!> @file flow_statistics.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Compute average profiles and further average flow quantities for the different user-defined !> (sub-)regions. The region indexed 0 is the total model domain. !> !> @note For simplicity, nzb_s_inner and nzb_diff_s_inner are used as a lower vertical index for !> k-loops for all variables, although strictly speaking the k-loops would have to be split !> up according to the staggered grid. However, this implies no error since staggered velocity !> components are zero at the walls and inside buildings. !> @todo Revise output steering of land-surface and urban-surface output quantities !--------------------------------------------------------------------------------------------------! SUBROUTINE flow_statistics #if defined( __parallel ) USE MPI #endif USE arrays_3d, & ONLY: ddzu, ddzw, d_exner, e, exner, heatflux_output_conversion, hyp, km, kh, & momentumflux_output_conversion, & nc, ni, ng, nr, ns, p, prho, prr, pt, q, qc, qi, qg, ql, qr, qs, & rho_air, rho_air_zw, rho_ocean, s, sa, u, ug, v, vg, vpt, w, w_subs, & waterflux_output_conversion, zw USE basic_constants_and_equations_mod, & ONLY: g, lv_d_cp, magnus, rd_d_rv USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, graupel, snow, microphysics_morrison, microphysics_seifert, & microphysics_ice_phase USE chem_modules, & ONLY: max_pr_cs USE control_parameters, & ONLY: air_chemistry, average_count_pr, cloud_droplets, do_sum, dt_3d, humidity, & initializing_actions, kolmogorov_length_scale, land_surface, large_scale_forcing, & large_scale_subsidence, max_pr_salsa, max_pr_user, message_string, neutral, & ocean_mode, passive_scalar, salsa, simulated_time, simulated_time_at_begin, & urban_surface, & use_subsidence_tendencies, use_surface_fluxes, use_top_fluxes, ws_scheme_mom, & ws_scheme_sca, nesting_offline USE cpulog, & ONLY: cpu_log, log_point USE grid_variables, & ONLY: ddx, ddy USE indices, & ONLY: ngp_2dh, ngp_2dh_s_inner, ngp_3d, ngp_3d_inner, nxl, nxr, nyn, nys, nzb, nzt, & topo_min_level, topo_flags #if defined( __parallel ) USE indices, & ONLY: ngp_sums, ngp_sums_ls #endif USE kinds USE land_surface_model_mod, & ONLY: m_soil_h, nzb_soil, nzt_soil, t_soil_h USE lsf_nudging_mod, & ONLY: td_lsa_lpt, td_lsa_q, td_sub_lpt, td_sub_q, time_vert USE module_interface, & ONLY: module_interface_statistics USE netcdf_interface, & ONLY: dots_rad, dots_soil, dots_max USE pegrid USE radiation_model_mod, & ONLY: radiation, radiation_scheme, & rad_lw_in, rad_lw_out, rad_lw_cs_hr, rad_lw_hr, & rad_sw_in, rad_sw_out, rad_sw_cs_hr, rad_sw_hr USE statistics USE surface_mod, & ONLY : surf_def_h, surf_lsm_h, surf_usm_h IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: ki !< INTEGER(iwp) :: k_surface_level !< INTEGER(iwp) :: m !< loop variable over all horizontal wall elements INTEGER(iwp) :: l !< loop variable over surface facing -- up- or downward-facing INTEGER(iwp) :: nt !< !$ INTEGER(iwp) :: omp_get_thread_num !< INTEGER(iwp) :: sr !< INTEGER(iwp) :: tn !< LOGICAL :: first !< REAL(wp) :: dissipation !< dissipation rate REAL(wp) :: dptdz_threshold !< REAL(wp) :: du_dx !< Derivative of u fluctuations with respect to x REAL(wp) :: du_dy !< Derivative of u fluctuations with respect to y REAL(wp) :: du_dz !< Derivative of u fluctuations with respect to z REAL(wp) :: dv_dx !< Derivative of v fluctuations with respect to x REAL(wp) :: dv_dy !< Derivative of v fluctuations with respect to y REAL(wp) :: dv_dz !< Derivative of v fluctuations with respect to z REAL(wp) :: dw_dx !< Derivative of w fluctuations with respect to x REAL(wp) :: dw_dy !< Derivative of w fluctuations with respect to y REAL(wp) :: dw_dz !< Derivative of w fluctuations with respect to z REAL(wp) :: eta !< Kolmogorov length scale REAL(wp) :: fac !< REAL(wp) :: flag !< REAL(wp) :: height !< REAL(wp) :: pts !< REAL(wp) :: s11 !< fluctuating rate-of-strain tensor component 11 REAL(wp) :: s21 !< fluctuating rate-of-strain tensor component 21 REAL(wp) :: s31 !< fluctuating rate-of-strain tensor component 31 REAL(wp) :: s12 !< fluctuating rate-of-strain tensor component 12 REAL(wp) :: s22 !< fluctuating rate-of-strain tensor component 22 REAL(wp) :: s32 !< fluctuating rate-of-strain tensor component 32 REAL(wp) :: s13 !< fluctuating rate-of-strain tensor component 13 REAL(wp) :: s23 !< fluctuating rate-of-strain tensor component 23 REAL(wp) :: s33 !< fluctuating rate-of-strain tensor component 33 REAL(wp) :: sums_l_etot !< REAL(wp) :: ust !< REAL(wp) :: ust2 !< REAL(wp) :: u2 !< REAL(wp) :: vst !< REAL(wp) :: vst2 !< REAL(wp) :: v2 !< REAL(wp) :: w2 !< REAL(wp) :: temp !< temperature REAL(wp) :: e_s !< saturation vapor pressure REAL(wp) :: q_s !< saturation mixing ratio REAL(wp) :: rh_tmp !< local value of relative humidity REAL(wp) :: dptdz(nzb+1:nzt+1) !< REAL(wp) :: sums_ll(nzb:nzt+1,2) !< CALL cpu_log( log_point(10), 'flow_statistics', 'start' ) ! !-- To be on the safe side, check whether flow_statistics has already been called once after the !-- current time step. IF ( flow_statistics_called ) THEN message_string = 'flow_statistics is called two times within one ' // 'timestep' CALL message( 'flow_statistics', 'PA0190', 1, 2, 0, 6, 0 ) ENDIF ! !-- Compute statistics for each (sub-)region DO sr = 0, statistic_regions ! !-- Initialize (local) summation array sums_l = 0.0_wp #ifdef _OPENACC !$ACC KERNELS PRESENT(sums_l) sums_l = 0.0_wp !$ACC END KERNELS #endif ! !-- Store sums that have been computed in other subroutines in summation array sums_l(:,11,:) = sums_l_l(:,sr,:) ! mixing length from diffusivities !-- WARNING: next line still has to be adjusted for OpenMP sums_l(:,21,0) = sums_wsts_bc_l(:,sr) * & heatflux_output_conversion ! heat flux from advec_s_bc sums_l(nzb+9,pr_palm,0) = sums_divold_l(sr) ! old divergence from pres sums_l(nzb+10,pr_palm,0) = sums_divnew_l(sr) ! new divergence from pres ! !-- When calcuating horizontally-averaged total (resolved- plus subgrid-scale) vertical fluxes !-- and velocity variances by using commonly-applied Reynolds-based methods !-- ( e.g. = (w-)*(pt-) ) in combination with the 5th order advection scheme, !-- pronounced artificial kinks could be observed in the vertical profiles near the surface. !-- Please note: these kinks were not related to the model truth, i.e. these kinks are just !-- related to an evaluation problem. !-- In order avoid these kinks, vertical fluxes and horizontal as well vertical velocity !-- variances are calculated directly within the advection routines, according to the numerical !-- discretization, to evaluate the statistical quantities as they will appear within the !-- prognostic equations. !-- Copy the turbulent quantities, evaluated in the advection routines to the local array !-- sums_l() for further computations. IF ( ws_scheme_mom .AND. sr == 0 .AND. .NOT. nesting_offline ) THEN ! !-- According to the Neumann bc for the horizontal velocity components, the corresponding !-- fluxes has to satisfiy the same bc. IF ( ocean_mode ) THEN sums_us2_ws_l(nzt+1,:) = sums_us2_ws_l(nzt,:) sums_vs2_ws_l(nzt+1,:) = sums_vs2_ws_l(nzt,:) ENDIF DO i = 0, threads_per_task-1 ! !-- Swap the turbulent quantities evaluated in advec_ws. sums_l(:,13,i) = sums_wsus_ws_l(:,i) * momentumflux_output_conversion ! w*u* sums_l(:,15,i) = sums_wsvs_ws_l(:,i) * momentumflux_output_conversion ! w*v* sums_l(:,30,i) = sums_us2_ws_l(:,i) ! u*2 sums_l(:,31,i) = sums_vs2_ws_l(:,i) ! v*2 sums_l(:,32,i) = sums_ws2_ws_l(:,i) ! w*2 sums_l(:,34,i) = sums_l(:,34,i) + 0.5_wp * & ( sums_us2_ws_l(:,i) + sums_vs2_ws_l(:,i) + sums_ws2_ws_l(:,i) ) ! e* ENDDO ENDIF IF ( ws_scheme_sca .AND. sr == 0 .AND. .NOT. nesting_offline ) THEN DO i = 0, threads_per_task-1 sums_l(:,17,i) = sums_wspts_ws_l(:,i) & * heatflux_output_conversion ! w*pt* IF ( ocean_mode ) sums_l(:,66,i) = sums_wssas_ws_l(:,i) ! w*sa* IF ( humidity ) sums_l(:,49,i) = sums_wsqs_ws_l(:,i) & * waterflux_output_conversion ! w*q* IF ( passive_scalar ) sums_l(:,114,i) = sums_wsss_ws_l(:,i) ! w*s* ENDDO ENDIF ! !-- Horizontally averaged profiles of horizontal velocities and temperature. !-- They must have been computed before, because they are already required for other horizontal !-- averages. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) !$ tn = omp_get_thread_num() !$OMP DO !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k, flag) & !$ACC PRESENT(topo_flags, u, v, pt, rmask, sums_l) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) !