ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( ANY( BTEST( meas_flag(:,j,i), 0 ) ) ) THEN IF ( surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) DO k = nzb_soil, nzt_soil ns = ns + 1 vmea(l)%i_soil(ns) = i vmea(l)%j_soil(ns) = j vmea(l)%k_soil(ns) = k vmea(l)%depth(ns) = - zs(k) ENDDO ENDIF IF ( surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) DO k = nzb_wall, nzt_wall ns = ns + 1 vmea(l)%i_soil(ns) = i vmea(l)%j_soil(ns) = j vmea(l)%k_soil(ns) = k vmea(l)%depth(ns) = - surf_usm_h(0)%zw(k,m) ENDDO ENDIF ENDIF ENDDO ENDDO ENDIF ! !-- Allocate array to save the sampled values. ALLOCATE( vmea(l)%measured_vars(1:vmea(l)%ns,1:vmea(l)%nmeas) ) IF ( vmea(l)%soil_sampling ) & ALLOCATE( vmea(l)%measured_vars_soil(1:vmea(l)%ns_soil, 1:vmea(l)%nmeas) ) ! !-- Initialize with _FillValues vmea(l)%measured_vars(1:vmea(l)%ns,1:vmea(l)%nmeas) = vmea(l)%fillout IF ( vmea(l)%soil_sampling ) & vmea(l)%measured_vars_soil(1:vmea(l)%ns_soil,1:vmea(l)%nmeas) = vmea(l)%fillout ! !-- Deallocate temporary coordinate arrays IF ( ALLOCATED( e_utm ) ) DEALLOCATE( e_utm ) IF ( ALLOCATED( n_utm ) ) DEALLOCATE( n_utm ) IF ( ALLOCATED( e_utm_tmp ) ) DEALLOCATE( e_utm_tmp ) IF ( ALLOCATED( n_utm_tmp ) ) DEALLOCATE( n_utm_tmp ) IF ( ALLOCATED( n_utm ) ) DEALLOCATE( n_utm ) IF ( ALLOCATED( zar ) ) DEALLOCATE( zar ) IF ( ALLOCATED( height ) ) DEALLOCATE( height ) IF ( ALLOCATED( station_h ) ) DEALLOCATE( station_h ) ENDIF ENDDO ! !-- Dellocate flag array DEALLOCATE( meas_flag ) ! !-- Close input file for virtual measurements. CALL close_input_file( pids_id ) ! !-- Sum-up the number of observation coordiates, for atmosphere first. !-- This is actually only required for data output. ALLOCATE( ns_all(1:vmea_general%nvm) ) ns_all = 0 #if defined( __parallel ) CALL MPI_ALLREDUCE( vmea(:)%ns, ns_all(:), vmea_general%nvm, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else ns_all(:) = vmea(:)%ns #endif vmea(:)%ns_tot = ns_all(:) ! !-- Now for soil ns_all = 0 #if defined( __parallel ) CALL MPI_ALLREDUCE( vmea(:)%ns_soil, ns_all(:), vmea_general%nvm, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else ns_all(:) = vmea(:)%ns_soil #endif vmea(:)%ns_soil_tot = ns_all(:) DEALLOCATE( ns_all ) ! !-- In case of parallel NetCDF the start coordinate for each mpi rank needs to be defined, so that !-- each processor knows where to write the data. #if defined( __netcdf4_parallel ) ALLOCATE( ns_atmos(0:numprocs-1,1:vmea_general%nvm) ) ALLOCATE( ns_soil(0:numprocs-1,1:vmea_general%nvm) ) ns_atmos = 0 ns_soil = 0 DO l = 1, vmea_general%nvm ns_atmos(myid,l) = vmea(l)%ns ns_soil(myid,l) = vmea(l)%ns_soil ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, ns_atmos, numprocs * vmea_general%nvm, & MPI_INTEGER, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( MPI_IN_PLACE, ns_soil, numprocs * vmea_general%nvm, & MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else ns_atmos(0,:) = vmea(:)%ns ns_soil(0,:) = vmea(:)%ns_soil #endif ! !-- Determine the start coordinate in NetCDF file for the local arrays. Note, start coordinates are !-- initialized with zero for sake of simplicity in summation. However, in NetCDF the start !-- coordinates must be >= 1, so that a one needs to be added at the end. DO l = 1, vmea_general%nvm DO n = 0, myid - 1 vmea(l)%start_coord_a = vmea(l)%start_coord_a + ns_atmos(n,l) vmea(l)%start_coord_s = vmea(l)%start_coord_s + ns_soil(n,l) ENDDO ! !-- Start coordinate in NetCDF starts always at one not at 0. vmea(l)%start_coord_a = vmea(l)%start_coord_a + 1 vmea(l)%start_coord_s = vmea(l)%start_coord_s + 1 ! !-- Determine the local end coordinate vmea(l)%end_coord_a = vmea(l)%start_coord_a + vmea(l)%ns - 1 vmea(l)%end_coord_s = vmea(l)%start_coord_s + vmea(l)%ns_soil - 1 ENDDO DEALLOCATE( ns_atmos ) DEALLOCATE( ns_soil ) #endif #endif IF ( debug_output ) CALL debug_message( 'vm_init', 'end' ) END SUBROUTINE vm_init !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialize output using data-output module !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_init_output CHARACTER(LEN=100) :: variable_name !< name of output variable INTEGER(iwp) :: l !< loop index INTEGER(iwp) :: n !< loop index INTEGER :: return_value !< returned status value of called function INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ndim !< dummy to write dimension REAL(wp) :: dum_lat !< transformed geographical coordinate (latitude) REAL(wp) :: dum_lon !< transformed geographical coordinate (longitude) ! !-- Determine the number of output timesteps. ntimesteps = CEILING( ( end_time - MAX( vm_time_start, time_since_reference_point ) & ) / dt_virtual_measurement ) ! !-- Create directory where output files will be stored. CALL local_system( 'mkdir -p VM_OUTPUT' // TRIM( coupling_char ) ) ! !-- Loop over all sites. DO l = 1, vmea_general%nvm ! !-- Skip if no observations will be taken for this site. IF ( vmea(l)%ns_tot == 0 .AND. vmea(l)%ns_soil_tot == 0 ) CYCLE ! !-- Define output file. WRITE( vmea(l)%nc_filename, '(A,I4.4)' ) 'VM_OUTPUT' // TRIM( coupling_char ) // '/' // & 'site', l return_value = dom_def_file( vmea(l)%nc_filename, 'netcdf4-parallel' ) ! !-- Define global attributes. !-- Before, transform UTM into geographical coordinates. CALL convert_utm_to_geographic( crs_list, vmea(l)%origin_x_obs, vmea(l)%origin_y_obs, & dum_lon, dum_lat ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'site', & value = TRIM( vmea(l)%site ) ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'title', & value = 'Virtual measurement output') return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'source', & value = 'PALM-4U') return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'institution', & value = input_file_atts%institution ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'acronym', & value = input_file_atts%acronym ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'author', & value = input_file_atts%author ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'contact_person', & value = input_file_atts%author ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'iop', & value = input_file_atts%campaign ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'campaign', & value = 'PALM-4U' ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_time ', & value = origin_date_time) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'location', & value = input_file_atts%location ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_x', & value = vmea(l)%origin_x_obs ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_y', & value = vmea(l)%origin_y_obs ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_lon', & value = dum_lon ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_lat', & value = dum_lat ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'origin_z', value = 0.0 ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'rotation_angle', & value = input_file_atts%rotation_angle ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'featureType', & value = TRIM( vmea(l)%feature_type_out ) ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'data_content', & value = TRIM( vmea(l)%data_content ) ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'creation_time', & value = input_file_atts%creation_time ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'version', value = 1 ) !input_file_atts%version return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'Conventions', & value = input_file_atts%conventions ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'dependencies', & value = input_file_atts%dependencies ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'history', & value = input_file_atts%history ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'references', & value = input_file_atts%references ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'comment', & value = input_file_atts%comment ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'keywords', & value = input_file_atts%keywords ) return_value = dom_def_att( vmea(l)%nc_filename, attribute_name = 'licence', & value = '[UC]2 Open Licence; see [UC]2 ' // & 'data policy available at ' // & 'www.uc2-program.org/uc2_data_policy.pdf' ) ! !-- Define dimensions. !-- station ALLOCATE( ndim(1:vmea(l)%ns_tot) ) DO n = 1, vmea(l)%ns_tot ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'station', & output_type = 'int32', bounds = (/1_iwp, vmea(l)%ns_tot/), & values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- ntime ALLOCATE( ndim(1:ntimesteps) ) DO n = 1, ntimesteps ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'ntime', & output_type = 'int32', bounds = (/1_iwp, ntimesteps/), & values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- nv ALLOCATE( ndim(1:2) ) DO n = 1, 2 ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'nv', & output_type = 'int32', bounds = (/1_iwp, 2_iwp/), & values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- maximum name length ALLOCATE( ndim(1:maximum_name_length) ) DO n = 1, maximum_name_length ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'max_name_len', & output_type = 'int32', & bounds = (/1_iwp, maximum_name_length /), values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- Define coordinate variables. !-- time variable_name = 'time' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/ 'station ', 'ntime '/), & output_type = 'real32' ) ! !-- station_name variable_name = 'station_name' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/ 'max_name_len', 'station ' /), & output_type = 'char' ) ! !-- vrs (vertical reference system) variable_name = 'vrs' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/ 'station' /), output_type = 'int8' ) ! !-- crs (coordinate reference system) variable_name = 'crs' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/ 'station' /), output_type = 'int8' ) ! !-- z variable_name = 'z' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- station_h variable_name = 'station_h' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- x variable_name = 'x' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- y variable_name = 'y' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- E-UTM variable_name = 'E_UTM' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- N-UTM variable_name = 'N_UTM' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- latitude variable_name = 'lat' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- longitude variable_name = 'lon' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station'/), output_type = 'real32' ) ! !-- Set attributes for the coordinate variables. Note, not all coordinates have the same number !-- of attributes. !-- Units return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & attribute_name = char_unit, value = 'seconds since ' // & origin_date_time ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat', & attribute_name = char_unit, value = 'degrees_north' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon', & attribute_name = char_unit, value = 'degrees_east' ) ! !-- Long name return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name', & attribute_name = char_long, value = 'station name') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & attribute_name = char_long, value = 'time') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z', & attribute_name = char_long, value = 'height above origin' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h', & attribute_name = char_long, value = 'surface altitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x', & attribute_name = char_long, & value = 'distance to origin in x-direction') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y', & attribute_name = char_long, & value = 'distance to origin in y-direction') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM', & attribute_name = char_long, value = 'easting' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM', & attribute_name = char_long, value = 'northing' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat', & attribute_name = char_long, value = 'latitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon', & attribute_name = char_long, value = 'longitude' ) ! !