!> @file chemistry_model_mod.f90
!--------------------------------------------------------------------------------------------------!
! This file is part of the PALM model system.
!
! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General
! Public License as published by the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
! Public License for more details.
!
! You should have received a copy of the GNU General Public License along with PALM. If not, see
! .
!
! Copyright 2017-2021 Leibniz Universitaet Hannover
! Copyright 2017-2021 Karlsruhe Institute of Technology
! Copyright 2017-2021 Freie Universitaet Berlin
!--------------------------------------------------------------------------------------------------!
!
! Authors:
! --------
! @author Renate Forkel
! @author Farah Kanani-Suehring
! @author Klaus Ketelsen
! @author Basit Khan
! @author Sabine Banzhaf
!
!
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Chemistry model for PALM-4U
!> @todo Adjust chem_rrd_local to CASE structure of others modules. It is not allowed to use the
!> chemistry model in a precursor run and additionally not using it in a main run
!> @todo Implement turbulent inflow of chem spcs in inflow_turbulence. Do we need this? Not done for salsa either.
!
!--------------------------------------------------------------------------------------------------!
MODULE chemistry_model_mod
USE advec_s_pw_mod, &
ONLY: advec_s_pw
USE advec_s_up_mod, &
ONLY: advec_s_up
USE advec_ws, &
ONLY: advec_s_ws, ws_init_flags_scalar
USE diffusion_s_mod, &
ONLY: diffusion_s
USE kinds, &
ONLY: iwp, wp
USE indices, &
ONLY: advc_flags_s, &
nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, nzb, nzt, &
topo_flags
USE pegrid, &
ONLY: myid, threads_per_task
USE bulk_cloud_model_mod, &
ONLY: bulk_cloud_model
USE control_parameters, &
ONLY: air_chemistry, &
bc_dirichlet_l, &
bc_dirichlet_n, &
bc_dirichlet_r, &
bc_dirichlet_s, &
bc_radiation_l, &
bc_lr_cyc, &
bc_ns_cyc, &
bc_radiation_n, &
bc_radiation_r, &
bc_radiation_s, &
debug_output, &
dt_3d, &
humidity, &
initializing_actions, &
intermediate_timestep_count, &
intermediate_timestep_count_max, &
max_pr_user, &
message_string, &
monotonic_limiter_z, &
nesting_offline, &
omega, &
restart_data_format_output, &
scalar_advec, &
timestep_scheme, &
tsc, &
use_prescribed_profile_data, &
ws_scheme_sca
USE arrays_3d, &
ONLY: exner, hyp, pt, q, ql, rdf_sc, tend, zu
USE chem_gasphase_mod, &
ONLY: atol, chem_gasphase_integrate, cs_mech, get_mechanism_name, nkppctrl, &
nmaxfixsteps, nphot, nreact, nspec, nvar, phot_names, rtol, spc_names, t_steps, vl_dim
USE chem_modules
USE chem_photolysis_mod, &
ONLY: photolysis_control
USE cpulog, &
ONLY: cpu_log, log_point_s
USE restart_data_mpi_io_mod, &
ONLY: rrd_mpi_io, rd_mpi_io_check_array, wrd_mpi_io
USE statistics
USE surface_mod, &
ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, surf_usm_v
IMPLICIT NONE
PRIVATE
SAVE
INTEGER, DIMENSION(nkppctrl) :: icntrl !< 20 integer parameters for fine tuning KPP code
REAL(kind=wp), PUBLIC :: cs_time_step = 0._wp
REAL(kind=wp), DIMENSION(nkppctrl) :: rcntrl !< 20 real parameters for fine tuning of KPP code
!< (e.g starting internal timestep of solver)
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_1 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_2 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_3 !< pointer for swapping of timelevels for conc
REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: freq_1 !< pointer for phtolysis frequncies
!< (only 1 timelevel required) (e.g. solver type)
!
!-- Parameter needed for Deposition calculation using DEPAC model (van Zanten et al., 2010)
INTEGER(iwp), PARAMETER :: nlu_dep = 15 !< Number of DEPAC landuse classes (lu's)
INTEGER(iwp), PARAMETER :: ncmp = 10 !< Number of DEPAC gas components
INTEGER(iwp), PARAMETER :: nposp = 69 !< Number of possible species for deposition
!
!-- DEPAC landuse classes as defined in LOTOS-EUROS model v2.1
INTEGER(iwp) :: ilu_grass = 1
INTEGER(iwp) :: ilu_arable = 2
INTEGER(iwp) :: ilu_permanent_crops = 3
INTEGER(iwp) :: ilu_coniferous_forest = 4
INTEGER(iwp) :: ilu_deciduous_forest = 5
INTEGER(iwp) :: ilu_water_sea = 6
INTEGER(iwp) :: ilu_urban = 7
INTEGER(iwp) :: ilu_other = 8
INTEGER(iwp) :: ilu_desert = 9
INTEGER(iwp) :: ilu_ice = 10
INTEGER(iwp) :: ilu_savanna = 11
INTEGER(iwp) :: ilu_tropical_forest = 12
INTEGER(iwp) :: ilu_water_inland = 13
INTEGER(iwp) :: ilu_mediterrean_scrub = 14
INTEGER(iwp) :: ilu_semi_natural_veg = 15
!