$ACC ATOMIC sums_l(k,1,tn) = sums_l(k,1,tn) + u(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,2,tn) = sums_l(k,2,tn) + v(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,4,tn) = sums_l(k,4,tn) + pt(k,j,i) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO !$ACC UPDATE HOST(sums_l(:,1,tn), sums_l(:,2,tn), sums_l(:,4,tn)) ! !-- Horizontally averaged profile of salinity IF ( ocean_mode ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 sums_l(k,23,tn) = sums_l(k,23,tn) + sa(k,j,i) & * rmask(j,i,sr) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,i), 22 ) ) ENDDO ENDDO ENDDO ENDIF ! !-- Horizontally averaged profiles of virtual potential temperature, total water content, water !-- vapor mixing ratio and liquid water potential temperature IF ( humidity ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) sums_l(k,44,tn) = sums_l(k,44,tn) + vpt(k,j,i) * rmask(j,i,sr) * flag sums_l(k,41,tn) = sums_l(k,41,tn) + q(k,j,i) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO IF ( bulk_cloud_model ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) sums_l(k,42,tn) = sums_l(k,42,tn) + & ( q(k,j,i) - ql(k,j,i) ) * rmask(j,i,sr) * flag sums_l(k,43,tn) = sums_l(k,43,tn) + ( & pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) & ) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO ENDIF ENDIF ! !-- Horizontally averaged profiles of passive scalar IF ( passive_scalar ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 sums_l(k,115,tn) = sums_l(k,115,tn) + s(k,j,i) & * rmask(j,i,sr) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( topo_flags(k,j,i), 22 ) ) ENDDO ENDDO ENDDO ENDIF !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,1,0) = sums_l(:,1,0) + sums_l(:,1,i) sums_l(:,2,0) = sums_l(:,2,0) + sums_l(:,2,i) sums_l(:,4,0) = sums_l(:,4,0) + sums_l(:,4,i) IF ( ocean_mode ) THEN sums_l(:,23,0) = sums_l(:,23,0) + sums_l(:,23,i) ENDIF IF ( humidity ) THEN sums_l(:,41,0) = sums_l(:,41,0) + sums_l(:,41,i) sums_l(:,44,0) = sums_l(:,44,0) + sums_l(:,44,i) IF ( bulk_cloud_model ) THEN sums_l(:,42,0) = sums_l(:,42,0) + sums_l(:,42,i) sums_l(:,43,0) = sums_l(:,43,0) + sums_l(:,43,i) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(:,115,0) = sums_l(:,115,0) + sums_l(:,115,i) ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, & ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, & ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,4,0), sums(nzb,4), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, & ierr ) IF ( ocean_mode ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,23,0), sums(nzb,23), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d,& ierr ) ENDIF IF ( humidity ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,44,0), sums(nzb,44), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d,& ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,41,0), sums(nzb,41), nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d,& ierr ) IF ( bulk_cloud_model ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,42,0), sums(nzb,42), nzt+2-nzb, MPI_REAL, MPI_SUM, & comm2d, ierr ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,43,0), sums(nzb,43), nzt+2-nzb, MPI_REAL, MPI_SUM, & comm2d, ierr ) ENDIF ENDIF IF ( passive_scalar ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,115,0), sums(nzb,115), nzt+2-nzb, MPI_REAL, MPI_SUM, & comm2d, ierr ) ENDIF #else sums(:,1) = sums_l(:,1,0) sums(:,2) = sums_l(:,2,0) sums(:,4) = sums_l(:,4,0) IF ( ocean_mode ) sums(:,23) = sums_l(:,23,0) IF ( humidity ) THEN sums(:,44) = sums_l(:,44,0) sums(:,41) = sums_l(:,41,0) IF ( bulk_cloud_model ) THEN sums(:,42) = sums_l(:,42,0) sums(:,43) = sums_l(:,43,0) ENDIF ENDIF IF ( passive_scalar ) sums(:,115) = sums_l(:,115,0) #endif ! !-- Final values are obtained by division by the total number of grid points used for summation. !-- After that store profiles. sums(:,1) = sums(:,1) / ngp_2dh(sr) sums(:,2) = sums(:,2) / ngp_2dh(sr) sums(:,4) = sums(:,4) / ngp_2dh_s_inner(:,sr) hom(:,1,1,sr) = sums(:,1) ! u hom(:,1,2,sr) = sums(:,2) ! v hom(:,1,4,sr) = sums(:,4) ! pt !$ACC UPDATE DEVICE(hom(:,1,1,sr), hom(:,1,2,sr), hom(:,1,4,sr)) ! !-- Salinity IF ( ocean_mode ) THEN sums(:,23) = sums(:,23) / ngp_2dh_s_inner(:,sr) hom(:,1,23,sr) = sums(:,23) ! sa ENDIF ! !-- Humidity and cloud parameters IF ( humidity ) THEN sums(:,44) = sums(:,44) / ngp_2dh_s_inner(:,sr) sums(:,41) = sums(:,41) / ngp_2dh_s_inner(:,sr) hom(:,1,44,sr) = sums(:,44) ! vpt hom(:,1,41,sr) = sums(:,41) ! qv (q) IF ( bulk_cloud_model ) THEN sums(:,42) = sums(:,42) / ngp_2dh_s_inner(:,sr) sums(:,43) = sums(:,43) / ngp_2dh_s_inner(:,sr) hom(:,1,42,sr) = sums(:,42) ! qv hom(:,1,43,sr) = sums(:,43) ! pt ENDIF ENDIF ! !-- Passive scalar IF ( passive_scalar ) hom(:,1,115,sr) = sums(:,115) / ngp_2dh_s_inner(:,sr) ! s ! !-- Horizontally averaged profiles of the remaining prognostic variables, variances, the total !-- and the perturbation energy (single values in last column of sums_l) and some diagnostic !-- quantities. !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly speaking the following !-- ---- k-loop would have to be split up and rearranged according to the staggered grid. !-- However, this implies no error since staggered velocity components are zero at the !-- walls and inside buildings. tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, pts, sums_ll, & !$OMP sums_l_etot, tn, ust, ust2, u2, vst, vst2, v2, & !$OMP w2, flag, m, ki, l ) !$ tn = omp_get_thread_num() !$OMP DO !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, k, m) & !$ACC PRIVATE(sums_l_etot, flag, du_dx, du_dy, du_dz) & !$ACC PRIVATE(dv_dx, dv_dy, dv_dz, dw_dx, dw_dy, dw_dz) & !$ACC PRIVATE(s11, s21, s31, s12, s22, s32, s13, s23, s33) & !$ACC PRIVATE(dissipation, eta) & !$ACC PRESENT(topo_flags, rmask, momentumflux_output_conversion) & !$ACC PRESENT(hom(:,1,1:2,sr), hom(:,1,4,sr)) & !$ACC PRESENT(e, u, v, w, km, kh, p, pt) & !$ACC PRESENT(ddx, ddy, ddzu, ddzw) & !$ACC PRESENT(surf_def_h(0), surf_lsm_h(0), surf_usm_h(0)) & !$ACC PRESENT(sums_l) DO i = nxl, nxr DO j = nys, nyn sums_l_etot = 0.0_wp DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) ! !-- Prognostic and diagnostic variables !$ACC ATOMIC sums_l(k,3,tn) = sums_l(k,3,tn) + w(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,8,tn) = sums_l(k,8,tn) + e(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,9,tn) = sums_l(k,9,tn) + km(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,10,tn) = sums_l(k,10,tn) + kh(k,j,i) * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,40,tn) = sums_l(k,40,tn) + ( p(k,j,i) & / momentumflux_output_conversion(k) ) * flag !$ACC ATOMIC sums_l(k,33,tn) = sums_l(k,33,tn) + & ( pt(k,j,i)-hom(k,1,4,sr) )**2 * rmask(j,i,sr) * flag #ifndef _OPENACC IF ( humidity ) THEN sums_l(k,70,tn) = sums_l(k,70,tn) + & ( q(k,j,i)-hom(k,1,41,sr) )**2 * rmask(j,i,sr) * flag ENDIF IF ( passive_scalar ) THEN sums_l(k,116,tn) = sums_l(k,116,tn) + & ( s(k,j,i)-hom(k,1,115,sr) )**2 * rmask(j,i,sr) * flag ENDIF #endif ! !-- Higher moments !-- (Computation of the skewness of w further below) !$ACC ATOMIC sums_l(k,38,tn) = sums_l(k,38,tn) + w(k,j,i)**3 * rmask(j,i,sr) * flag sums_l_etot = sums_l_etot + 0.5_wp * ( u(k,j,i)**2 + v(k,j,i)**2 + w(k,j,i)**2 ) & * rmask(j,i,sr) * flag ! !-- Computation of the Kolmogorov length scale. Calculation is based on gradients of the !-- deviations from the horizontal mean. !-- Kolmogorov scale at the boundaries (k=0/z=0m and k=nzt+1) is set to zero. IF ( kolmogorov_length_scale .AND. k /= nzb .AND. k /= nzt+1) THEN flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) ! !-- Calculate components of the fluctuating rate-of-strain tensor !-- (0.5*(del u'_i/del x_j + del u'_j/del x_i)) defined in the center of each grid !-- box. du_dx = ( ( u(k,j,i+1) - hom(k,1,1,sr) ) - & ( u(k,j,i) - hom(k,1,1,sr) ) ) * ddx du_dy = 0.25_wp * ddy * & ( ( u(k,j+1,i) - hom(k,1,1,sr) ) - & ( u(k,j-1,i) - hom(k,1,1,sr) ) + & ( u(k,j+1,i+1) - hom(k,1,1,sr) ) - & ( u(k,j-1,i+1) - hom(k,1,1,sr) ) ) du_dz = 0.25_wp * ( ( ( u(k+1,j,i) - hom(k+1,1,1,sr) ) - & ( u(k,j,i) - hom(k,1,1,sr) ) ) * & ddzu(k+1) + & ( ( u(k,j,i) - hom(k,1,1,sr) ) - & ( u(k-1,j,i) - hom(k-1,1,1,sr) ) ) * & ddzu(k) + & ( ( u(k+1,j,i+1) - hom(k+1,1,1,sr) ) - & ( u(k,j,i+1) - hom(k,1,1,sr) ) ) * & ddzu(k+1) + & ( ( u(k,j,i+1) - hom(k,1,1,sr) ) - & ( u(k-1,j,i+1) - hom(k-1,1,1,sr) ) ) * & ddzu(k) ) dv_dx = 0.25_wp * ddx * & ( ( v(k,j,i+1) - hom(k,1,2,sr) ) - & ( v(k,j,i-1) - hom(k,1,2,sr) ) + & ( v(k,j+1,i+1) - hom(k,1,2,sr) ) - & ( v(k,j+1,i-1) - hom(k,1,2,sr) ) ) dv_dy = ( ( v(k,j+1,i) - hom(k,1,2,sr) ) - ( v(k,j,i) - hom(k,1,2,sr) ) ) * ddy dv_dz = 0.25_wp * ( ( ( v(k+1,j,i) - hom(k+1,1,2,sr) ) - & ( v(k,j,i) - hom(k,1,2,sr) ) ) * & ddzu(k+1) + & ( ( v(k,j,i) - hom(k,1,2,sr) ) - & ( v(k-1,j,i) - hom(k-1,1,2,sr) ) ) * & ddzu(k) + & ( ( v(k+1,j+1,i) - hom(k+1,1,2,sr) ) - & ( v(k,j+1,i) - hom(k,1,2,sr) ) ) * & ddzu(k+1) + & ( ( v(k,j+1,i) - hom(k,1,2,sr) ) - & ( v(k-1,j+1,i) - hom(k-1,1,2,sr) ) ) * & ddzu(k) ) dw_dx = 0.25_wp * ddx * ( w(k,j,i+1) - w(k,j,i-1) + w(k-1,j,i+1) - w(k-1,j,i-1) ) dw_dy = 0.25_wp * ddy * ( w(k,j+1,i) - w(k,j-1,i) + w(k-1,j+1,i) - w(k-1,j-1,i) ) dw_dz = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) s11 = 0.5_wp * ( du_dx + du_dx ) s21 = 0.5_wp * ( dv_dx + du_dy ) s31 = 0.5_wp * ( dw_dx + du_dz ) s12 = s21 s22 = 0.5 * ( dv_dy + dv_dy ) s32 = 0.5 * ( dw_dy + dv_dz ) s13 = s31 s23 = s32 s33 = 0.5_wp * ( dw_dz + dw_dz ) !