-- Standard name return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name', & attribute_name = char_standard, value = 'platform_name') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & attribute_name = char_standard, value = 'time') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z', & attribute_name = char_standard, & value = 'height_above_mean_sea_level' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h', & attribute_name = char_standard, value = 'surface_altitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM', & attribute_name = char_standard, & value = 'projection_x_coordinate' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM', & attribute_name = char_standard, & value = 'projection_y_coordinate' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat', & attribute_name = char_standard, value = 'latitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon', & attribute_name = char_standard, value = 'longitude' ) ! !-- Axis return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & attribute_name = 'axis', value = 'T') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z', & attribute_name = 'axis', value = 'Z' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x', & attribute_name = 'axis', value = 'X' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y', & attribute_name = 'axis', value = 'Y' ) ! !-- Set further individual attributes for the coordinate variables. !-- For station name return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name', & attribute_name = 'cf_role', value = 'timeseries_id' ) ! !-- For time return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & attribute_name = 'calendar', value = 'proleptic_gregorian' ) ! return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time', & ! attribute_name = 'bounds', value = 'time_bounds' ) ! !-- For vertical reference system return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'vrs', & attribute_name = char_long, value = 'vertical reference system' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'vrs', & attribute_name = 'system_name', value = 'DHHN2016' ) ! !-- For z return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z', & attribute_name = 'positive', value = 'up' ) ! !-- For coordinate reference system return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'epsg_code', value = coord_ref_sys%epsg_code ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'false_easting', & value = coord_ref_sys%false_easting ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'false_northing', & value = coord_ref_sys%false_northing ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'grid_mapping_name', & value = coord_ref_sys%grid_mapping_name ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'inverse_flattening', & value = coord_ref_sys%inverse_flattening ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'latitude_of_projection_origin',& value = coord_ref_sys%latitude_of_projection_origin ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = char_long, value = coord_ref_sys%long_name ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'longitude_of_central_meridian', & value = coord_ref_sys%longitude_of_central_meridian ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'longitude_of_prime_meridian', & value = coord_ref_sys%longitude_of_prime_meridian ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'scale_factor_at_central_meridian', & value = coord_ref_sys%scale_factor_at_central_meridian ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = 'semi_major_axis', & value = coord_ref_sys%semi_major_axis ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'crs', & attribute_name = char_unit, value = coord_ref_sys%units ) ! !-- In case of sampled soil quantities, define further dimensions and coordinates. IF ( vmea(l)%soil_sampling ) THEN ! !-- station for soil ALLOCATE( ndim(1:vmea(l)%ns_soil_tot) ) DO n = 1, vmea(l)%ns_soil_tot ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'station_soil', & output_type = 'int32', & bounds = (/1_iwp,vmea(l)%ns_soil_tot/), values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- ntime for soil ALLOCATE( ndim(1:ntimesteps) ) DO n = 1, ntimesteps ndim(n) = n ENDDO return_value = dom_def_dim( vmea(l)%nc_filename, dimension_name = 'ntime_soil', & output_type = 'int32', bounds = (/1_iwp,ntimesteps/), & values_int32 = ndim ) DEALLOCATE( ndim ) ! !-- time for soil variable_name = 'time_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil', 'ntime_soil '/), & output_type = 'real32' ) ! !-- station_name for soil variable_name = 'station_name_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/ 'max_name_len', 'station_soil' /), & output_type = 'char' ) ! !-- z variable_name = 'z_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- station_h for soil variable_name = 'station_h_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- x soil variable_name = 'x_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !- y soil variable_name = 'y_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- E-UTM soil variable_name = 'E_UTM_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- N-UTM soil variable_name = 'N_UTM_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- latitude soil variable_name = 'lat_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- longitude soil variable_name = 'lon_soil' return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil'/), output_type = 'real32' ) ! !-- Set attributes for the coordinate variables. Note, not all coordinates have the same !-- number of attributes. !-- Units return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & attribute_name = char_unit, value = 'seconds since ' // & origin_date_time ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM_soil', & attribute_name = char_unit, value = 'm' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat_soil', & attribute_name = char_unit, value = 'degrees_north' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon_soil', & attribute_name = char_unit, value = 'degrees_east' ) ! !