!-- NH3/SO2 ratio regimes:
INTEGER(iwp), PARAMETER :: iratns_low = 1 !< low ratio NH3/SO2
INTEGER(iwp), PARAMETER :: iratns_high = 2 !< high ratio NH3/SO2
INTEGER(iwp), PARAMETER :: iratns_very_low = 3 !< very low ratio NH3/SO2
!
!-- Default:
INTEGER, PARAMETER :: iratns_default = iratns_low
!
!-- Set alpha for f_light (4.57 is conversion factor from 1./(mumol m-2 s-1) to W m-2
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: alpha = (/ 0.009, 0.009, 0.009, 0.006, 0.006, &
-999.0, -999., 0.009, -999.0, -999.0, 0.009, 0.006, -999.0, 0.009, 0.008 /)*4.57
!
!-- Set temperatures per land use for f_temp
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmin = (/ 12.0, 12.0, 12.0, 0.0, 0.0, -999.0, &
-999.0, 12.0, -999.0, -999.0, 12.0, 0.0, -999.0, 12.0, 8.0/)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: topt = (/ 26.0, 26.0, 26.0, 18.0, 20.0, -999.0, &
-999.0, 26.0, -999.0, -999.0, 26.0, 20.0, -999.0, 26.0, 24.0 /)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmax = (/ 40.0, 40.0, 40.0, 36.0, 35.0, -999.0, &
-999.0, 40.0, -999.0, -999.0, 40.0, 35.0, -999.0, 40.0, 39.0 /)
!
!-- Set f_min:
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: f_min = (/ 0.01, 0.01, 0.01, 0.1, 0.1, -999.0, &
-999.0, 0.01, -999.0, -999.0, 0.01, 0.1, -999.0, 0.01, 0.04/)
!
!-- Set maximal conductance (m/s)
!-- (R T/P) = 1/41000 mmol/m3 is given for 20 deg C to go from mmol O3/m2/s to m/s
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: g_max = (/ 270.0, 300.0, 300.0, 140.0, 150.0, &
-999.0, -999.0, 270.0, -999.0, -999.0, 270.0, 150.0, -999.0, 300.0, 422.0 /) / 41000.0
!
!-- Set max, min for vapour pressure deficit vpd
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_max = (/ 1.3, 0.9, 0.9, 0.5, 1.0, -999.0, &
-999.0, 1.3, -999.0, -999.0, 1.3, 1.0, -999.0, 0.9, 2.8/)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_min = (/ 3.0, 2.8, 2.8, 3.0, 3.25, -999.0, &
-999.0, 3.0, -999.0, -999.0, 3.0, 3.25, -999.0, 2.8, 4.5/)
PUBLIC nreact
PUBLIC nspec !< number of gas phase chemical species including constant compound (e.g. N2)
PUBLIC nvar !< number of variable gas phase chemical species (nvar <= nspec)
PUBLIC spc_names !< names of gas phase chemical species (come from KPP) (come from KPP)
PUBLIC spec_conc_2
!
!-- Interface section
INTERFACE chem_actions
MODULE PROCEDURE chem_actions
MODULE PROCEDURE chem_actions_ij
END INTERFACE chem_actions
INTERFACE chem_3d_data_averaging
MODULE PROCEDURE chem_3d_data_averaging
END INTERFACE chem_3d_data_averaging
INTERFACE chem_boundary_conditions
MODULE PROCEDURE chem_boundary_conditions
END INTERFACE chem_boundary_conditions
INTERFACE chem_check_data_output
MODULE PROCEDURE chem_check_data_output
END INTERFACE chem_check_data_output
INTERFACE chem_data_output_2d
MODULE PROCEDURE chem_data_output_2d
END INTERFACE chem_data_output_2d
INTERFACE chem_data_output_3d
MODULE PROCEDURE chem_data_output_3d
END INTERFACE chem_data_output_3d
INTERFACE chem_data_output_mask
MODULE PROCEDURE chem_data_output_mask
END INTERFACE chem_data_output_mask
INTERFACE chem_check_data_output_pr
MODULE PROCEDURE chem_check_data_output_pr
END INTERFACE chem_check_data_output_pr
INTERFACE chem_check_parameters
MODULE PROCEDURE chem_check_parameters
END INTERFACE chem_check_parameters
INTERFACE chem_define_netcdf_grid
MODULE PROCEDURE chem_define_netcdf_grid
END INTERFACE chem_define_netcdf_grid
INTERFACE chem_header
MODULE PROCEDURE chem_header
END INTERFACE chem_header
INTERFACE chem_init_arrays
MODULE PROCEDURE chem_init_arrays
END INTERFACE chem_init_arrays
INTERFACE chem_init
MODULE PROCEDURE chem_init
END INTERFACE chem_init
INTERFACE chem_init_profiles
MODULE PROCEDURE chem_init_profiles
END INTERFACE chem_init_profiles
INTERFACE chem_integrate
MODULE PROCEDURE chem_integrate_ij
END INTERFACE chem_integrate
INTERFACE chem_parin
MODULE PROCEDURE chem_parin
END INTERFACE chem_parin
INTERFACE chem_non_advective_processes