-- Calculate 3D instantaneous energy dissipation rate following Pope (2000): !-- Turbulent flows, p.259. It is defined in the center of each grid volume. dissipation = 2.0_wp * km(k,j,i) * & ( s11*s11 + s21*s21 + s31*s31 + & s12*s12 + s22*s22 + s32*s32 + & s13*s13 + s23*s23 + s33*s33 ) eta = ( km(k,j,i)**3.0_wp / ( dissipation+1.0E-12 ) )**(1.0_wp/4.0_wp) !$ACC ATOMIC sums_l(k,121,tn) = sums_l(k,121,tn) + eta * rmask(j,i,sr) * flag ENDIF !Kolmogorov length scale ENDDO !k-loop ! !-- Total and perturbation energy for the total domain (being collected in the last column !-- of sums_l). Summation of these quantities is seperated from the previous loop in order !-- to allow vectorization of that loop. !$ACC ATOMIC sums_l(nzb+4,pr_palm,tn) = sums_l(nzb+4,pr_palm,tn) + sums_l_etot ! !-- 2D-arrays (being collected in the last column of sums_l) IF ( surf_def_h(0)%end_index(j,i) >= surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) !$ACC ATOMIC sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_def_h(0)%us(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_def_h(0)%usws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_def_h(0)%vsws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_def_h(0)%ts(m) * rmask(j,i,sr) #ifndef _OPENACC IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_def_h(0)%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_def_h(0)%ss(m) * rmask(j,i,sr) ENDIF #endif ! !-- Summation of surface temperature. !$ACC ATOMIC sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_def_h(0)%pt_surface(m) * rmask(j,i,sr) ENDIF IF ( surf_lsm_h(0)%end_index(j,i) >= surf_lsm_h(0)%start_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) !$ACC ATOMIC sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_lsm_h(0)%us(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_lsm_h(0)%usws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_lsm_h(0)%vsws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_lsm_h(0)%ts(m) * rmask(j,i,sr) #ifndef _OPENACC IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_lsm_h(0)%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_lsm_h(0)%ss(m) * rmask(j,i,sr) ENDIF #endif ! !-- Summation of surface temperature. !$ACC ATOMIC sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_lsm_h(0)%pt_surface(m) * rmask(j,i,sr) ENDIF IF ( surf_usm_h(0)%end_index(j,i) >= surf_usm_h(0)%start_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) !$ACC ATOMIC sums_l(nzb,pr_palm,tn) = sums_l(nzb,pr_palm,tn) + & surf_usm_h(0)%us(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+1,pr_palm,tn) = sums_l(nzb+1,pr_palm,tn) + & surf_usm_h(0)%usws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+2,pr_palm,tn) = sums_l(nzb+2,pr_palm,tn) + & surf_usm_h(0)%vsws(m) * rmask(j,i,sr) !$ACC ATOMIC sums_l(nzb+3,pr_palm,tn) = sums_l(nzb+3,pr_palm,tn) + & surf_usm_h(0)%ts(m) * rmask(j,i,sr) #ifndef _OPENACC IF ( humidity ) THEN sums_l(nzb+12,pr_palm,tn) = sums_l(nzb+12,pr_palm,tn) + & surf_usm_h(0)%qs(m) * rmask(j,i,sr) ENDIF IF ( passive_scalar ) THEN sums_l(nzb+13,pr_palm,tn) = sums_l(nzb+13,pr_palm,tn) + & surf_usm_h(0)%ss(m) * rmask(j,i,sr) ENDIF #endif ! !-- Summation of surface temperature. !$ACC ATOMIC sums_l(nzb+14,pr_palm,tn) = sums_l(nzb+14,pr_palm,tn) + & surf_usm_h(0)%pt_surface(m) * rmask(j,i,sr) ENDIF ENDDO !j-loop ENDDO !i-loop !$ACC UPDATE & !$ACC HOST(sums_l(:,3,tn), sums_l(:,8,tn), sums_l(:,9,tn)) & !$ACC HOST(sums_l(:,10,tn), sums_l(:,40,tn), sums_l(:,33,tn)) & !$ACC HOST(sums_l(:,38,tn), sums_l(:,121,tn)) & !$ACC HOST(sums_l(nzb:nzb+4,pr_palm,tn), sums_l(nzb+14:nzb+14,pr_palm,tn)) ! !-- Computation of statistics when ws-scheme is not used. Else these !-- quantities are evaluated in the advection routines. IF ( .NOT. ws_scheme_mom .OR. sr /= 0 .OR. simulated_time == 0.0_wp ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) u2 = u(k,j,i)**2 v2 = v(k,j,i)**2 w2 = w(k,j,i)**2 ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 sums_l(k,30,tn) = sums_l(k,30,tn) + ust2 * rmask(j,i,sr) * flag sums_l(k,31,tn) = sums_l(k,31,tn) + vst2 * rmask(j,i,sr) * flag sums_l(k,32,tn) = sums_l(k,32,tn) + w2 * rmask(j,i,sr) * flag ! !-- Perturbation energy sums_l(k,34,tn) = sums_l(k,34,tn) + & 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO ENDIF ! !-- Computaion of domain-averaged perturbation energy. Please note, to prevent that perturbation !-- energy is larger (even if only slightly) than the total kinetic energy, calculation is based !-- on deviations from the horizontal mean, instead of spatial descretization of the advection !-- term. !$OMP DO !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i, j, k, flag, w2, ust2, vst2) & !$ACC PRESENT(topo_flags, u, v, w, rmask, hom(:,1,1:2,sr)) & !$ACC PRESENT(sums_l) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) w2 = w(k,j,i)**2 ust2 = ( u(k,j,i) - hom(k,1,1,sr) )**2 vst2 = ( v(k,j,i) - hom(k,1,2,sr) )**2 w2 = w(k,j,i)**2 !$ACC ATOMIC sums_l(nzb+5,pr_palm,tn) = sums_l(nzb+5,pr_palm,tn) & + 0.5_wp * ( ust2 + vst2 + w2 ) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO !$ACC UPDATE HOST(sums_l(nzb+5:nzb+5,pr_palm,tn)) ! !-- Horizontally averaged profiles of the vertical fluxes !$OMP DO !$ACC PARALLEL LOOP COLLAPSE(2) PRIVATE(i, j, k, l, m) & !$ACC PRIVATE(ki, flag, ust, vst, pts) & !$ACC PRESENT(kh, km, u, v, w, pt) & !$ACC PRESENT(topo_flags, rmask, ddzu, rho_air_zw, hom(:,1,1:4,sr)) & !$ACC PRESENT(heatflux_output_conversion, momentumflux_output_conversion) & !$ACC PRESENT(surf_def_h(0:2), surf_lsm_h(0:1), surf_usm_h(0:1)) & !$ACC PRESENT(sums_l) DO i = nxl, nxr DO j = nys, nyn ! !-- Subgridscale fluxes (without Prandtl layer from k=nzb, oterwise from k=nzb+1) !-- NOTE: for simplicity, nzb_diff_s_inner is used below, although strictly speaking the !-- ---- following k-loop would have to be split up according to the staggered grid. !-- However, this implies no error since staggered velocity components are zero at !-- the walls and inside buildings. !-- Flag 23 is used to mask surface fluxes as well as model-top fluxes, which are added !-- further below. DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 9 ) ) ! !-- Momentum flux w"u" !$ACC ATOMIC sums_l(k,12,tn) = sums_l(k,12,tn) - 0.25_wp * ( & km(k,j,i) + km(k+1,j,i) + km(k,j,i-1) + km(k+1,j,i-1) & ) * ( & ( u(k+1,j,i) - u(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j,i-1) ) * ddx & ) * rmask(j,i,sr) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * flag ! !-- Momentum flux w"v" !$ACC ATOMIC sums_l(k,14,tn) = sums_l(k,14,tn) - 0.25_wp * ( & km(k,j,i) + km(k+1,j,i) + km(k,j-1,i) + km(k+1,j-1,i) & ) * ( & ( v(k+1,j,i) - v(k,j,i) ) * ddzu(k+1) & + ( w(k,j,i) - w(k,j-1,i) ) * ddy & ) * rmask(j,i,sr) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * flag ! !-- Heat flux w"pt" !$ACC ATOMIC sums_l(k,16,tn) = sums_l(k,16,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( pt(k+1,j,i) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) & * flag ! !-- Salinity flux w"sa" #ifndef _OPENACC IF ( ocean_mode ) THEN sums_l(k,65,tn) = sums_l(k,65,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( sa(k+1,j,i) - sa(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * flag ENDIF ! !-- Buoyancy flux, water flux (humidity flux) w"q" IF ( humidity ) THEN sums_l(k,45,tn) = sums_l(k,45,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( vpt(k+1,j,i) - vpt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) * flag sums_l(k,48,tn) = sums_l(k,48,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( q(k+1,j,i) - q(k,j,i) ) & * rho_air_zw(k) & * waterflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) * flag IF ( bulk_cloud_model ) THEN sums_l(k,51,tn) = sums_l(k,51,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( ( q(k+1,j,i) - ql(k+1,j,i) ) & - ( q(k,j,i) - ql(k,j,i) ) ) & * rho_air_zw(k) & * waterflux_output_conversion(k) & * ddzu(k+1) * rmask(j,i,sr) * flag ENDIF ENDIF ! !