-- Long name return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name_soil', & attribute_name = char_long, value = 'station name') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & attribute_name = char_long, value = 'time') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z_soil', & attribute_name = char_long, value = 'height above origin' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h_soil', & attribute_name = char_long, value = 'surface altitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x_soil', & attribute_name = char_long, & value = 'distance to origin in x-direction' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y_soil', & attribute_name = char_long, & value = 'distance to origin in y-direction' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM_soil', & attribute_name = char_long, value = 'easting' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM_soil', & attribute_name = char_long, value = 'northing' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat_soil', & attribute_name = char_long, value = 'latitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon_soil', & attribute_name = char_long, value = 'longitude' ) ! !-- Standard name return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name_soil', & attribute_name = char_standard, value = 'platform_name') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & attribute_name = char_standard, value = 'time') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z_soil', & attribute_name = char_standard, & value = 'height_above_mean_sea_level' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_h_soil', & attribute_name = char_standard, value = 'surface_altitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'E_UTM_soil', & attribute_name = char_standard, & value = 'projection_x_coordinate' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'N_UTM_soil', & attribute_name = char_standard, & value = 'projection_y_coordinate' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lat_soil', & attribute_name = char_standard, value = 'latitude' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'lon_soil', & attribute_name = char_standard, value = 'longitude' ) ! !-- Axis return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & attribute_name = 'axis', value = 'T') return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z_soil', & attribute_name = 'axis', value = 'Z' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'x_soil', & attribute_name = 'axis', value = 'X' ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'y_soil', & attribute_name = 'axis', value = 'Y' ) ! !-- Set further individual attributes for the coordinate variables. !-- For station name soil return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'station_name_soil', & attribute_name = 'cf_role', value = 'timeseries_id' ) ! !-- For time soil return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & attribute_name = 'calendar', value = 'proleptic_gregorian' ) ! return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'time_soil', & ! attribute_name = 'bounds', value = 'time_bounds' ) ! !-- For z soil return_value = dom_def_att( vmea(l)%nc_filename, variable_name = 'z_soil', & attribute_name = 'positive', value = 'up' ) ENDIF ! !-- Define variables that shall be sampled. DO n = 1, vmea(l)%nmeas variable_name = TRIM( vmea(l)%var_atts(n)%name ) ! !-- In order to link the correct dimension names, atmosphere and soil variables need to be !-- distinguished. IF ( vmea(l)%soil_sampling .AND. & ANY( TRIM( vmea(l)%var_atts(n)%name) == soil_vars ) ) THEN return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station_soil', 'ntime_soil '/), & output_type = 'real32' ) ELSE return_value = dom_def_var( vmea(l)%nc_filename, variable_name = variable_name, & dimension_names = (/'station', 'ntime '/), & output_type = 'real32' ) ENDIF ! !-- Set variable attributes. Please note, for some variables not all attributes are defined, !-- e.g. standard_name for the horizontal wind components. CALL vm_set_attributes( vmea(l)%var_atts(n) ) IF ( vmea(l)%var_atts(n)%long_name /= 'none' ) THEN return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = char_long, & value = TRIM( vmea(l)%var_atts(n)%long_name ) ) ENDIF IF ( vmea(l)%var_atts(n)%standard_name /= 'none' ) THEN return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = char_standard, & value = TRIM( vmea(l)%var_atts(n)%standard_name ) ) ENDIF IF ( vmea(l)%var_atts(n)%units /= 'none' ) THEN return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = char_unit, & value = TRIM( vmea(l)%var_atts(n)%units ) ) ENDIF return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = 'grid_mapping', & value = TRIM( vmea(l)%var_atts(n)%grid_mapping ) ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = 'coordinates', & value = TRIM( vmea(l)%var_atts(n)%coordinates ) ) return_value = dom_def_att( vmea(l)%nc_filename, variable_name = variable_name, & attribute_name = char_fill, & value = REAL( vmea(l)%var_atts(n)%fill_value, KIND=4 ) ) ENDDO ! loop over variables per site ENDDO ! loop over sites END SUBROUTINE vm_init_output !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Parallel NetCDF output via data-output module. !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_data_output CHARACTER(LEN=100) :: variable_name !< name of output variable CHARACTER(LEN=maximum_name_length), DIMENSION(:), ALLOCATABLE :: station_name !< string for station name, consecutively ordered CHARACTER(LEN=1), DIMENSION(:,:), ALLOCATABLE, TARGET :: output_values_2d_char_target !< target for output name arrays CHARACTER(LEN=1), DIMENSION(:,:), POINTER :: output_values_2d_char_pointer !< pointer for output name arrays INTEGER(iwp) :: l !< loop index for the number of sites INTEGER(iwp) :: n !< loop index for observation points INTEGER(iwp) :: nn !< loop index for number of characters in a name INTEGER :: return_value !< returned status value of called function INTEGER(iwp) :: t_ind !< time index REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_lat !< transformed geographical coordinate (latitude) REAL(wp), DIMENSION(:), ALLOCATABLE :: dum_lon !