MODULE PROCEDURE chem_non_advective_processes
MODULE PROCEDURE chem_non_advective_processes_ij
END INTERFACE chem_non_advective_processes
INTERFACE chem_exchange_horiz_bounds
MODULE PROCEDURE chem_exchange_horiz_bounds
END INTERFACE chem_exchange_horiz_bounds
INTERFACE chem_prognostic_equations
MODULE PROCEDURE chem_prognostic_equations
MODULE PROCEDURE chem_prognostic_equations_ij
END INTERFACE chem_prognostic_equations
INTERFACE chem_rrd_local
MODULE PROCEDURE chem_rrd_local_ftn
MODULE PROCEDURE chem_rrd_local_mpi
END INTERFACE chem_rrd_local
INTERFACE chem_statistics
MODULE PROCEDURE chem_statistics
END INTERFACE chem_statistics
INTERFACE chem_swap_timelevel
MODULE PROCEDURE chem_swap_timelevel
END INTERFACE chem_swap_timelevel
INTERFACE chem_wrd_local
MODULE PROCEDURE chem_wrd_local
END INTERFACE chem_wrd_local
INTERFACE chem_depo
MODULE PROCEDURE chem_depo
END INTERFACE chem_depo
INTERFACE drydepos_gas_depac
MODULE PROCEDURE drydepos_gas_depac
END INTERFACE drydepos_gas_depac
INTERFACE rc_special
MODULE PROCEDURE rc_special
END INTERFACE rc_special
INTERFACE rc_gw
MODULE PROCEDURE rc_gw
END INTERFACE rc_gw
INTERFACE rw_so2
MODULE PROCEDURE rw_so2
END INTERFACE rw_so2
INTERFACE rw_nh3_sutton
MODULE PROCEDURE rw_nh3_sutton
END INTERFACE rw_nh3_sutton
INTERFACE rw_constant
MODULE PROCEDURE rw_constant
END INTERFACE rw_constant
INTERFACE rc_gstom
MODULE PROCEDURE rc_gstom
END INTERFACE rc_gstom
INTERFACE rc_gstom_emb
MODULE PROCEDURE rc_gstom_emb
END INTERFACE rc_gstom_emb
INTERFACE par_dir_diff
MODULE PROCEDURE par_dir_diff
END INTERFACE par_dir_diff
INTERFACE rc_get_vpd
MODULE PROCEDURE rc_get_vpd
END INTERFACE rc_get_vpd
INTERFACE rc_gsoil_eff
MODULE PROCEDURE rc_gsoil_eff
END INTERFACE rc_gsoil_eff
INTERFACE rc_rinc
MODULE PROCEDURE rc_rinc
END INTERFACE rc_rinc
INTERFACE rc_rctot
MODULE PROCEDURE rc_rctot
END INTERFACE rc_rctot
INTERFACE drydepo_aero_zhang_vd
MODULE PROCEDURE drydepo_aero_zhang_vd
END INTERFACE drydepo_aero_zhang_vd
INTERFACE get_rb_cell
MODULE PROCEDURE get_rb_cell
END INTERFACE get_rb_cell
PUBLIC chem_3d_data_averaging, chem_boundary_conditions, chem_check_data_output, &
chem_check_data_output_pr, chem_check_parameters, chem_data_output_2d, &
chem_data_output_3d, chem_data_output_mask, chem_define_netcdf_grid, chem_header, &
chem_init, chem_init_arrays, chem_init_profiles, chem_integrate, chem_parin, &
chem_actions, chem_prognostic_equations, chem_rrd_local, chem_statistics, &
chem_swap_timelevel, chem_wrd_local, chem_depo, chem_non_advective_processes, &
chem_exchange_horiz_bounds
CONTAINS
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for averaging 3D data of chemical species. Due to the fact that the averaged chem
!> arrays are allocated in chem_init, no if-query concerning the allocation is required (in any
!> mode). Attention: If you just specify an averaged output quantity in the _p3dr file during
!> restarts the first output includes the time between the beginning of the restart run and the
!> first output time (not necessarily the whole averaging_interval you have specified in your
!> _p3d/_p3dr file ).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_3d_data_averaging( mode, variable )
USE control_parameters
USE exchange_horiz_mod, &
ONLY: exchange_horiz_2d
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
LOGICAL :: match_def !< flag indicating default-type surface
LOGICAL :: match_lsm !< flag indicating natural-type surface
LOGICAL :: match_usm !< flag indicating urban-type surface
INTEGER(iwp) :: i !< grid index x direction
INTEGER(iwp) :: j !< grid index y direction
INTEGER(iwp) :: k !< grid index z direction
INTEGER(iwp) :: lsp !< running index for chem spcs
INTEGER(iwp) :: m !< running index surface type
IF ( ( variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_' ) ) THEN
IF ( mode == 'allocate' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
IF ( .NOT. ALLOCATED( chem_species(lsp)%conc_av ) ) THEN