-- Passive scalar flux IF ( passive_scalar ) THEN sums_l(k,117,tn) = sums_l(k,117,tn) & - 0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) & * ( s(k+1,j,i) - s(k,j,i) ) & * ddzu(k+1) * rmask(j,i,sr) & * flag ENDIF #endif ENDDO ! !-- Subgridscale fluxes in the Prandtl layer IF ( use_surface_fluxes ) THEN DO l = 0, 1 ! The original code using MERGE doesn't work with the PGI ! compiler when running on the GPU. ! This is submitted as a compiler Bug in PGI ticket TPR#26718 ! ki = MERGE( -1, 0, l == 0 ) ki = -1 + l IF ( surf_def_h(l)%ns >= 1 ) THEN DO m = surf_def_h(l)%start_index(j,i), & surf_def_h(l)%end_index(j,i) k = surf_def_h(l)%k(m) !$ACC ATOMIC sums_l(k+ki,12,tn) = sums_l(k+ki,12,tn) + & momentumflux_output_conversion(k+ki) * & surf_def_h(l)%usws(m) * rmask(j,i,sr) ! w"u" !$ACC ATOMIC sums_l(k+ki,14,tn) = sums_l(k+ki,14,tn) + & momentumflux_output_conversion(k+ki) * & surf_def_h(l)%vsws(m) * rmask(j,i,sr) ! w"v" !$ACC ATOMIC sums_l(k+ki,16,tn) = sums_l(k+ki,16,tn) + & heatflux_output_conversion(k+ki) * & surf_def_h(l)%shf(m) * rmask(j,i,sr) ! w"pt" #if 0 sums_l(k+ki,58,tn) = sums_l(k+ki,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(k+ki,61,tn) = sums_l(k+ki,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" #endif #ifndef _OPENACC IF ( ocean_mode ) THEN sums_l(k+ki,65,tn) = sums_l(k+ki,65,tn) + & surf_def_h(l)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(k+ki,48,tn) = sums_l(k+ki,48,tn) + & waterflux_output_conversion(k+ki) * & surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) ) * & surf_def_h(l)%shf(m) + 0.61_wp * pt(k+ki,j,i) * & surf_def_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) IF ( cloud_droplets ) THEN sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) - & ql(k+ki,j,i) ) * surf_def_h(l)%shf(m) + & 0.61_wp * pt(k+ki,j,i) & * surf_def_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(k+ki) /= 0.0 sums_l(k+ki,51,tn) = sums_l(k+ki,51,tn) + & waterflux_output_conversion(k+ki) * & surf_def_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(k+ki,117,tn) = sums_l(k+ki,117,tn) + & surf_def_h(l)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF #endif ENDDO ENDIF IF ( surf_lsm_h(l)%ns >= 1 ) THEN DO m = surf_lsm_h(l)%start_index(j,i), & surf_lsm_h(l)%end_index(j,i) !$ACC ATOMIC sums_l(k+ki,12,tn) = sums_l(k+ki,12,tn) + & momentumflux_output_conversion(k+ki) * & surf_lsm_h(l)%usws(m) * rmask(j,i,sr) ! w"u" !$ACC ATOMIC sums_l(k+ki,14,tn) = sums_l(k+ki,14,tn) + & momentumflux_output_conversion(k+ki) * & surf_lsm_h(l)%vsws(m) * rmask(j,i,sr) ! w"v" !$ACC ATOMIC sums_l(k+ki,16,tn) = sums_l(k+ki,16,tn) + & heatflux_output_conversion(k+ki) * & surf_lsm_h(l)%shf(m) * rmask(j,i,sr) ! w"pt" #if 0 sums_l(k+ki,58,tn) = sums_l(k+ki,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(k+ki,61,tn) = sums_l(k+ki,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" #endif #ifndef _OPENACC IF ( ocean_mode ) THEN sums_l(k+ki,65,tn) = sums_l(k+ki,65,tn) + & surf_lsm_h(l)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(k+ki,48,tn) = sums_l(k+ki,48,tn) + & waterflux_output_conversion(k+ki) * & surf_lsm_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) ) & * surf_lsm_h(l)%shf(m) + & 0.61_wp * pt(k+ki,j,i) * surf_lsm_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) IF ( cloud_droplets ) THEN sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) - & ql(k+ki,j,i) ) * surf_lsm_h(l)%shf(m) + & 0.61_wp * pt(k+ki,j,i) & * surf_lsm_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(k+ki,51,tn) = sums_l(k+ki,51,tn) + & waterflux_output_conversion(k+ki) * & surf_lsm_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(k+ki,117,tn) = sums_l(k+ki,117,tn) + & surf_lsm_h(l)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF #endif ENDDO ENDIF IF ( surf_usm_h(l)%ns >= 1 ) THEN DO m = surf_usm_h(l)%start_index(j,i), & surf_usm_h(l)%end_index(j,i) !$ACC ATOMIC sums_l(k+ki,12,tn) = sums_l(k+ki,12,tn) + & momentumflux_output_conversion(k+ki) * & surf_usm_h(l)%usws(m) * rmask(j,i,sr) ! w"u" !$ACC ATOMIC sums_l(k+ki,14,tn) = sums_l(k+ki,14,tn) + & momentumflux_output_conversion(k+ki) * & surf_usm_h(l)%vsws(m) * rmask(j,i,sr) ! w"v" !$ACC ATOMIC sums_l(k+ki,16,tn) = sums_l(k+ki,16,tn) + & heatflux_output_conversion(k+ki) * & surf_usm_h(l)%shf(m) * rmask(j,i,sr) ! w"pt" #if 0 sums_l(k+ki,58,tn) = sums_l(k+ki,58,tn) + 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(k+ki,61,tn) = sums_l(k+ki,61,tn) + 0.0_wp * rmask(j,i,sr) ! v"pt" #endif #ifndef _OPENACC IF ( ocean_mode ) THEN sums_l(k+ki,65,tn) = sums_l(k+ki,65,tn) + & surf_usm_h(l)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(k+ki,48,tn) = sums_l(k+ki,48,tn) + & waterflux_output_conversion(k+ki) * & surf_usm_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) ) * & surf_usm_h(l)%shf(m) + 0.61_wp * pt(k+ki,j,i) * & surf_usm_h(l)%qsws(m) ) & * heatflux_output_conversion(k+ki) IF ( cloud_droplets ) THEN sums_l(k+ki,45,tn) = sums_l(k+ki,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(k+ki,j,i) - & ql(k+ki,j,i) ) * surf_usm_h(l)%shf(m) + & 0.61_wp * pt(k+ki,j,i) * surf_usm_h(l)%qsws(m) )& * heatflux_output_conversion(k+ki) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(k+ki,51,tn) = sums_l(k+ki,51,tn) + & waterflux_output_conversion(k+ki) * & surf_usm_h(l)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(k+ki,117,tn) = sums_l(k+ki,117,tn) + & surf_usm_h(l)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF #endif ENDDO ENDIF ENDDO ENDIF #ifndef _OPENACC IF ( .NOT. neutral ) THEN IF ( surf_def_h(0)%end_index(j,i) >= surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + surf_def_h(0)%ol(m) * rmask(j,i,sr) ! L ENDIF IF ( surf_lsm_h(0)%end_index(j,i) >= surf_lsm_h(0)%start_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + surf_lsm_h(0)%ol(m) * rmask(j,i,sr) ! L ENDIF IF ( surf_usm_h(0)%end_index(j,i) >= surf_usm_h(0)%start_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) sums_l(nzb,112,tn) = sums_l(nzb,112,tn) + surf_usm_h(0)%ol(m) * rmask(j,i,sr) ! L ENDIF ENDIF IF ( radiation ) THEN IF ( surf_def_h(0)%end_index(j,i) >= surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_def_h(0)%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_def_h(0)%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_def_h(0)%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_def_h(0)%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_def_h(0)%rad_sw_out(m) * rmask(j,i,sr) ENDIF IF ( surf_lsm_h(0)%end_index(j,i) >= surf_lsm_h(0)%start_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_lsm_h(0)%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_lsm_h(0)%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_lsm_h(0)%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_lsm_h(0)%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_lsm_h(0)%rad_sw_out(m) * rmask(j,i,sr) ENDIF IF ( surf_usm_h(0)%end_index(j,i) >= surf_usm_h(0)%start_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) sums_l(nzb,99,tn) = sums_l(nzb,99,tn) + & surf_usm_h(0)%rad_net(m) * rmask(j,i,sr) sums_l(nzb,100,tn) = sums_l(nzb,100,tn) + & surf_usm_h(0)%rad_lw_in(m) * rmask(j,i,sr) sums_l(nzb,101,tn) = sums_l(nzb,101,tn) + & surf_usm_h(0)%rad_lw_out(m) * rmask(j,i,sr) sums_l(nzb,102,tn) = sums_l(nzb,102,tn) + & surf_usm_h(0)%rad_sw_in(m) * rmask(j,i,sr) sums_l(nzb,103,tn) = sums_l(nzb,103,tn) + & surf_usm_h(0)%rad_sw_out(m) * rmask(j,i,sr) ENDIF #if defined ( __rrtmg ) IF ( radiation_scheme == 'rrtmg' ) THEN IF ( surf_def_h(0)%end_index(j,i) >= surf_def_h(0)%start_index(j,i) ) THEN m = surf_def_h(0)%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & surf_def_h(0)%rrtm_aldif(m,0) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & surf_def_h(0)%rrtm_aldir(m,0) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & surf_def_h(0)%rrtm_asdif(m,0) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & surf_def_h(0)%rrtm_asdir(m,0) * rmask(j,i,sr) ENDIF IF ( surf_lsm_h(0)%end_index(j,i) >= surf_lsm_h(0)%start_index(j,i) ) THEN m = surf_lsm_h(0)%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & SUM( surf_lsm_h(0)%frac(m,:) * & surf_lsm_h(0)%rrtm_aldif(m,:) ) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & SUM( surf_lsm_h(0)%frac(m,:) * & surf_lsm_h(0)%rrtm_aldir(m,:) ) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & SUM( surf_lsm_h(0)%frac(m,:) * & surf_lsm_h(0)%rrtm_asdif(m,:) ) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & SUM( surf_lsm_h(0)%frac(m,:) * & surf_lsm_h(0)%rrtm_asdir(m,:) ) * rmask(j,i,sr) ENDIF IF ( surf_usm_h(0)%end_index(j,i) >= surf_usm_h(0)%start_index(j,i) ) THEN m = surf_usm_h(0)%start_index(j,i) sums_l(nzb,108,tn) = sums_l(nzb,108,tn) + & SUM( surf_usm_h(0)%frac(m,:) * & surf_usm_h(0)%rrtm_aldif(m,:) ) * rmask(j,i,sr) sums_l(nzb,109,tn) = sums_l(nzb,109,tn) + & SUM( surf_usm_h(0)%frac(m,:) * & surf_usm_h(0)%rrtm_aldir(m,:) ) * rmask(j,i,sr) sums_l(nzb,110,tn) = sums_l(nzb,110,tn) + & SUM( surf_usm_h(0)%frac(m,:) * & surf_usm_h(0)%rrtm_asdif(m,:) ) * rmask(j,i,sr) sums_l(nzb,111,tn) = sums_l(nzb,111,tn) + & SUM( surf_usm_h(0)%frac(m,:) * & surf_usm_h(0)%rrtm_asdir(m,:) ) * rmask(j,i,sr) ENDIF ENDIF #endif ENDIF #endif ! !