< transformed geographical coordinate (longitude) REAL(wp), DIMENSION(:), ALLOCATABLE :: oro_rel !< relative altitude of model surface REAL(sp), DIMENSION(:), POINTER :: output_values_1d_pointer !< pointer for 1d output array REAL(sp), DIMENSION(:), ALLOCATABLE, TARGET :: output_values_1d_target !< target for 1d output array REAL(sp), DIMENSION(:,:), POINTER :: output_values_2d_pointer !< pointer for 2d output array REAL(sp), DIMENSION(:,:), ALLOCATABLE, TARGET :: output_values_2d_target !< target for 2d output array CALL cpu_log( log_point_s(26), 'VM output', 'start' ) ! !-- At the first call of this routine write the spatial coordinates. IF ( .NOT. initial_write_coordinates ) THEN ! !-- Write spatial coordinates. DO l = 1, vmea_general%nvm ! !-- Skip if no observations were taken. IF ( vmea(l)%ns_tot == 0 .AND. vmea(l)%ns_soil_tot == 0 ) CYCLE ALLOCATE( output_values_1d_target(vmea(l)%start_coord_a:vmea(l)%end_coord_a) ) ! !-- Output of Easting coordinate. Before output, recalculate EUTM. output_values_1d_target = init_model%origin_x & + REAL( vmea(l)%i(1:vmea(l)%ns) + 0.5_wp, KIND = wp ) * dx & * COS( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j(1:vmea(l)%ns) + 0.5_wp, KIND = wp ) * dy & * SIN( init_model%rotation_angle * pi / 180.0_wp ) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'E_UTM', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) ! !-- Output of Northing coordinate. Before output, recalculate NUTM. output_values_1d_target = init_model%origin_y & - REAL( vmea(l)%i(1:vmea(l)%ns) + 0.5_wp, KIND = wp ) * dx & * SIN( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j(1:vmea(l)%ns) + 0.5_wp, KIND = wp ) * dy & * COS( init_model%rotation_angle * pi / 180.0_wp ) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'N_UTM', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) ! !-- Output of longitude and latitude coordinate. Before output, convert it. ALLOCATE( dum_lat(1:vmea(l)%ns) ) ALLOCATE( dum_lon(1:vmea(l)%ns) ) DO n = 1, vmea(l)%ns CALL convert_utm_to_geographic( crs_list, & init_model%origin_x & + REAL( vmea(l)%i(n) + 0.5_wp, KIND = wp ) * dx & * COS( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j(n) + 0.5_wp, KIND = wp ) * dy & * SIN( init_model%rotation_angle * pi / 180.0_wp ), & init_model%origin_y & - REAL( vmea(l)%i(n) + 0.5_wp, KIND = wp ) * dx & * SIN( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j(n) + 0.5_wp, KIND = wp ) * dy & * COS( init_model%rotation_angle * pi / 180.0_wp ), & dum_lon(n), dum_lat(n) ) ENDDO output_values_1d_target = dum_lat output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'lat', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) output_values_1d_target = dum_lon output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'lon', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) DEALLOCATE( dum_lat ) DEALLOCATE( dum_lon ) ! !-- Output of relative height coordinate. !-- Before this is output, first define the relative orographie height and add this to z. ALLOCATE( oro_rel(1:vmea(l)%ns) ) DO n = 1, vmea(l)%ns oro_rel(n) = zw(topo_top_ind(vmea(l)%j(n),vmea(l)%i(n),3)) ENDDO output_values_1d_target = vmea(l)%zar(1:vmea(l)%ns) + oro_rel(:) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'z', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) ! !-- Write surface altitude for the station. Note, since z is already a relative observation !-- height, station_h must be zero, in order to obtain the observation level. output_values_1d_target = oro_rel(:) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'station_h', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_a/), & bounds_end = (/vmea(l)%end_coord_a /) ) DEALLOCATE( oro_rel ) DEALLOCATE( output_values_1d_target ) ! !-- Write station name ALLOCATE ( station_name(vmea(l)%start_coord_a:vmea(l)%end_coord_a) ) ALLOCATE ( output_values_2d_char_target(vmea(l)%start_coord_a:vmea(l)%end_coord_a, & 1:maximum_name_length) ) DO n = vmea(l)%start_coord_a, vmea(l)%end_coord_a station_name(n) = REPEAT( ' ', maximum_name_length ) WRITE( station_name(n), '(A,I10.10)') "station", n DO nn = 1, maximum_name_length output_values_2d_char_target(n,nn) = station_name(n)(nn:nn) ENDDO ENDDO output_values_2d_char_pointer => output_values_2d_char_target return_value = dom_write_var( vmea(l)%nc_filename, 'station_name', & values_char_2d = output_values_2d_char_pointer, & bounds_start = (/ 1, vmea(l)%start_coord_a /), & bounds_end = (/ maximum_name_length, & vmea(l)%end_coord_a /) ) DEALLOCATE( station_name ) DEALLOCATE( output_values_2d_char_target ) ! !-- In case of sampled soil quantities, output also the respective coordinate arrays. IF ( vmea(l)%soil_sampling ) THEN ALLOCATE( output_values_1d_target(vmea(l)%start_coord_s:vmea(l)%end_coord_s) ) ! !-- Output of Easting coordinate. Before output, recalculate EUTM. output_values_1d_target = init_model%origin_x & + REAL( vmea(l)%i_soil(1:vmea(l)%ns_soil) + 0.5_wp, KIND = wp ) * dx & * COS( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j_soil(1:vmea(l)%ns_soil) + 0.5_wp, KIND = wp ) * dy & * SIN( init_model%rotation_angle * pi / 180.0_wp ) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'E_UTM_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) ! !-- Output of Northing coordinate. Before output, recalculate NUTM. output_values_1d_target = init_model%origin_y & - REAL( vmea(l)%i_soil(1:vmea(l)%ns_soil) + 0.5_wp, KIND = wp ) * dx & * SIN( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j_soil(1:vmea(l)%ns_soil) + 0.5_wp, KIND = wp ) * dy & * COS( init_model%rotation_angle * pi / 180.0_wp ) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'N_UTM_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) ! !