ALLOCATE( chem_species(lsp)%conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
chem_species(lsp)%conc_av = 0.0_wp
ENDIF
ENDIF
ENDDO
ELSEIF ( mode == 'sum' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
chem_species(lsp)%conc_av(k,j,i) = chem_species(lsp)%conc_av(k,j,i) + &
chem_species(lsp)%conc(k,j,i)
ENDDO
ENDDO
ENDDO
ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN
DO i = nxl, nxr
DO j = nys, nyn
match_def = surf_def_h(0)%start_index(j,i) <= surf_def_h(0)%end_index(j,i)
match_lsm = surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i)
match_usm = surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i)
IF ( match_def ) THEN
m = surf_def_h(0)%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = chem_species(lsp)%cssws_av(j,i) + &
surf_def_h(0)%cssws(lsp,m)
ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN
m = surf_lsm_h(0)%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = chem_species(lsp)%cssws_av(j,i) + &
surf_lsm_h(0)%cssws(lsp,m)
ELSEIF ( match_usm ) THEN
m = surf_usm_h(0)%end_index(j,i)
chem_species(lsp)%cssws_av(j,i) = chem_species(lsp)%cssws_av(j,i) + &
surf_usm_h(0)%cssws(lsp,m)
ENDIF
ENDDO
ENDDO
ENDIF
ENDDO
ELSEIF ( mode == 'average' ) THEN
DO lsp = 1, nspec
IF ( TRIM( variable(1:3) ) == 'kc_' .AND. &
TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
DO k = nzb, nzt+1
chem_species(lsp)%conc_av(k,j,i) = chem_species(lsp)%conc_av(k,j,i) / &
REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
ENDDO
ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
chem_species(lsp)%cssws_av(j,i) = chem_species(lsp)%cssws_av(j,i) / &
REAL( average_count_3d, KIND = wp )
ENDDO
ENDDO
CALL exchange_horiz_2d( chem_species(lsp)%cssws_av )
ENDIF
ENDDO
ENDIF
ENDIF
END SUBROUTINE chem_3d_data_averaging
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to initialize and set all boundary conditions for chemical species
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_boundary_conditions( horizontal_conditions_only )
USE arrays_3d, &
ONLY: dzu
USE surface_mod, &
ONLY: bc_h
INTEGER(iwp) :: i !< grid index x direction.
INTEGER(iwp) :: j !< grid index y direction.
INTEGER(iwp) :: k !< grid index z direction.
INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls.
INTEGER(iwp) :: lsp !< running index for chem spcs.
INTEGER(iwp) :: m !< running index surface elements.
LOGICAL, OPTIONAL :: horizontal_conditions_only !< switch to set horizontal bc only
IF ( .NOT. PRESENT( horizontal_conditions_only ) ) THEN
!
!-- Boundary condtions for chemical species at horizontal walls
DO lsp = 1, nspec
!
!-- Surface conditions:
IF ( ibc_cs_b == 0 ) THEN
!
!-- Dirichlet:
!-- Run loop over all non-natural and natural walls. Note, in wall-datatype the k
!-- coordinate belongs to the atmospheric grid point, therefore, set s_p at k-1
DO l = 0, 1
!$OMP PARALLEL DO PRIVATE( i, j, k )
DO m = 1, bc_h(l)%ns
i = bc_h(l)%i(m)
j = bc_h(l)%j(m)
k = bc_h(l)%k(m)
chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = &
chem_species(lsp)%conc(k+bc_h(l)%koff,j,i)
ENDDO
ENDDO
ELSEIF ( ibc_cs_b == 1 ) THEN
!
!-- Neumann:
DO l = 0, 1
!$OMP PARALLEL DO PRIVATE( i, j, k )
DO m = 1, bc_h(l)%ns
i = bc_h(l)%i(m)
j = bc_h(l)%j(m)
k = bc_h(l)%k(m)
chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = chem_species(lsp)%conc_p(k,j,i)
ENDDO
ENDDO
ENDIF
ENDDO
!
!-- Top boundary conditions for chemical species
DO lsp = 1, nspec
IF ( ibc_cs_t == 0 ) THEN
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc(nzt+1,:,:)
ELSEIF ( ibc_cs_t == 1 ) THEN
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:)
ELSEIF ( ibc_cs_t == 2 ) THEN
chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:) + &
bc_cs_t_val(lsp) * dzu(nzt+1)
ENDIF
ENDDO
!
!-- Lateral boundary conditions.
!-- Dirichlet conditions have been already set when chem_species concentration is initialized.
!-- The initially set value is not touched during time integration, hence, this boundary value
!-- remains at a constant value.