-- Subgridscale fluxes at the top surface IF ( use_top_fluxes ) THEN m = surf_def_h(2)%start_index(j,i) !$ACC ATOMIC sums_l(nzt,12,tn) = sums_l(nzt,12,tn) + & momentumflux_output_conversion(nzt) * & surf_def_h(2)%usws(m) * rmask(j,i,sr) ! w"u" !$ACC ATOMIC sums_l(nzt+1,12,tn) = sums_l(nzt+1,12,tn) + & momentumflux_output_conversion(nzt+1) * & surf_def_h(2)%usws(m) * rmask(j,i,sr) ! w"u" !$ACC ATOMIC sums_l(nzt,14,tn) = sums_l(nzt,14,tn) + & momentumflux_output_conversion(nzt) * & surf_def_h(2)%vsws(m) * rmask(j,i,sr) ! w"v" !$ACC ATOMIC sums_l(nzt+1,14,tn) = sums_l(nzt+1,14,tn) + & momentumflux_output_conversion(nzt+1) * & surf_def_h(2)%vsws(m) * rmask(j,i,sr) ! w"v" !$ACC ATOMIC sums_l(nzt,16,tn) = sums_l(nzt,16,tn) + & heatflux_output_conversion(nzt) * & surf_def_h(2)%shf(m) * rmask(j,i,sr) ! w"pt" !$ACC ATOMIC sums_l(nzt+1,16,tn) = sums_l(nzt+1,16,tn) + & heatflux_output_conversion(nzt+1) * & surf_def_h(2)%shf(m) * rmask(j,i,sr) ! w"pt" #if 0 sums_l(nzt:nzt+1,58,tn) = sums_l(nzt:nzt+1,58,tn) + & 0.0_wp * rmask(j,i,sr) ! u"pt" sums_l(nzt:nzt+1,61,tn) = sums_l(nzt:nzt+1,61,tn) + & 0.0_wp * rmask(j,i,sr) ! v"pt" #endif #ifndef _OPENACC IF ( ocean_mode ) THEN sums_l(nzt,65,tn) = sums_l(nzt,65,tn) + & surf_def_h(2)%sasws(m) * rmask(j,i,sr) ! w"sa" ENDIF IF ( humidity ) THEN sums_l(nzt,48,tn) = sums_l(nzt,48,tn) + & waterflux_output_conversion(nzt) * & surf_def_h(2)%qsws(m) * rmask(j,i,sr) ! w"q" (w"qv") sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) ) * & surf_def_h(2)%shf(m) + & 0.61_wp * pt(nzt,j,i) * & surf_def_h(2)%qsws(m) ) & * heatflux_output_conversion(nzt) IF ( cloud_droplets ) THEN sums_l(nzt,45,tn) = sums_l(nzt,45,tn) + ( & ( 1.0_wp + 0.61_wp * q(nzt,j,i) - & ql(nzt,j,i) ) * & surf_def_h(2)%shf(m) + & 0.61_wp * pt(nzt,j,i) * & surf_def_h(2)%qsws(m) ) & * heatflux_output_conversion(nzt) ENDIF IF ( bulk_cloud_model ) THEN ! !-- Formula does not work if ql(nzb) /= 0.0 sums_l(nzt,51,tn) = sums_l(nzt,51,tn) + & ! w"q" (w"qv") waterflux_output_conversion(nzt) * & surf_def_h(2)%qsws(m) * rmask(j,i,sr) ENDIF ENDIF IF ( passive_scalar ) THEN sums_l(nzt,117,tn) = sums_l(nzt,117,tn) + & surf_def_h(2)%ssws(m) * rmask(j,i,sr) ! w"s" ENDIF #endif ENDIF ! !-- Resolved fluxes (can be computed for all horizontal points) !-- NOTE: for simplicity, nzb_s_inner is used below, although strictly speaking the !-- ---- following k-loop would have to be split up and rearranged according to the !-- staggered grid. DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) ) ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) pts = 0.5_wp * ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) ! !-- Higher moments !$ACC ATOMIC sums_l(k,35,tn) = sums_l(k,35,tn) + pts * w(k,j,i)**2 * rmask(j,i,sr) * flag !$ACC ATOMIC sums_l(k,36,tn) = sums_l(k,36,tn) + pts**2 * w(k,j,i) * rmask(j,i,sr) * flag ! !-- Salinity flux and density (density does not belong to here, but so far there is no !-- other suitable place to calculate) #ifndef _OPENACC IF ( ocean_mode ) THEN IF( .NOT. ws_scheme_sca .OR. sr /= 0 .OR. nesting_offline ) THEN pts = 0.5_wp * ( sa(k,j,i) - hom(k,1,23,sr) + & sa(k+1,j,i) - hom(k+1,1,23,sr) ) sums_l(k,66,tn) = sums_l(k,66,tn) + pts * w(k,j,i) * & rmask(j,i,sr) * flag ENDIF sums_l(k,64,tn) = sums_l(k,64,tn) + rho_ocean(k,j,i) * rmask(j,i,sr) * flag sums_l(k,71,tn) = sums_l(k,71,tn) + prho(k,j,i) * rmask(j,i,sr) * flag ENDIF ! !-- Buoyancy flux, water flux, humidity flux, liquid water content, rain drop !-- concentration and rain water content IF ( humidity ) THEN IF ( bulk_cloud_model .OR. cloud_droplets ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & rho_air_zw(k) * & heatflux_output_conversion(k) * & rmask(j,i,sr) * flag sums_l(k,54,tn) = sums_l(k,54,tn) + ql(k,j,i) * rmask(j,i,sr) * flag IF ( .NOT. cloud_droplets ) THEN pts = 0.5_wp * & ( ( q(k,j,i) - ql(k,j,i) ) - & hom(k,1,42,sr) + & ( q(k+1,j,i) - ql(k+1,j,i) ) - & hom(k+1,1,42,sr) ) sums_l(k,52,tn) = sums_l(k,52,tn) + pts * w(k,j,i) * & rho_air_zw(k) * & waterflux_output_conversion(k) * & rmask(j,i,sr) * flag sums_l(k,75,tn) = sums_l(k,75,tn) + qc(k,j,i) * rmask(j,i,sr) * flag sums_l(k,76,tn) = sums_l(k,76,tn) + prr(k,j,i) * rmask(j,i,sr) * flag IF ( microphysics_morrison ) THEN sums_l(k,123,tn) = sums_l(k,123,tn) + nc(k,j,i) * rmask(j,i,sr) * flag ENDIF IF ( microphysics_ice_phase ) THEN sums_l(k,124,tn) = sums_l(k,124,tn) + ni(k,j,i) * rmask(j,i,sr) * flag sums_l(k,125,tn) = sums_l(k,125,tn) + qi(k,j,i) * rmask(j,i,sr) * flag IF ( graupel .AND. snow ) THEN sums_l(k,126,tn) = sums_l(k,126,tn) + ng(k,j,i) * rmask(j,i,sr) * flag sums_l(k,127,tn) = sums_l(k,127,tn) + qg(k,j,i) * rmask(j,i,sr) * flag sums_l(k,128,tn) = sums_l(k,128,tn) + ns(k,j,i) * rmask(j,i,sr) * flag sums_l(k,129,tn) = sums_l(k,129,tn) + qs(k,j,i) * rmask(j,i,sr) * flag ENDIF ENDIF IF ( microphysics_seifert ) THEN sums_l(k,73,tn) = sums_l(k,73,tn) + nr(k,j,i) * rmask(j,i,sr) * flag sums_l(k,74,tn) = sums_l(k,74,tn) + qr(k,j,i) * rmask(j,i,sr) * flag ENDIF ENDIF ELSE IF( .NOT. ws_scheme_sca .OR. sr /= 0 .OR. nesting_offline ) THEN pts = 0.5_wp * ( vpt(k,j,i) - hom(k,1,44,sr) + & vpt(k+1,j,i) - hom(k+1,1,44,sr) ) sums_l(k,46,tn) = sums_l(k,46,tn) + pts * w(k,j,i) * & rho_air_zw(k) * & heatflux_output_conversion(k) * & rmask(j,i,sr) * flag ELSE IF ( ws_scheme_sca .AND. sr == 0 ) THEN ! !-- Note, in case of dynamic output units sensible and latent flux have been !-- already converted to W/m2. Thus, to obtain a correct buoyancy flux the heat !-- fluxes must be in kinematic units here. sums_l(k,46,tn) = ( ( 1.0_wp + 0.61_wp * & hom(k,1,41,sr) ) * & sums_l(k,17,tn) / heatflux_output_conversion(k) + & 0.61_wp * hom(k,1,4,sr) * & sums_l(k,49,tn) / waterflux_output_conversion(k) & ) * heatflux_output_conversion(k) * flag END IF END IF temp = exner(k) * pt(k,j,i) e_s = magnus( temp ) q_s = rd_d_rv * e_s / ( hyp(k) - e_s ) rh_tmp = q(k,j,i) / q_s * 100.0_wp sums_l(k,130,tn) = sums_l(k,130,tn) + rh_tmp * rmask(j,i,sr) * flag ENDIF ! !-- Passive scalar flux IF ( passive_scalar .AND. ( .NOT. ws_scheme_sca .OR. sr /= 0 ) ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & s(k+1,j,i) - hom(k+1,1,115,sr) ) sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * rmask(j,i,sr) * flag ENDIF #endif ! !-- Energy flux w*e* !-- has to be adjusted !$ACC ATOMIC sums_l(k,37,tn) = sums_l(k,37,tn) + w(k,j,i) * 0.5_wp * & ( ust**2 + vst**2 + w(k,j,i)**2 ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO !$OMP END PARALLEL !$ACC UPDATE & !$ACC HOST(sums_l(:,12,tn), sums_l(:,14,tn), sums_l(:,16,tn)) & !$ACC HOST(sums_l(:,35,tn), sums_l(:,36,tn), sums_l(:,37,tn)) ! !-- Treat land-surface quantities according to new wall model structure. IF ( land_surface ) THEN tn = 0 !$OMP PARALLEL PRIVATE( i, j, m, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + surf_lsm_h(0)%ghf(m) * rmask(j,i,sr) sums_l(nzb,94,tn) = sums_l(nzb,94,tn) + surf_lsm_h(0)%qsws_liq(m) * rmask(j,i,sr) sums_l(nzb,95,tn) = sums_l(nzb,95,tn) + surf_lsm_h(0)%qsws_soil(m) * rmask(j,i,sr) sums_l(nzb,96,tn) = sums_l(nzb,96,tn) + surf_lsm_h(0)%qsws_veg(m) * rmask(j,i,sr) sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + surf_lsm_h(0)%r_a(m) * rmask(j,i,sr) sums_l(nzb,98,tn) = sums_l(nzb,98,tn) + surf_lsm_h(0)%r_s(m) * rmask(j,i,sr) ENDDO !$OMP END PARALLEL tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, m, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO m = 1, surf_lsm_h(0)%ns i = surf_lsm_h(0)%i(m) j = surf_lsm_h(0)%j(m) DO k = nzb_soil, nzt_soil sums_l(k,89,tn) = sums_l(k,89,tn) + t_soil_h(0)%var_2d(k,m) * rmask(j,i,sr) sums_l(k,91,tn) = sums_l(k,91,tn) + m_soil_h(0)%var_2d(k,m) * rmask(j,i,sr) ENDDO ENDDO !$OMP END PARALLEL ENDIF ! !-- Treat urban-surface quantities according to new wall model structure. Here, ghf and r_a are !-- added on top of LSM sums. IF ( land_surface .AND. urban_surface ) THEN tn = 0 !$OMP PARALLEL PRIVATE( i, j, m, tn ) !