-- Output of longitude and latitude coordinate. Before output, convert it. ALLOCATE( dum_lat(1:vmea(l)%ns_soil) ) ALLOCATE( dum_lon(1:vmea(l)%ns_soil) ) DO n = 1, vmea(l)%ns_soil CALL convert_utm_to_geographic( crs_list, & init_model%origin_x & + REAL( vmea(l)%i_soil(n) + 0.5_wp, KIND = wp ) * dx & * COS( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j_soil(n) + 0.5_wp, KIND = wp ) * dy & * SIN( init_model%rotation_angle * pi / 180.0_wp ), & init_model%origin_y & - REAL( vmea(l)%i_soil(n) + 0.5_wp, KIND = wp ) * dx & * SIN( init_model%rotation_angle * pi / 180.0_wp ) & + REAL( vmea(l)%j_soil(n) + 0.5_wp, KIND = wp ) * dy & * COS( init_model%rotation_angle * pi / 180.0_wp ), & dum_lon(n), dum_lat(n) ) ENDDO output_values_1d_target = dum_lat output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'lat_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) output_values_1d_target = dum_lon output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'lon_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) DEALLOCATE( dum_lat ) DEALLOCATE( dum_lon ) ! !-- Output of relative height coordinate. !-- Before this is output, first define the relative orographie height and add this to z. ALLOCATE( oro_rel(1:vmea(l)%ns_soil) ) DO n = 1, vmea(l)%ns_soil oro_rel(n) = zw(topo_top_ind(vmea(l)%j_soil(n),vmea(l)%i_soil(n),3)) ENDDO output_values_1d_target = vmea(l)%depth(1:vmea(l)%ns_soil) + oro_rel(:) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'z_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) ! !-- Write surface altitude for the station. Note, since z is already a relative observation !-- height, station_h must be zero, in order to obtain the observation level. output_values_1d_target = oro_rel(:) output_values_1d_pointer => output_values_1d_target return_value = dom_write_var( vmea(l)%nc_filename, 'station_h_soil', & values_real32_1d = output_values_1d_pointer, & bounds_start = (/vmea(l)%start_coord_s/), & bounds_end = (/vmea(l)%end_coord_s /) ) DEALLOCATE( oro_rel ) DEALLOCATE( output_values_1d_target ) ! !-- Write station name ALLOCATE ( station_name(vmea(l)%start_coord_s:vmea(l)%end_coord_s) ) ALLOCATE ( output_values_2d_char_target(vmea(l)%start_coord_s:vmea(l)%end_coord_s, & 1:maximum_name_length) ) DO n = vmea(l)%start_coord_s, vmea(l)%end_coord_s station_name(n) = REPEAT( ' ', maximum_name_length ) WRITE( station_name(n), '(A,I10.10)') "station", n DO nn = 1, maximum_name_length output_values_2d_char_target(n,nn) = station_name(n)(nn:nn) ENDDO ENDDO output_values_2d_char_pointer => output_values_2d_char_target return_value = dom_write_var( vmea(l)%nc_filename, 'station_name_soil', & values_char_2d = output_values_2d_char_pointer, & bounds_start = (/ 1, vmea(l)%start_coord_s /), & bounds_end = (/ maximum_name_length, & vmea(l)%end_coord_s /) ) DEALLOCATE( station_name ) DEALLOCATE( output_values_2d_char_target ) ENDIF ENDDO ! loop over sites initial_write_coordinates = .TRUE. ENDIF ! !-- Loop over all sites. DO l = 1, vmea_general%nvm ! !-- Skip if no observations were taken. IF ( vmea(l)%ns_tot == 0 .AND. vmea(l)%ns_soil_tot == 0 ) CYCLE ! !-- Determine time index in file. t_ind = vmea(l)%file_time_index + 1 ! !-- Write output variables. Distinguish between atmosphere and soil variables. DO n = 1, vmea(l)%nmeas IF ( vmea(l)%soil_sampling .AND. & ANY( TRIM( vmea(l)%var_atts(n)%name) == soil_vars ) ) THEN ! !-- Write time coordinate to file variable_name = 'time_soil' ALLOCATE( output_values_2d_target(t_ind:t_ind,vmea(l)%start_coord_s:vmea(l)%end_coord_s) ) output_values_2d_target(t_ind,:) = time_since_reference_point output_values_2d_pointer => output_values_2d_target return_value = dom_write_var( vmea(l)%nc_filename, variable_name, & values_real32_2d = output_values_2d_pointer, & bounds_start = (/vmea(l)%start_coord_s, t_ind/), & bounds_end = (/vmea(l)%end_coord_s, t_ind /) ) variable_name = TRIM( vmea(l)%var_atts(n)%name ) output_values_2d_target(t_ind,:) = vmea(l)%measured_vars_soil(:,n) output_values_2d_pointer => output_values_2d_target return_value = dom_write_var( vmea(l)%nc_filename, variable_name, & values_real32_2d = output_values_2d_pointer, & bounds_start = (/vmea(l)%start_coord_s, t_ind/), & bounds_end = (/vmea(l)%end_coord_s, t_ind /) ) DEALLOCATE( output_values_2d_target ) ELSE ! !-- Write time coordinate to file variable_name = 'time' ALLOCATE( output_values_2d_target(t_ind:t_ind,vmea(l)%start_coord_a:vmea(l)%end_coord_a) ) output_values_2d_target(t_ind,:) = time_since_reference_point output_values_2d_pointer => output_values_2d_target return_value = dom_write_var( vmea(l)%nc_filename, variable_name, & values_real32_2d = output_values_2d_pointer, & bounds_start = (/vmea(l)%start_coord_a, t_ind/), & bounds_end = (/vmea(l)%end_coord_a, t_ind/) ) variable_name = TRIM( vmea(l)%var_atts(n)%name ) output_values_2d_target(t_ind,:) = vmea(l)%measured_vars(:,n) output_values_2d_pointer => output_values_2d_target return_value = dom_write_var( vmea(l)%nc_filename, variable_name, & values_real32_2d = output_values_2d_pointer, & bounds_start = (/ vmea(l)%start_coord_a, t_ind /), & bounds_end = (/ vmea(l)%end_coord_a, t_ind /) ) DEALLOCATE( output_values_2d_target ) ENDIF ENDDO ! !-- Update number of written time indices vmea(l)%file_time_index = t_ind ENDDO ! loop over sites CALL cpu_log( log_point_s(26), 'VM output', 'stop' ) END SUBROUTINE vm_data_output !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Sampling of the actual quantities along the observation coordinates !--------------------------------------------------------------------------------------------------! SUBROUTINE vm_sampling USE radiation_model_mod, & ONLY: radiation USE surface_mod, & ONLY: surf_def_h, & surf_lsm_h, & surf_usm_h INTEGER(iwp) :: i !< grid index in x-direction INTEGER(iwp) :: j !< grid index in y-direction INTEGER(iwp) :: k !< grid index in z-direction INTEGER(iwp) :: ind_chem !< dummy index to identify chemistry variable and translate it from (UC)2 standard to interal naming INTEGER(iwp) :: l !< running index over the number of stations INTEGER(iwp) :: m !< running index over all virtual observation coordinates INTEGER(iwp) :: mm !< index of surface element which corresponds to the virtual observation coordinate INTEGER(iwp) :: n !< running index over all measured variables at a station INTEGER(iwp) :: nn !< running index over the number of chemcal species LOGICAL :: match_lsm !< flag indicating natural-type surface LOGICAL :: match_usm !< flag indicating urban-type surface REAL(wp) :: e_s !