!-- Neumann conditions:
IF ( bc_radiation_cs_s ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,nys-1,:) = chem_species(lsp)%conc_p(:,nys,:)
ENDDO
ENDIF
IF ( bc_radiation_cs_n ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,nyn+1,:) = chem_species(lsp)%conc_p(:,nyn,:)
ENDDO
ENDIF
IF ( bc_radiation_cs_l ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,:,nxl-1) = chem_species(lsp)%conc_p(:,:,nxl)
ENDDO
ENDIF
IF ( bc_radiation_cs_r ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc_p(:,:,nxr+1) = chem_species(lsp)%conc_p(:,:,nxr)
ENDDO
ENDIF
!-- For testing: set Dirichlet conditions for all boundaries
! IF ( bc_dirichlet_cs_s ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxrg
! DO j = nysg, nys-1
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc_p(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_n ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxrg
! DO j = nyn+1, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc_p(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_l ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxl-1
! DO j = nysg, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc_p(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_r ) THEN
! DO lsp = 1, nspec
! DO i = nxr+1, nxrg
! DO j = nysg, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc_p(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
ELSE
!
!-- Lateral Neumann booundary conditions for timelevel t.
!-- This branch is executed when routine is called after the non-advective processes / before the
!-- prognostic equations.
IF ( bc_radiation_cs_s ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc(:,nys-1,:) = chem_species(lsp)%conc(:,nys,:)
ENDDO
ENDIF
IF ( bc_radiation_cs_n ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc(:,nyn+1,:) = chem_species(lsp)%conc(:,nyn,:)
ENDDO
ENDIF
IF ( bc_radiation_cs_l ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc(:,:,nxl-1) = chem_species(lsp)%conc(:,:,nxl)
ENDDO
ENDIF
IF ( bc_radiation_cs_r ) THEN
DO lsp = 1, nspec
chem_species(lsp)%conc(:,:,nxr+1) = chem_species(lsp)%conc(:,:,nxr)
ENDDO
ENDIF
!-- For testing: set Dirichlet conditions for all boundaries
! IF ( bc_dirichlet_cs_s ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxrg
! DO j = nysg, nys-1
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_n ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxrg
! DO j = nyn+1, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_l ) THEN
! DO lsp = 1, nspec
! DO i = nxlg, nxl-1
! DO j = nysg, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
! IF ( bc_dirichlet_cs_r ) THEN
! DO lsp = 1, nspec
! DO i = nxr+1, nxrg
! DO j = nysg, nyng
! DO k = nzb, nzt
! IF ( k /= nzb ) THEN
! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
! ELSE
! flag = 1.0
! ENDIF
! chem_species(lsp)%conc(k,j,i) = chem_species(lsp)%conc_pr_init(k) * flag
! ENDDO
! ENDDO
! ENDDO
! ENDDO
! ENDIF
ENDIF
END SUBROUTINE chem_boundary_conditions
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for checking data output for chemical species
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_check_data_output( var, unit, i, ilen, k )
CHARACTER (LEN=*) :: unit !<
CHARACTER (LEN=*) :: var !<
INTEGER(iwp) :: i
INTEGER(iwp) :: ilen
INTEGER(iwp) :: lsp
INTEGER(iwp) :: k
CHARACTER(LEN=16) :: spec_name
!
!-- Next statement is to avoid compiler warnings about unused variables
IF ( ( i + ilen + k ) > 0 .OR. var(1:1) == ' ' ) CONTINUE
unit = 'illegal'
spec_name = TRIM( var(4:) ) !< var 1:3 is 'kc_' or 'em_'.
IF ( TRIM( var(1:3) ) == 'em_' ) THEN
DO lsp=1,nspec
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
unit = 'mol m-2 s-1'
ENDIF
!
!-- It is possible to plant PM10 and PM25 into the gasphase chemistry code as passive species
!-- (e.g. 'passive' in GASPHASE_PREPROC/mechanisms): set unit to micrograms per m**3 for PM10
!-- and PM25 (PM2.5)
IF (spec_name(1:2) == 'PM') THEN
unit = 'kg m-2 s-1'
ENDIF
ENDDO
ELSE
DO lsp=1,nspec
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
unit = 'ppm'
ENDIF
!
!-- It is possible to plant PM10 and PM25 into the gasphase chemistry code as passive species
!-- (e.g. 'passive' in GASPHASE_PREPROC/mechanisms): set unit to kilograms per m**3 for PM10
!-- and PM25 (PM2.5)
IF (spec_name(1:2) == 'PM') THEN
unit = 'kg m-3'
ENDIF
ENDDO
DO lsp=1,nphot
IF ( TRIM( spec_name ) == TRIM( phot_frequen(lsp)%name ) ) THEN
unit = 'sec-1'
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_check_data_output
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for checking data output of profiles for chemistry model
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_check_data_output_pr( variable, var_count, unit, dopr_unit )
USE arrays_3d
USE control_parameters, &
ONLY: data_output_pr, message_string
USE profil_parameter
USE statistics
CHARACTER (LEN=*) :: unit !< unit
CHARACTER (LEN=*) :: variable !< variable name
CHARACTER (LEN=*) :: dopr_unit !< unit
CHARACTER (LEN=16) :: spec_name !< species name extracted from output string
INTEGER(iwp) :: index_start !< start index of the species name in data-output string
INTEGER(iwp) :: index_end !< end index of the species name in data-output string
INTEGER(iwp) :: var_count !< number of data-output quantity
INTEGER(iwp) :: lsp !< running index over species
SELECT CASE ( TRIM( variable(1:3 ) ) )
CASE ( 'kc_' )
IF ( .NOT. air_chemistry ) THEN
message_string = 'data_output_pr = ' // TRIM( data_output_pr(var_count) ) // &
' is not implemented for air_chemistry = .FALSE.'