$ tn = omp_get_thread_num() !$OMP DO DO m = 1, surf_usm_h(0)%ns i = surf_usm_h(0)%i(m) j = surf_usm_h(0)%j(m) sums_l(nzb,93,tn) = sums_l(nzb,93,tn) + surf_usm_h(0)%wghf_eb(m) * rmask(j,i,sr) sums_l(nzb,97,tn) = sums_l(nzb,97,tn) + surf_usm_h(0)%r_a(m) * rmask(j,i,sr) ENDDO !$OMP END PARALLEL ENDIF ! !-- For speed optimization fluxes which have been computed in part directly inside the WS !-- advection routines are treated seperatly. !-- Momentum fluxes first: tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn, flag ) !$ tn = omp_get_thread_num() IF ( .NOT. ws_scheme_mom .OR. sr /= 0 ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt ! !-- Flag 23 is used to mask surface fluxes as well as model-top fluxes, which are !-- added further below. flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 9 ) ) ust = 0.5_wp * ( u(k,j,i) - hom(k,1,1,sr) + & u(k+1,j,i) - hom(k+1,1,1,sr) ) vst = 0.5_wp * ( v(k,j,i) - hom(k,1,2,sr) + & v(k+1,j,i) - hom(k+1,1,2,sr) ) ! !-- Momentum flux w*u* sums_l(k,13,tn) = sums_l(k,13,tn) + 0.5_wp * & ( w(k,j,i-1) + w(k,j,i) ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * ust * rmask(j,i,sr) & * flag ! !-- Momentum flux w*v* sums_l(k,15,tn) = sums_l(k,15,tn) + 0.5_wp * ( w(k,j-1,i) + w(k,j,i) ) & * rho_air_zw(k) & * momentumflux_output_conversion(k) & * vst * rmask(j,i,sr) & * flag ENDDO ENDDO ENDDO ENDIF IF ( .NOT. ws_scheme_sca .OR. sr /= 0 .OR. nesting_offline ) THEN sums_l(:,17,:) = 0.0_wp !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 23 ) ) * & MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 9 ) ) ! !-- Vertical heat flux sums_l(k,17,tn) = sums_l(k,17,tn) + 0.5_wp * & ( pt(k,j,i) - hom(k,1,4,sr) + & pt(k+1,j,i) - hom(k+1,1,4,sr) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ( w(k,j,i) - hom(k,1,3,sr) ) * rmask(j,i,sr) * flag IF ( humidity ) THEN pts = 0.5_wp * ( q(k,j,i) - hom(k,1,41,sr) + & q(k+1,j,i) - hom(k+1,1,41,sr) ) sums_l(k,49,tn) = sums_l(k,49,tn) + pts * w(k,j,i) * & rho_air_zw(k) * & waterflux_output_conversion(k) * & rmask(j,i,sr) * flag ENDIF IF ( passive_scalar ) THEN pts = 0.5_wp * ( s(k,j,i) - hom(k,1,115,sr) + & s(k+1,j,i) - hom(k+1,1,115,sr) ) sums_l(k,114,tn) = sums_l(k,114,tn) + pts * w(k,j,i) * rmask(j,i,sr) * flag ENDIF ENDDO ENDDO ENDDO ENDIF ! !-- Density at top follows Neumann condition IF ( ocean_mode ) THEN sums_l(nzt+1,64,tn) = sums_l(nzt,64,tn) sums_l(nzt+1,71,tn) = sums_l(nzt,71,tn) ENDIF ! !-- Divergence of vertical flux of resolved scale energy and pressure fluctuations as well as !-- flux of pressure fluctuation itself (68). !-- First calculate the products, then the divergence. !-- Calculation is time consuming. Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,55,0) /= 0.0_wp .OR. hom(nzb+1,2,68,0) /= 0.0_wp ) THEN sums_ll = 0.0_wp ! local array !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) ) sums_ll(k,1) = sums_ll(k,1) + 0.5_wp * w(k,j,i) * ( & ( 0.25_wp * ( u(k,j,i)+u(k+1,j,i)+u(k,j,i+1)+u(k+1,j,i+1) ) & - 0.5_wp * ( hom(k,1,1,sr) + hom(k+1,1,1,sr) ) )**2 & + ( 0.25_wp * ( v(k,j,i)+v(k+1,j,i)+v(k,j+1,i)+v(k+1,j+1,i) ) & - 0.5_wp * ( hom(k,1,2,sr) + hom(k+1,1,2,sr) ) )**2 & + w(k,j,i)**2 ) * flag * rmask(j,i,sr) sums_ll(k,2) = sums_ll(k,2) + 0.5_wp * w(k,j,i) & * ( ( p(k,j,i) + p(k+1,j,i) ) & / momentumflux_output_conversion(k) ) & * flag * rmask(j,i,sr) ENDDO ENDDO ENDDO sums_ll(0,1) = 0.0_wp ! because w is zero at the bottom sums_ll(nzt+1,1) = 0.0_wp sums_ll(0,2) = 0.0_wp sums_ll(nzt+1,2) = 0.0_wp DO k = nzb+1, nzt sums_l(k,55,tn) = ( sums_ll(k,1) - sums_ll(k-1,1) ) * ddzw(k) sums_l(k,56,tn) = ( sums_ll(k,2) - sums_ll(k-1,2) ) * ddzw(k) sums_l(k,68,tn) = sums_ll(k,2) ENDDO sums_l(nzb,55,tn) = sums_l(nzb+1,55,tn) sums_l(nzb,56,tn) = sums_l(nzb+1,56,tn) sums_l(nzb,68,tn) = 0.0_wp ! because w* = 0 at nzb ENDIF ! !-- Divergence of vertical flux of SGS TKE and the flux itself (69) IF ( hom(nzb+1,2,57,0) /= 0.0_wp .OR. hom(nzb+1,2,69,0) /= 0.0_wp ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) ) sums_l(k,57,tn) = sums_l(k,57,tn) - 0.5_wp * ( & (km(k,j,i)+km(k+1,j,i)) * (e(k+1,j,i)-e(k,j,i)) * ddzu(k+1) & - (km(k-1,j,i)+km(k,j,i)) * (e(k,j,i)-e(k-1,j,i)) * ddzu(k) & ) * ddzw(k) & * flag * rmask(j,i,sr) sums_l(k,69,tn) = sums_l(k,69,tn) - 0.5_wp * ( & ( km(k,j,i) + km(k+1,j,i) ) * & ( e(k+1,j,i) - e(k,j,i) ) * ddzu(k+1) & ) * flag * rmask(j,i,sr) ENDDO ENDDO ENDDO sums_l(nzb,57,tn) = sums_l(nzb+1,57,tn) sums_l(nzb,69,tn) = sums_l(nzb+1,69,tn) ENDIF ! !-- Horizontal heat fluxes (subgrid, resolved, total). !-- Do it only, if profiles shall be plotted. IF ( hom(nzb+1,2,58,0) /= 0.0_wp ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) ) ! !-- Subgrid horizontal heat fluxes u"pt", v"pt" sums_l(k,58,tn) = sums_l(k,58,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j,i-1) ) & * ( pt(k,j,i-1) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddx * rmask(j,i,sr) * flag sums_l(k,61,tn) = sums_l(k,61,tn) - 0.5_wp * & ( kh(k,j,i) + kh(k,j-1,i) ) & * ( pt(k,j-1,i) - pt(k,j,i) ) & * rho_air_zw(k) & * heatflux_output_conversion(k) & * ddy * rmask(j,i,sr) * flag ! !-- Resolved horizontal heat fluxes u*pt*, v*pt* sums_l(k,59,tn) = sums_l(k,59,tn) + ( u(k,j,i) - hom(k,1,1,sr) ) & * 0.5_wp * ( pt(k,j,i-1) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) & * heatflux_output_conversion(k) & * flag pts = 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) sums_l(k,62,tn) = sums_l(k,62,tn) + ( v(k,j,i) - hom(k,1,2,sr) ) & * 0.5_wp * ( pt(k,j-1,i) - hom(k,1,4,sr) + & pt(k,j,i) - hom(k,1,4,sr) ) & * heatflux_output_conversion(k) & * flag ENDDO ENDDO ENDDO ! !-- Fluxes at the surface must be zero (e.g. due to the Prandtl-layer) sums_l(nzb,58,tn) = 0.0_wp sums_l(nzb,59,tn) = 0.0_wp sums_l(nzb,60,tn) = 0.0_wp sums_l(nzb,61,tn) = 0.0_wp sums_l(nzb,62,tn) = 0.0_wp sums_l(nzb,63,tn) = 0.0_wp ENDIF !$OMP END PARALLEL ! !-- Collect current large scale advection and subsidence tendencies for !-- data output IF ( large_scale_forcing .AND. ( simulated_time > 0.0_wp ) ) THEN ! !-- Interpolation in time of LSF_DATA nt = 1 DO WHILE ( simulated_time - dt_3d > time_vert(nt) ) nt = nt + 1 ENDDO IF ( simulated_time - dt_3d /= time_vert(nt) ) THEN nt = nt - 1 ENDIF fac = ( simulated_time - dt_3d - time_vert(nt) ) / ( time_vert(nt+1)-time_vert(nt) ) DO k = nzb, nzt sums_ls_l(k,0) = td_lsa_lpt(k,nt) + fac * ( td_lsa_lpt(k,nt+1) - td_lsa_lpt(k,nt) ) sums_ls_l(k,1) = td_lsa_q(k,nt) + fac * ( td_lsa_q(k,nt+1) - td_lsa_q(k,nt) ) ENDDO sums_ls_l(nzt+1,0) = sums_ls_l(nzt,0) sums_ls_l(nzt+1,1) = sums_ls_l(nzt,1) IF ( large_scale_subsidence .AND. use_subsidence_tendencies ) THEN DO k = nzb, nzt sums_ls_l(k,2) = td_sub_lpt(k,nt) + fac * ( td_sub_lpt(k,nt+1) - td_sub_lpt(k,nt) ) sums_ls_l(k,3) = td_sub_q(k,nt) + fac * ( td_sub_q(k,nt+1) - td_sub_q(k,nt) ) ENDDO sums_ls_l(nzt+1,2) = sums_ls_l(nzt,2) sums_ls_l(nzt+1,3) = sums_ls_l(nzt,3) ENDIF ENDIF tn = 0 !$OMP PARALLEL PRIVATE( i, j, k, tn ) !$ tn = omp_get_thread_num() IF ( radiation .AND. radiation_scheme == 'rrtmg' ) THEN !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) ) sums_l(k,100,tn) = sums_l(k,100,tn) + rad_lw_in(k,j,i) * rmask(j,i,sr) * flag sums_l(k,101,tn) = sums_l(k,101,tn) + rad_lw_out(k,j,i) * rmask(j,i,sr) * flag sums_l(k,102,tn) = sums_l(k,102,tn) + rad_sw_in(k,j,i) * rmask(j,i,sr) * flag sums_l(k,103,tn) = sums_l(k,103,tn) + rad_sw_out(k,j,i) * rmask(j,i,sr) * flag sums_l(k,104,tn) = sums_l(k,104,tn) + rad_lw_cs_hr(k,j,i) * rmask(j,i,sr) * flag sums_l(k,105,tn) = sums_l(k,105,tn) + rad_lw_hr(k,j,i) * rmask(j,i,sr) * flag sums_l(k,106,tn) = sums_l(k,106,tn) + rad_sw_cs_hr(k,j,i) * rmask(j,i,sr) * flag sums_l(k,107,tn) = sums_l(k,107,tn) + rad_sw_hr(k,j,i) * rmask(j,i,sr) * flag ENDDO ENDDO ENDDO ENDIF ! !-- Calculate the profiles for all other modules CALL module_interface_statistics( 'profiles', sr, tn, dots_max ) !$OMP END PARALLEL ! !-- Summation of thread sums IF ( threads_per_task > 1 ) THEN DO i = 1, threads_per_task-1 sums_l(:,3,0) = sums_l(:,3,0) + sums_l(:,3,i) sums_l(:,4:40,0) = sums_l(:,4:40,0) + sums_l(:,4:40,i) sums_l(:,45:pr_palm,0) = sums_l(:,45:pr_palm,0) + & sums_l(:,45:pr_palm,i) IF ( max_pr_user > 0 ) THEN sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) = & sums_l(:,pr_palm+1:pr_palm+max_pr_user,0) + & sums_l(:,pr_palm+1:pr_palm+max_pr_user,i) ENDIF IF ( air_chemistry ) THEN IF ( max_pr_cs > 0 ) THEN sums_l(:,pr_palm+max_pr_user+1:pr_palm + max_pr_user+ max_pr_cs,0) = & sums_l(:,pr_palm+max_pr_user+1:pr_palm+max_pr_user+max_pr_cs,0) + & sums_l(:,pr_palm+max_pr_user+1:pr_palm+max_pr_user+max_pr_cs,i) ENDIF ENDIF IF ( salsa ) THEN IF ( max_pr_cs > 0 ) THEN sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0) = & sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0) + & sums_l(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,i) ENDIF ENDIF ENDDO ENDIF #if defined( __parallel ) ! !