< saturation water vapor pressure REAL(wp) :: q_s !< saturation mixing ratio REAL(wp) :: q_wv !< mixing ratio CALL cpu_log( log_point_s(27), 'VM sampling', 'start' ) ! !-- Loop over all sites. DO l = 1, vmea_general%nvm ! !-- At the beginning, set _FillValues IF ( ALLOCATED( vmea(l)%measured_vars ) ) vmea(l)%measured_vars = vmea(l)%fillout IF ( ALLOCATED( vmea(l)%measured_vars_soil ) ) vmea(l)%measured_vars_soil = vmea(l)%fillout ! !-- Loop over all variables measured at this site. DO n = 1, vmea(l)%nmeas SELECT CASE ( TRIM( vmea(l)%var_atts(n)%name ) ) CASE ( 'theta' ) ! potential temperature IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = pt(k,j,i) ENDDO ENDIF CASE ( 'ta' ) ! absolute temperature IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = pt(k,j,i) * exner( k ) - degc_to_k ENDDO ENDIF CASE ( 'hus' ) ! mixing ratio IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = q(k,j,i) ENDDO ENDIF CASE ( 'haa' ) ! absolute humidity IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = ( q(k,j,i) / ( 1.0_wp - q(k,j,i) ) ) * rho_air(k) ENDDO ENDIF CASE ( 'pwv' ) ! water vapor partial pressure IF ( humidity ) THEN ! DO m = 1, vmea(l)%ns ! k = vmea(l)%k(m) ! j = vmea(l)%j(m) ! i = vmea(l)%i(m) ! vmea(l)%measured_vars(m,n) = ( q(k,j,i) / ( 1.0_wp - q(k,j,i) ) ) & ! * rho_air(k) ! ENDDO ENDIF CASE ( 'hur' ) ! relative humidity IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) ! !-- Calculate actual temperature, water vapor saturation pressure and, based on !-- this, the saturation mixing ratio. e_s = magnus( exner(k) * pt(k,j,i) ) q_s = rd_d_rv * e_s / ( hyp(k) - e_s ) q_wv = ( q(k,j,i) / ( 1.0_wp - q(k,j,i) ) ) * rho_air(k) vmea(l)%measured_vars(m,n) = q_wv / ( q_s + 1E-10_wp ) ENDDO ENDIF CASE ( 'u', 'ua' ) ! u-component DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) ENDDO CASE ( 'uu' ) ! uu DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) * & 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) ENDDO CASE ( 'v', 'va' ) ! v-component DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) ENDDO CASE ( 'vv' ) ! vv DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) * & 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) ENDDO CASE ( 'w' ) ! w-component DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) ENDDO CASE ( 'ww' ) ! ww DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) * & 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) ENDDO CASE ( 'wspeed' ) ! horizontal wind speed DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) )**2 & + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) )**2 & ) ENDDO CASE ( 'wdir' ) ! wind direction DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 180.0_wp + 180.0_wp / pi * ATAN2( & 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ), & 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) & ) ENDDO CASE ( 'utheta' ) IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) * pt(k,j,i) ENDDO ENDIF CASE ( 'vtheta' ) IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) * pt(k,j,i) ENDDO ENDIF CASE ( 'wtheta' ) IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( w(k-1,j,i) + w(k,j,i) ) * pt(k,j,i) ENDDO ENDIF CASE ( 'ws' ) IF ( passive_scalar ) THEN DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( w(k-1,j,i) + w(k,j,i) ) * s(k,j,i) ENDDO ENDIF CASE ( 's' ) IF ( passive_scalar ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = s(k,j,i) ENDDO ENDIF CASE ( 'uqv' ) IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) * q(k,j,i) ENDDO ENDIF CASE ( 'vqv' ) IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) * q(k,j,i) ENDDO ENDIF CASE ( 'wqv' ) IF ( humidity ) THEN DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.5_wp * ( w(k-1,j,i) + w(k,j,i) ) * q(k,j,i) ENDDO ENDIF CASE ( 'uw' ) DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.25_wp * ( w(k-1,j,i) + w(k,j,i) ) * & ( u(k,j,i) + u(k,j,i+1) ) ENDDO CASE ( 'vw' ) DO m = 1, vmea(l)%ns k = MAX ( 1, vmea(l)%k(m) ) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.25_wp * ( w(k-1,j,i) + w(k,j,i) ) * & ( v(k,j,i) + v(k,j+1,i) ) ENDDO CASE ( 'uv' ) DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = 0.25_wp * ( u(k,j,i) + u(k,j,i+1) ) * & ( v(k,j,i) + v(k,j+1,i) ) ENDDO ! !-- Chemistry variables. List of variables that may need extension. Note, gas species in !-- PALM are in ppm and no distinction is made between mole-fraction and concentration !-- quantities (all are output in ppm so far). CASE ( 'mcpm1', 'mcpm2p5', 'mcpm10', 'mfno', 'mfno2', 'mcno', 'mcno2', 'tro3', 'ncaa' ) IF ( air_chemistry ) THEN ! !-- First, search for the measured variable in the chem_vars !-- list, in order to get the internal name of the variable. DO nn = 1, UBOUND( chem_vars, 2 ) IF ( TRIM( vmea(l)%var_atts(n)%name ) == & TRIM( chem_vars(0,nn) ) ) ind_chem = nn ENDDO ! !-- Run loop over all chemical species, if the measured variable matches the interal !-- name, sample the variable. Note, nvar as a chemistry-module variable. DO nn = 1, nvar IF ( TRIM( chem_vars(1,ind_chem) ) == TRIM( chem_species(nn)%name ) ) THEN DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = chem_species(nn)%conc(k,j,i) ENDDO ENDIF ENDDO ENDIF CASE ( 'us' ) ! friction velocity DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !-- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_def_h(0)%start_index(j,i), surf_def_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_def_h(0)%us(mm) ENDDO DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%us(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%us(mm) ENDDO ENDDO CASE ( 'thetas' ) ! scaling parameter temperature IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_def_h(0)%start_index(j,i), surf_def_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_def_h(0)%ts(mm) ENDDO DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%ts(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%ts(mm) ENDDO ENDDO ENDIF CASE ( 'hfls' ) ! surface latent heat flux IF ( humidity ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !-- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_def_h(0)%start_index(j,i), surf_def_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_def_h(0)%qsws(mm) ENDDO DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%qsws(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%qsws(mm) ENDDO ENDDO ENDIF CASE ( 'hfss' ) ! surface sensible heat flux IF ( .NOT. neutral ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !-- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_def_h(0)%start_index(j,i), surf_def_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_def_h(0)%shf(mm) ENDDO DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%shf(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%shf(mm) ENDDO ENDDO ENDIF CASE ( 'hfdg' ) ! ground heat flux IF ( land_surface ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !-- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%ghf(mm) ENDDO ENDDO ENDIF CASE ( 'rnds' ) ! surface net radiation IF ( radiation ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%rad_net(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%rad_net(mm) ENDDO ENDDO ENDIF CASE ( 'rsus' ) ! surface shortwave out IF ( radiation ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%rad_sw_out(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%rad_sw_out(mm) ENDDO ENDDO ENDIF CASE ( 'rsds' ) ! surface shortwave in IF ( radiation ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%rad_sw_in(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%rad_sw_in(mm) ENDDO ENDDO ENDIF CASE ( 'rlus' ) ! surface longwave out IF ( radiation ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%rad_lw_out(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%rad_lw_out(mm) ENDDO ENDDO ENDIF CASE ( 'rlds' ) ! surface longwave in IF ( radiation ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%rad_lw_in(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%rad_lw_in(mm) ENDDO ENDDO ENDIF CASE ( 'rsd' ) ! shortwave in IF ( radiation ) THEN IF ( radiation_scheme /= 'rrtmg' ) THEN DO m = 1, vmea(l)%ns k = 0 j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_sw_in(k,j,i) ENDDO ELSE DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_sw_in(k,j,i) ENDDO ENDIF ENDIF CASE ( 'rsu' ) ! shortwave out IF ( radiation ) THEN IF ( radiation_scheme /= 'rrtmg' ) THEN DO m = 1, vmea(l)%ns k = 0 j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_sw_out(k,j,i) ENDDO ELSE DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_sw_out(k,j,i) ENDDO ENDIF ENDIF CASE ( 'rlu' ) ! longwave out IF ( radiation ) THEN IF ( radiation_scheme /= 'rrtmg' ) THEN DO m = 1, vmea(l)%ns k = 0 j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_lw_out(k,j,i) ENDDO ELSE DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_lw_out(k,j,i) ENDDO ENDIF ENDIF CASE ( 'rld' ) ! longwave in IF ( radiation ) THEN IF ( radiation_scheme /= 'rrtmg' ) THEN DO m = 1, vmea(l)%ns k = 0 ! !-- Surface data is only available on inner subdomains, not on ghost points. !-- Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) vmea(l)%measured_vars(m,n) = rad_lw_in(k,j,i) ENDDO ELSE DO m = 1, vmea(l)%ns k = vmea(l)%k(m) j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_lw_in(k,j,i) ENDDO ENDIF ENDIF CASE ( 'rsddif' ) ! shortwave in, diffuse part IF ( radiation ) THEN DO m = 1, vmea(l)%ns j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = rad_sw_in_diff(j,i) ENDDO ENDIF CASE ( 't_soil' ) ! soil and wall temperature DO m = 1, vmea(l)%ns_soil j = MERGE( vmea(l)%j_soil(m), nys, vmea(l)%j_soil(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i_soil(m), nxl, vmea(l)%i_soil(m) > nxl ) i = MERGE( i , nxr, i < nxr ) k = vmea(l)%k_soil(m) match_lsm = surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) match_usm = surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i) IF ( match_lsm ) THEN mm = surf_lsm_h(0)%start_index(j,i) vmea(l)%measured_vars_soil(m,n) = t_soil_h(0)%var_2d(k,mm) ENDIF IF ( match_usm ) THEN mm = surf_usm_h(0)%start_index(j,i) vmea(l)%measured_vars_soil(m,n) = t_wall_h(0)%val(k,mm) ENDIF ENDDO CASE ( 'm_soil', 'lwcs' ) ! soil moisture IF ( land_surface ) THEN DO m = 1, vmea(l)%ns_soil j = MERGE( vmea(l)%j_soil(m), nys, vmea(l)%j_soil(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i_soil(m), nxl, vmea(l)%i_soil(m) > nxl ) i = MERGE( i , nxr, i < nxr ) k = vmea(l)%k_soil(m) match_lsm = surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) IF ( match_lsm ) THEN mm = surf_lsm_h(0)%start_index(j,i) vmea(l)%measured_vars_soil(m,n) = m_soil_h(0)%var_2d(k,mm) ENDIF ENDDO ENDIF CASE ( 'ts', 'tb' ) ! surface temperature and brighness temperature DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not on ghost points. Hence, !-- limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_def_h(0)%start_index(j,i), surf_def_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_def_h(0)%pt_surface(mm) ENDDO DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_lsm_h(0)%pt_surface(mm) ENDDO DO mm = surf_usm_h(0)%start_index(j,i), surf_usm_h(0)%end_index(j,i) vmea(l)%measured_vars(m,n) = surf_usm_h(0)%pt_surface(mm) ENDDO ENDDO CASE ( 'lwp' ) ! liquid water path IF ( ASSOCIATED( ql ) ) THEN DO m = 1, vmea(l)%ns j = vmea(l)%j(m) i = vmea(l)%i(m) vmea(l)%measured_vars(m,n) = SUM( ql(nzb:nzt,j,i) * dzw(1:nzt+1) ) & * rho_surface ENDDO ENDIF CASE ( 'ps' ) ! surface pressure vmea(l)%measured_vars(:,n) = surface_pressure CASE ( 't_lw' ) ! water temperature IF ( land_surface ) THEN DO m = 1, vmea(l)%ns ! !-- Surface data is only available on inner subdomains, not !-- on ghost points. Hence, limit the indices. j = MERGE( vmea(l)%j(m), nys, vmea(l)%j(m) > nys ) j = MERGE( j , nyn, j < nyn ) i = MERGE( vmea(l)%i(m), nxl, vmea(l)%i(m) > nxl ) i = MERGE( i , nxr, i < nxr ) DO mm = surf_lsm_h(0)%start_index(j,i), surf_lsm_h(0)%end_index(j,i) IF ( surf_lsm_h(0)%water_surface(m) ) & vmea(l)%measured_vars(m,n) = t_soil_h(0)%var_2d(nzt,m) ENDDO ENDDO ENDIF ! !-- No match found - just set a fill value CASE DEFAULT vmea(l)%measured_vars(:,n) = vmea(l)%fillout END SELECT ENDDO ENDDO CALL cpu_log( log_point_s(27), 'VM sampling', 'stop' ) END SUBROUTINE vm_sampling END MODULE virtual_measurement_mod