CALL message( 'chem_check_data_output_pr', 'PA0293', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Output of total fluxes is not allowed to date.
IF ( TRIM( variable(1:4) ) == 'kc_w' ) THEN
IF ( TRIM( variable(1:5) ) /= 'kc_w*' .AND. TRIM( variable(1:5) ) /= 'kc_w"' ) THEN
message_string = 'data_output_pr = ' // TRIM( data_output_pr(var_count) ) // &
' is currently not implemented. Please output resolved- and '// &
'subgrid-scale fluxes individually to obtain the total flux.'
CALL message( 'chem_check_data_output_pr', 'PA0487', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Check for profile output of first-order moments, i.e. variable(4:) equals a species name.
spec_name = TRIM( variable(4:) )
DO lsp = 1, nspec
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
cs_pr_count_sp = cs_pr_count_sp + 1
cs_pr_index_sp(cs_pr_count_sp) = lsp
dopr_index(var_count) = pr_palm + cs_pr_count_sp + &
cs_pr_count_fl_sgs + cs_pr_count_fl_res
dopr_unit = 'ppm'
IF ( spec_name(1:2) == 'PM') THEN
dopr_unit = 'kg m-3'
ENDIF
hom(:,2,dopr_index(var_count),:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
hom_index_spec(cs_pr_count_sp) = dopr_index(var_count)
ENDIF
ENDDO
!
!-- Check for profile output of fluxes. variable(index_start:index_end) equals a species name.
!-- Start with SGS components.
IF ( TRIM( variable(1:5) ) == 'kc_w"' ) THEN
DO lsp = 1, nspec
index_end = LEN( TRIM( variable ) ) - 1
index_start = 6
spec_name = TRIM( variable(index_start:index_end) )
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
cs_pr_count_fl_sgs = cs_pr_count_fl_sgs + 1
cs_pr_index_fl_sgs(cs_pr_count_fl_sgs) = lsp
dopr_index(var_count) = pr_palm + cs_pr_count_sp + &
cs_pr_count_fl_sgs + &
cs_pr_count_fl_res
dopr_unit = 'm ppm s-1'
IF ( spec_name(1:2) == 'PM') THEN
dopr_unit = 'kg m-2 s-1'
ENDIF
hom(:,2,dopr_index(var_count),:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
hom_index_fl_sgs(cs_pr_count_fl_sgs) = dopr_index(var_count)
ENDIF
ENDDO
ENDIF
!
!-- Proceed with resolved-scale fluxes.
IF ( TRIM( variable(1:5) ) == 'kc_w*' ) THEN
spec_name = TRIM( variable(6:) )
DO lsp = 1, nspec
index_start = 6
index_end = LEN( TRIM( variable ) ) - 1
spec_name = TRIM( variable(index_start:index_end) )
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN
cs_pr_count_fl_res = cs_pr_count_fl_res + 1
cs_pr_index_fl_res(cs_pr_count_fl_res) = lsp
dopr_index(var_count) = pr_palm + cs_pr_count_sp + &
cs_pr_count_fl_sgs + &
cs_pr_count_fl_res
dopr_unit = 'm ppm s-1'
IF ( spec_name(1:2) == 'PM') THEN
dopr_unit = 'kg m-2 s-1'
ENDIF
hom(:,2, dopr_index(var_count),:) = SPREAD( zu, 2, statistic_regions+1 )
unit = dopr_unit
hom_index_fl_res(cs_pr_count_fl_res) = dopr_index(var_count)
ENDIF
ENDDO
ENDIF
CASE DEFAULT
unit = 'illegal'
END SELECT
END SUBROUTINE chem_check_data_output_pr
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for chemistry_model_mod
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_check_parameters
USE control_parameters, &
ONLY: bc_lr, bc_ns
INTEGER (iwp) :: lsp !< running index for chem spcs.
INTEGER (iwp) :: lsp_usr !< running index for user defined chem spcs
LOGICAL :: found
!
!-- Check for chemistry time-step
IF ( call_chem_at_all_substeps ) THEN
message_string = &
'call_chem_at_all_substeps should only be used for test purposes'
CALL message( 'chem_check_parameters', 'PA0522', 0, 1, 0, 6, 0 )
ENDIF
!