-- Compute total sum from local sums IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), ngp_sums, MPI_REAL, MPI_SUM, comm2d, ierr ) IF ( large_scale_forcing ) THEN CALL MPI_ALLREDUCE( sums_ls_l(nzb,2), sums(nzb,83), ngp_sums_ls, MPI_REAL, MPI_SUM, & comm2d, ierr ) ENDIF IF ( air_chemistry .AND. max_pr_cs > 0 ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) DO i = 1, max_pr_cs CALL MPI_ALLREDUCE( sums_l(nzb,pr_palm+max_pr_user+i,0), & sums(nzb,pr_palm+max_pr_user+i), & nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, ierr ) ENDDO ENDIF IF ( salsa .AND. max_pr_salsa > 0 ) THEN IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) DO i = 1, max_pr_salsa CALL MPI_ALLREDUCE( sums_l(nzb,pr_palm+max_pr_user+max_pr_cs+i,0), & sums(nzb,pr_palm+max_pr_user+max_pr_user+i), & nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, ierr ) ENDDO ENDIF #else sums = sums_l(:,:,0) IF ( large_scale_forcing ) THEN sums(:,81:88) = sums_ls_l ENDIF #endif ! !-- Final values are obtained by division by the total number of grid points used for summation. !-- After that store profiles. !-- Check, if statistical regions do contain at least one grid point at the respective k-level, !-- otherwise division by zero will lead to undefined values, which may cause e.g. problems with !-- NetCDF output. !-- Profiles: DO k = nzb, nzt+1 sums(k,3) = sums(k,3) / ngp_2dh(sr) sums(k,12:22) = sums(k,12:22) / ngp_2dh(sr) sums(k,30:32) = sums(k,30:32) / ngp_2dh(sr) sums(k,35:39) = sums(k,35:39) / ngp_2dh(sr) sums(k,45:53) = sums(k,45:53) / ngp_2dh(sr) sums(k,55:63) = sums(k,55:63) / ngp_2dh(sr) sums(k,81:88) = sums(k,81:88) / ngp_2dh(sr) ! !-- Average land-surface quantities over LSM surfaces only IF ( land_surface .AND. surf_lsm_h(0)%ns_tot > 0 ) THEN sums(k,89:92) = sums(k,89:92) / surf_lsm_h(0)%ns_tot sums(k,94:96) = sums(k,94:96) / surf_lsm_h(0)%ns_tot sums(k,98) = sums(k,98) / surf_lsm_h(0)%ns_tot ENDIF ! !-- Average land/urban-surface quantities over LSM+USM surfaces. Note, at the moment this !-- only works when the land-surface model runs alone or in combination with the urban- !-- surface model. This is because the number of output quantities is defined by the LSM. !-- This needs to be revised in the future. IF ( land_surface .AND. surf_lsm_h(0)%ns_tot + surf_usm_h(0)%ns_tot > 0 ) THEN ! print*, surf_lsm_h(0)%ns_tot + surf_usm_h(0)%ns_tot, surf_lsm_h(0)%ns_tot, surf_usm_h(0)%ns_tot sums(k,93) = sums(k,93) / ( surf_lsm_h(0)%ns_tot + surf_usm_h(0)%ns_tot ) sums(k,97) = sums(k,97) / ( surf_lsm_h(0)%ns_tot + surf_usm_h(0)%ns_tot ) ENDIF sums(k,99:112) = sums(k,99:112) / ngp_2dh(sr) sums(k,114) = sums(k,114) / ngp_2dh(sr) sums(k,117) = sums(k,117) / ngp_2dh(sr) IF ( ngp_2dh_s_inner(k,sr) /= 0 ) THEN sums(k,8:11) = sums(k,8:11) / ngp_2dh_s_inner(k,sr) sums(k,23:29) = sums(k,23:29) / ngp_2dh_s_inner(k,sr) sums(k,33:34) = sums(k,33:34) / ngp_2dh_s_inner(k,sr) sums(k,40) = sums(k,40) / ngp_2dh_s_inner(k,sr) sums(k,54) = sums(k,54) / ngp_2dh_s_inner(k,sr) sums(k,64) = sums(k,64) / ngp_2dh_s_inner(k,sr) sums(k,70:80) = sums(k,70:80) / ngp_2dh_s_inner(k,sr) sums(k,116) = sums(k,116) / ngp_2dh_s_inner(k,sr) sums(k,118:pr_palm-2) = sums(k,118:pr_palm-2) / ngp_2dh_s_inner(k,sr) sums(k,123:130) = sums(k,123:130) * ngp_2dh_s_inner(k,sr) / ngp_2dh(sr) ENDIF ENDDO !-- u* and so on !-- As sums(nzb:nzb+3,pr_palm) are full 2D arrays (us, usws, vsws, ts) whose size is always !-- ( nx + 1 ) * ( ny + 1 ), defined at the first grid layer above the topography, they are !-- divided by ngp_2dh(sr) sums(nzb:nzb+3,pr_palm) = sums(nzb:nzb+3,pr_palm) / ngp_2dh(sr) sums(nzb+12,pr_palm) = sums(nzb+12,pr_palm) / ngp_2dh(sr) ! qs sums(nzb+13,pr_palm) = sums(nzb+13,pr_palm) / ngp_2dh(sr) ! ss sums(nzb+14,pr_palm) = sums(nzb+14,pr_palm) / ngp_2dh(sr) ! surface temperature !-- eges, e* sums(nzb+4:nzb+5,pr_palm) = sums(nzb+4:nzb+5,pr_palm) / ngp_3d(sr) !-- Old and new divergence sums(nzb+9:nzb+10,pr_palm) = sums(nzb+9:nzb+10,pr_palm) / ngp_3d_inner(sr) !-- User-defined profiles IF ( max_pr_user > 0 ) THEN DO k = nzb, nzt+1 sums(k,pr_palm+1:pr_palm+max_pr_user) = sums(k,pr_palm+1:pr_palm+max_pr_user) / & ngp_2dh_s_inner(k,sr) ENDDO ENDIF IF ( air_chemistry ) THEN IF ( max_pr_cs > 0 ) THEN DO k = nzb, nzt+1 sums(k, pr_palm+1:pr_palm+max_pr_user+max_pr_cs) = & sums(k, pr_palm+1:pr_palm+max_pr_user+max_pr_cs) / & ngp_2dh_s_inner(k,sr) ENDDO ENDIF ENDIF IF ( salsa ) THEN IF ( max_pr_salsa > 0 ) THEN DO k = nzb, nzt+1 sums(k,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) = & sums(k,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) & / ngp_2dh_s_inner(k,sr) ENDDO ENDIF ENDIF ! !-- Collect horizontal average in hom. !-- Compute deduced averages (e.g. total heat flux) hom(:,1,3,sr) = sums(:,3) ! w hom(:,1,8,sr) = sums(:,8) ! e profiles 5-7 are initial profiles hom(:,1,9,sr) = sums(:,9) ! km hom(:,1,10,sr) = sums(:,10) ! kh hom(:,1,11,sr) = sums(:,11) ! l hom(:,1,12,sr) = sums(:,12) ! w"u" hom(:,1,13,sr) = sums(:,13) ! w*u* hom(:,1,14,sr) = sums(:,14) ! w"v" hom(:,1,15,sr) = sums(:,15) ! w*v* hom(:,1,16,sr) = sums(:,16) ! w"pt" hom(:,1,17,sr) = sums(:,17) ! w*pt* hom(:,1,18,sr) = sums(:,16) + sums(:,17) ! wpt hom(:,1,19,sr) = sums(:,12) + sums(:,13) ! wu hom(:,1,20,sr) = sums(:,14) + sums(:,15) ! wv hom(:,1,21,sr) = sums(:,21) ! w*pt*BC hom(:,1,22,sr) = sums(:,16) + sums(:,21) ! wptBC ! profile 24 is initial profile (sa) ! profiles 25-29 left empty for initial ! profiles hom(:,1,30,sr) = sums(:,30) ! u*2 hom(:,1,31,sr) = sums(:,31) ! v*2 hom(:,1,32,sr) = sums(:,32) ! w*2 hom(:,1,33,sr) = sums(:,33) ! pt*2 hom(:,1,34,sr) = sums(:,34) ! e* hom(:,1,35,sr) = sums(:,35) ! w*2pt* hom(:,1,36,sr) = sums(:,36) ! w*pt*2 hom(:,1,37,sr) = sums(:,37) ! w*e* hom(:,1,38,sr) = sums(:,38) ! w*3 hom(:,1,39,sr) = sums(:,38) / ( ABS( sums(:,32) ) + 1E-20_wp )**1.5_wp ! Sw hom(:,1,40,sr) = sums(:,40) ! p hom(:,1,45,sr) = sums(:,45) ! w"vpt" hom(:,1,46,sr) = sums(:,46) ! w*vpt* hom(:,1,47,sr) = sums(:,45) + sums(:,46) ! wvpt hom(:,1,48,sr) = sums(:,48) ! w"q" (w"qv") hom(:,1,49,sr) = sums(:,49) ! w*q* (w*qv*) hom(:,1,50,sr) = sums(:,48) + sums(:,49) ! wq (wqv) hom(:,1,51,sr) = sums(:,51) ! w"qv" hom(:,1,52,sr) = sums(:,52) ! w*qv* hom(:,1,53,sr) = sums(:,52) + sums(:,51) ! wq (wqv) hom(:,1,54,sr) = sums(:,54) ! ql hom(:,1,55,sr) = sums(:,55) ! w*u*u*/dz hom(:,1,56,sr) = sums(:,56) ! w*p*/dz hom(:,1,57,sr) = sums(:,57) ! ( w"e + w"p"/rho_ocean )/dz hom(:,1,58,sr) = sums(:,58) ! u"pt" hom(:,1,59,sr) = sums(:,59) ! u*pt* hom(:,1,60,sr) = sums(:,58) + sums(:,59) ! upt_t hom(:,1,61,sr) = sums(:,61) ! v"pt" hom(:,1,62,sr) = sums(:,62) ! v*pt* hom(:,1,63,sr) = sums(:,61) + sums(:,62) ! vpt_t hom(:,1,64,sr) = sums(:,64) ! rho_ocean hom(:,1,65,sr) = sums(:,65) ! w"sa" hom(:,1,66,sr) = sums(:,66) ! w*sa* hom(:,1,67,sr) = sums(:,65) + sums(:,66) ! wsa hom(:,1,68,sr) = sums(:,68) ! w*p* hom(:,1,69,sr) = sums(:,69) ! w"e + w"p"/rho_ocean hom(:,1,70,sr) = sums(:,70) ! q*2 hom(:,1,71,sr) = sums(:,71) ! prho hom(:,1,72,sr) = hyp * 1E-2_wp ! hyp in hPa hom(:,1,123,sr) = sums(:,123) ! nc hom(:,1,124,sr) = sums(:,124) ! ni hom(:,1,125,sr) = sums(:,125) ! qi hom(:,1,126,sr) = sums(:,126) ! ng hom(:,1,127,sr) = sums(:,127) ! qg hom(:,1,128,sr) = sums(:,128) ! ns hom(:,1,129,sr) = sums(:,129) ! qs hom(:,1,130,sr) = sums(:,130) ! rh hom(:,1,73,sr) = sums(:,73) ! nr hom(:,1,74,sr) = sums(:,74) ! qr hom(:,1,75,sr) = sums(:,75) ! qc hom(:,1,76,sr) = sums(:,76) ! prr (precipitation rate) ! 77 is initial density profile hom(:,1,78,sr) = ug ! ug hom(:,1,79,sr) = vg ! vg hom(:,1,80,sr) = w_subs ! w_subs IF ( large_scale_forcing ) THEN hom(:,1,81,sr) = sums_ls_l(:,0) ! td_lsa_lpt hom(:,1,82,sr) = sums_ls_l(:,1) ! td_lsa_q IF ( use_subsidence_tendencies ) THEN hom(:,1,83,sr) = sums_ls_l(:,2) ! td_sub_lpt hom(:,1,84,sr) = sums_ls_l(:,3) ! td_sub_q ELSE hom(:,1,83,sr) = sums(:,83) ! td_sub_lpt hom(:,1,84,sr) = sums(:,84) ! td_sub_q ENDIF hom(:,1,85,sr) = sums(:,85) ! td_nud_lpt hom(:,1,86,sr) = sums(:,86) ! td_nud_q hom(:,1,87,sr) = sums(:,87) ! td_nud_u hom(:,1,88,sr) = sums(:,88) ! td_nud_v ENDIF IF ( land_surface ) THEN hom(:,1,89,sr) = sums(:,89) ! t_soil ! 90 is initial t_soil profile hom(:,1,91,sr) = sums(:,91) ! m_soil ! 92 is initial m_soil profile hom(:,1,93,sr) = sums(:,93) ! ghf hom(:,1,94,sr) = sums(:,94) ! qsws_liq hom(:,1,95,sr) = sums(:,95) ! qsws_soil hom(:,1,96,sr) = sums(:,96) ! qsws_veg hom(:,1,97,sr) = sums(:,97) ! r_a hom(:,1,98,sr) = sums(:,98) ! r_s ENDIF IF ( radiation ) THEN hom(:,1,99,sr) = sums(:,99) ! rad_net hom(:,1,100,sr) = sums(:,100) ! rad_lw_in hom(:,1,101,sr) = sums(:,101) ! rad_lw_out hom(:,1,102,sr) = sums(:,102) ! rad_sw_in hom(:,1,103,sr) = sums(:,103) ! rad_sw_out IF ( radiation_scheme == 'rrtmg' ) THEN hom(:,1,104,sr) = sums(:,104) ! rad_lw_cs_hr hom(:,1,105,sr) = sums(:,105) ! rad_lw_hr hom(:,1,106,sr) = sums(:,106) ! rad_sw_cs_hr hom(:,1,107,sr) = sums(:,107) ! rad_sw_hr hom(:,1,108,sr) = sums(:,108) ! rrtm_aldif hom(:,1,109,sr) = sums(:,109) ! rrtm_aldir hom(:,1,110,sr) = sums(:,110) ! rrtm_asdif hom(:,1,111,sr) = sums(:,111) ! rrtm_asdir ENDIF ENDIF hom(:,1,112,sr) = sums(:,112) !: L IF ( passive_scalar ) THEN hom(:,1,117,sr) = sums(:,117) ! w"s" hom(:,1,114,sr) = sums(:,114) ! w*s* hom(:,1,118,sr) = sums(:,117) + sums(:,114) ! ws hom(:,1,116,sr) = sums(:,116) ! s*2 ENDIF hom(:,1,119,sr) = rho_air ! rho_air in Kg/m^3 hom(:,1,120,sr) = rho_air_zw ! rho_air_zw in Kg/m^3 IF ( kolmogorov_length_scale ) THEN hom(:,1,121,sr) = sums(:,121) * 1E3_wp ! eta in mm ENDIF hom(:,1,pr_palm,sr) = sums(:,pr_palm) ! u*, w'u', w'v', t* (in last profile) IF ( max_pr_user > 0 ) THEN ! user-defined profiles hom(:,1,pr_palm+1:pr_palm+max_pr_user,sr) = & sums(:,pr_palm+1:pr_palm+max_pr_user) ENDIF IF ( air_chemistry ) THEN IF ( max_pr_cs > 0 ) THEN ! chem_spcs profiles hom(:, 1, pr_palm+max_pr_user+1:pr_palm + max_pr_user+max_pr_cs, sr) = & sums(:, pr_palm+max_pr_user+1:pr_palm+max_pr_user+max_pr_cs) ENDIF ENDIF IF ( salsa ) THEN IF ( max_pr_salsa > 0 ) THEN ! salsa profiles hom(:,1,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa, sr) = & sums(:,pr_palm+max_pr_user+max_pr_cs+1:pr_palm+max_pr_user+max_pr_cs+max_pr_salsa) ENDIF ENDIF ! !-- Determine the boundary layer height using two different schemes. !-- First scheme: Starting from the Earth's (Ocean's) surface, look for the first relative !-- minimum (maximum) of the total heat flux. !-- The corresponding height is assumed as the boundary layer height, if it is less than 1.5 !-- times the height where the heat flux becomes negative (positive) for the first time. !-- Attention: the resolved vertical sensible heat flux (hom(:,1,17,sr) = w*pt*) is not known at !-- the beginning because the calculation happens in advec_s_ws which is called after !-- flow_statistics. Therefore z_i is directly taken from restart data at the beginning of !-- restart runs. IF ( TRIM( initializing_actions ) /= 'read_restart_data' .OR. & simulated_time_at_begin /= simulated_time ) THEN z_i(1) = 0.0_wp first = .TRUE. IF ( ocean_mode ) THEN DO k = nzt, nzb+1, -1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. hom(k-1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ELSE DO k = nzb, nzt-1 IF ( first .AND. hom(k,1,18,sr) < -1.0E-8_wp ) THEN first = .FALSE. height = zw(k) ENDIF IF ( hom(k,1,18,sr) < -1.0E-8_wp .AND. hom(k+1,1,18,sr) > hom(k,1,18,sr) ) THEN IF ( zw(k) < 1.5_wp * height ) THEN z_i(1) = zw(k) ELSE z_i(1) = height ENDIF EXIT ENDIF ENDDO ENDIF ! !-- Second scheme: Gradient scheme from Sullivan et al. (1998), modified by Uhlenbrock(2006). !-- The boundary layer height is the height with the maximal local temperature gradient: !-- starting from the second (the last but one) vertical gridpoint, the local gradient must be !-- at least 0.2K/100m and greater than the next four gradients. !-- WARNING: The threshold value of 0.2K/100m must be adjusted for the !-- ocean case! z_i(2) = 0.0_wp DO k = nzb+1, nzt+1 dptdz(k) = ( hom(k,1,4,sr) - hom(k-1,1,4,sr) ) * ddzu(k) ENDDO dptdz_threshold = 0.2_wp / 100.0_wp IF ( ocean_mode ) THEN DO k = nzt+1, nzb+5, -1 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k-1) .AND. dptdz(k) > dptdz(k-2) .AND. & dptdz(k) > dptdz(k-3) .AND. dptdz(k) > dptdz(k-4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ELSE DO k = nzb+1, nzt-3 IF ( dptdz(k) > dptdz_threshold .AND. & dptdz(k) > dptdz(k+1) .AND. dptdz(k) > dptdz(k+2) .AND. & dptdz(k) > dptdz(k+3) .AND. dptdz(k) > dptdz(k+4) ) THEN z_i(2) = zw(k-1) EXIT ENDIF ENDDO ENDIF ENDIF hom(nzb+6,1,pr_palm,sr) = z_i(1) hom(nzb+7,1,pr_palm,sr) = z_i(2) ! !-- Determine vertical index which is nearest to the mean surface level height of the respective !-- statistic region DO k = nzb, nzt IF ( zw(k) >= mean_surface_level_height(sr) ) THEN k_surface_level = k EXIT ENDIF ENDDO ! !-- Computation of both the characteristic vertical velocity and the characteristic convective !-- boundary layer temperature. !-- The inversion height entering into the equation is defined with respect to the mean surface !-- level height of the respective statistic region. !-- The horizontal average at surface level index + 1 is input for the average temperature. IF ( hom(k_surface_level,1,18,sr) > 1.0E-8_wp .AND. z_i(1) /= 0.0_wp ) THEN hom(nzb+8,1,pr_palm,sr) = & ( g / hom(k_surface_level+1,1,4,sr) * & ( hom(k_surface_level,1,18,sr) / & ( heatflux_output_conversion(nzb) * rho_air(nzb) ) ) & * ABS( z_i(1) - mean_surface_level_height(sr) ) )**0.333333333_wp ELSE hom(nzb+8,1,pr_palm,sr) = 0.0_wp ENDIF ! !-- Collect the time series quantities. Please note, timeseries quantities which are collected !-- from horizontally averaged profiles, e.g. wpt or pt(zp), are treated specially. In case of !-- elevated model surfaces, index nzb+1 might be within topography and data will be zero. !-- Therefore, take value for the first atmosphere index, which is topo_min_level+1. ts_value(1,sr) = hom(nzb+4,1,pr_palm,sr) ! E ts_value(2,sr) = hom(nzb+5,1,pr_palm,sr) ! E* ts_value(3,sr) = dt_3d ts_value(4,sr) = hom(nzb,1,pr_palm,sr) ! u* ts_value(5,sr) = hom(nzb+3,1,pr_palm,sr) ! th* ts_value(6,sr) = u_max ts_value(7,sr) = v_max ts_value(8,sr) = w_max ts_value(9,sr) = hom(nzb+10,1,pr_palm,sr) ! new divergence ts_value(10,sr) = hom(nzb+9,1,pr_palm,sr) ! old Divergence ts_value(11,sr) = hom(nzb+6,1,pr_palm,sr) ! z_i(1) ts_value(12,sr) = hom(nzb+7,1,pr_palm,sr) ! z_i(2) ts_value(13,sr) = hom(nzb+8,1,pr_palm,sr) ! w* ts_value(14,sr) = hom(nzb,1,16,sr) ! w'pt' at k=0 ts_value(15,sr) = hom(topo_min_level+1,1,16,sr) ! w'pt' at k=1 ts_value(16,sr) = hom(topo_min_level+1,1,18,sr) ! wpt at k=1 ts_value(17,sr) = hom(nzb+14,1,pr_palm,sr) ! pt(0) ts_value(18,sr) = hom(topo_min_level+1,1,4,sr) ! pt(zp) ts_value(19,sr) = hom(nzb+1,1,pr_palm,sr) ! u'w' at k=0 ts_value(20,sr) = hom(nzb+2,1,pr_palm,sr) ! v'w' at k=0 ts_value(21,sr) = hom(nzb,1,48,sr) ! w"q" at k=0 IF ( .NOT. neutral ) THEN ts_value(22,sr) = hom(nzb,1,112,sr) ! L ELSE ts_value(22,sr) = 1.0E10_wp ENDIF ts_value(23,sr) = hom(nzb+12,1,pr_palm,sr) ! q* IF ( passive_scalar ) THEN ts_value(24,sr) = hom(nzb+13,1,117,sr) ! w"s" ( to do ! ) ts_value(25,sr) = hom(nzb+13,1,pr_palm,sr) ! s* ENDIF ! !-- Collect land surface model timeseries IF ( land_surface ) THEN ts_value(dots_soil ,sr) = hom(nzb,1,93,sr) ! ghf ts_value(dots_soil+1,sr) = hom(nzb,1,94,sr) ! qsws_liq ts_value(dots_soil+2,sr) = hom(nzb,1,95,sr) ! qsws_soil ts_value(dots_soil+3,sr) = hom(nzb,1,96,sr) ! qsws_veg ts_value(dots_soil+4,sr) = hom(nzb,1,97,sr) ! r_a ts_value(dots_soil+5,sr) = hom(nzb,1,98,sr) ! r_s ENDIF ! !-- Collect radiation model timeseries IF ( radiation ) THEN ts_value(dots_rad,sr) = hom(nzb,1,99,sr) ! rad_net ts_value(dots_rad+1,sr) = hom(nzb,1,100,sr) ! rad_lw_in ts_value(dots_rad+2,sr) = hom(nzb,1,101,sr) ! rad_lw_out ts_value(dots_rad+3,sr) = hom(nzb,1,102,sr) ! rad_sw_in ts_value(dots_rad+4,sr) = hom(nzb,1,103,sr) ! rad_sw_out IF ( radiation_scheme == 'rrtmg' ) THEN ts_value(dots_rad+5,sr) = hom(nzb,1,108,sr) ! rrtm_aldif ts_value(dots_rad+6,sr) = hom(nzb,1,109,sr) ! rrtm_aldir ts_value(dots_rad+7,sr) = hom(nzb,1,110,sr) ! rrtm_asdif ts_value(dots_rad+8,sr) = hom(nzb,1,111,sr) ! rrtm_asdir ENDIF ENDIF ! !-- Calculate additional statistics provided by other modules CALL module_interface_statistics( 'time_series', sr, 0, dots_max ) ENDDO ! loop of the subregions ! !-- If required, sum up horizontal averages for subsequent time averaging. !-- Do not sum, if flow statistics is called before the first initial time step. IF ( do_sum .AND. simulated_time /= 0.0_wp ) THEN IF ( average_count_pr == 0 ) hom_sum = 0.0_wp hom_sum = hom_sum + hom(:,1,:,:) average_count_pr = average_count_pr + 1 do_sum = .FALSE. ENDIF ! !-- Set flag for other UPs (e.g. output routines, but also buoyancy). !-- This flag is reset after each time step in time_integration. flow_statistics_called = .TRUE. CALL cpu_log( log_point(10), 'flow_statistics', 'stop' ) END SUBROUTINE flow_statistics