!-- Check for photolysis scheme
IF ( ( photolysis_scheme /= 'simple' ) .AND. ( photolysis_scheme /= 'constant' ) ) THEN
message_string = 'Incorrect photolysis scheme selected, please check spelling'
CALL message( 'chem_check_parameters', 'PA0523', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check for chemical mechanism used
CALL get_mechanism_name
IF ( chem_mechanism /= TRIM( cs_mech ) ) THEN
message_string = &
'Incorrect chemistry mechanism selected, check spelling in namelist and/or chem_gasphase_mod'
CALL message( 'chem_check_parameters', 'PA0551', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check bottom boundary condition and set internal steering parameter
IF ( bc_cs_b == 'dirichlet' ) THEN
ibc_cs_b = 0
ELSEIF ( bc_cs_b == 'neumann' ) THEN
ibc_cs_b = 1
ELSE
message_string = 'unknown boundary condition: bc_cs_b ="' // TRIM( bc_cs_b ) // '"'
CALL message( 'chem_check_parameters', 'PA0593', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check top boundary condition and set internal steering parameter
IF ( bc_cs_t == 'dirichlet' ) THEN
ibc_cs_t = 0
ELSEIF ( bc_cs_t == 'neumann' ) THEN
ibc_cs_t = 1
ELSEIF ( bc_cs_t == 'initial_gradient' ) THEN
ibc_cs_t = 2
ELSEIF ( bc_cs_t == 'nested' ) THEN
ibc_cs_t = 3
ELSE
message_string = 'unknown boundary condition: bc_c_t ="' // TRIM( bc_cs_t ) // '"'
CALL message( 'chem_check_parameters', 'PA0675', 1, 2, 0, 6, 0 )
ENDIF
!
!-- If nesting_chem = .F., set top boundary condition to its default value
IF ( .NOT. nesting_chem .AND. ibc_cs_t == 3 ) THEN
ibc_cs_t = 2
bc_cs_t = 'initial_gradient'
ENDIF
!
!-- Check left and right boundary conditions. First set default value if not set by user.
IF ( bc_cs_l == 'undefined' ) THEN
IF ( bc_lr == 'cyclic' ) THEN
bc_cs_l = 'cyclic'
ELSEIF ( bc_lr == 'dirichlet/radiation' ) THEN
bc_cs_l = 'dirichlet'
ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN
bc_cs_l = 'neumann'
ENDIF
ENDIF
IF ( bc_cs_r == 'undefined' ) THEN
IF ( bc_lr == 'cyclic' ) THEN
bc_cs_r = 'cyclic'
ELSEIF ( bc_lr == 'dirichlet/radiation' ) THEN
bc_cs_r = 'neumann'
ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN
bc_cs_r = 'dirichlet'
ENDIF
ENDIF
IF ( bc_cs_l /= 'dirichlet' .AND. bc_cs_l /= 'neumann' .AND. bc_cs_l /= 'cyclic' ) THEN
message_string = 'unknown boundary condition: bc_cs_l = "' // TRIM( bc_cs_l ) // '"'
CALL message( 'chem_check_parameters','PA0505', 1, 2, 0, 6, 0 )
ENDIF
IF ( bc_cs_r /= 'dirichlet' .AND. bc_cs_r /= 'neumann' .AND. bc_cs_r /= 'cyclic' ) THEN
message_string = 'unknown boundary condition: bc_cs_r = "' // TRIM( bc_cs_r ) // '"'
CALL message( 'chem_check_parameters','PA0505', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Check north and south boundary conditions. First set default value if not set by user.
IF ( bc_cs_n == 'undefined' ) THEN
IF ( bc_ns == 'cyclic' ) THEN
bc_cs_n = 'cyclic'
ELSEIF ( bc_ns == 'dirichlet/radiation' ) THEN
bc_cs_n = 'dirichlet'
ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN
bc_cs_n = 'neumann'
ENDIF
ENDIF
IF ( bc_cs_s == 'undefined' ) THEN
IF ( bc_ns == 'cyclic' ) THEN
bc_cs_s = 'cyclic'
ELSEIF ( bc_ns == 'dirichlet/radiation' ) THEN
bc_cs_s = 'neumann'
ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN
bc_cs_s = 'dirichlet'
ENDIF
ENDIF
IF ( bc_cs_n /= 'dirichlet' .AND. bc_cs_n /= 'neumann' .AND. bc_cs_n /= 'cyclic' ) THEN
message_string = 'unknown boundary condition: bc_cs_n = "' // TRIM( bc_cs_n ) // '"'
CALL message( 'chem_check_parameters','PA0505', 1, 2, 0, 6, 0 )
ENDIF
IF ( bc_cs_s /= 'dirichlet' .AND. bc_cs_s /= 'neumann' .AND. bc_cs_s /= 'cyclic' ) THEN
message_string = 'unknown boundary condition: bc_cs_s = "' // TRIM( bc_cs_s ) // '"'
CALL message( 'chem_check_parameters','PA0505', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Cyclic conditions must be set identically at opposing boundaries
IF ( ( bc_cs_l == 'cyclic' .AND. bc_cs_r /= 'cyclic' ) .OR. &
( bc_cs_r == 'cyclic' .AND. bc_cs_l /= 'cyclic' ) ) THEN
message_string = 'boundary conditions bc_cs_l and bc_cs_r must both be cyclic or non-cyclic'
CALL message( 'chem_check_parameters','PA0714', 1, 2, 0, 6, 0 )
ENDIF
IF ( ( bc_cs_n == 'cyclic' .AND. bc_cs_s /= 'cyclic' ) .OR. &
( bc_cs_s == 'cyclic' .AND. bc_cs_n /= 'cyclic' ) ) THEN
message_string = 'boundary conditions bc_cs_n and bc_cs_s must both be cyclic or non-cyclic'
CALL message( 'chem_check_parameters','PA0714', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Set the switches that control application of horizontal boundary conditions at the boundaries
!-- of the total domain
IF ( bc_cs_n == 'dirichlet' .AND. nyn == ny ) bc_dirichlet_cs_n = .TRUE.
IF ( bc_cs_n == 'neumann' .AND. nyn == ny ) bc_radiation_cs_n = .TRUE.
IF ( bc_cs_s == 'dirichlet' .AND. nys == 0 ) bc_dirichlet_cs_s = .TRUE.
IF ( bc_cs_s == 'neumann' .AND. nys == 0 ) bc_radiation_cs_s = .TRUE.
IF ( bc_cs_l == 'dirichlet' .AND. nxl == 0 ) bc_dirichlet_cs_l = .TRUE.
IF ( bc_cs_l == 'neumann' .AND. nxl == 0 ) bc_radiation_cs_l = .TRUE.
IF ( bc_cs_r == 'dirichlet' .AND. nxr == nx ) bc_dirichlet_cs_r = .TRUE.
IF ( bc_cs_r == 'neumann' .AND. nxr == nx ) bc_radiation_cs_r = .TRUE.
!
!-- Set the communicator to be used for ghost layer data exchange
!-- 1: cyclic, 2: cyclic along x, 3: cyclic along y, 4: non-cyclic
IF ( bc_cs_l == 'cyclic' ) THEN
IF ( bc_cs_s == 'cyclic' ) THEN
communicator_chem = 1
ELSE
communicator_chem = 2
ENDIF
ELSE
IF ( bc_cs_s == 'cyclic' ) THEN
communicator_chem = 3
ELSE
communicator_chem = 4
ENDIF
ENDIF
!
!-- chem_check_parameters is called before the array chem_species is allocated!
!-- temporary switch of this part of the check
!> TODO: this workaround definitely needs to be removed from here!!!
CALL chem_init_internal
!
!-- Check for initial chem species input
lsp_usr = 1
lsp = 1
DO WHILE ( cs_name (lsp_usr) /= 'novalue')
found = .FALSE.
DO lsp = 1, nvar
IF ( TRIM( cs_name (lsp_usr) ) == TRIM( chem_species(lsp)%name) ) THEN
found = .TRUE.
EXIT
ENDIF
ENDDO
IF ( .NOT. found ) THEN
message_string = 'Unused/incorrect input for initial surface value: ' // &
TRIM( cs_name(lsp_usr) )
CALL message( 'chem_check_parameters', 'PA0715', 1, 2, 0, 6, 0 )
ENDIF
lsp_usr = lsp_usr + 1
ENDDO
!
!-- Check for surface emission flux chem species
lsp_usr = 1
lsp = 1
DO WHILE ( surface_csflux_name (lsp_usr) /= 'novalue')
found = .FALSE.
DO lsp = 1, nvar
IF ( TRIM( surface_csflux_name (lsp_usr) ) == TRIM( chem_species(lsp)%name ) ) THEN
found = .TRUE.
EXIT
ENDIF
ENDDO
IF ( .NOT. found ) THEN
message_string = 'Unused/incorrect input of chemical species for surface emission fluxes: ' &
// TRIM( surface_csflux_name(lsp_usr) )
CALL message( 'chem_check_parameters', 'PA0716', 1, 2, 0, 6, 0 )
ENDIF
lsp_usr = lsp_usr + 1
ENDDO
END SUBROUTINE chem_check_parameters
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 2D output variables for chemical species
!> @todo: Remove "mode" from argument list, not used.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_2d( av, variable, found, grid, mode, local_pf, two_d, nzb_do, nzt_do, &
fill_value )
CHARACTER (LEN=*) :: grid !<
CHARACTER (LEN=*) :: mode !<
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !< flag to control data output of instantaneous or
!< time-averaged data
INTEGER(iwp) :: nzb_do !< lower limit of the domain (usually nzb)
INTEGER(iwp) :: nzt_do !< upper limit of the domain (usually nzt+1)
LOGICAL :: found !<
LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross
!< sections)
REAL(wp) :: fill_value
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb:nzt+1) :: local_pf
!
!-- local variables.
CHARACTER(LEN=16) :: spec_name
INTEGER(iwp) :: lsp
INTEGER(iwp) :: i !< grid index along x-direction
INTEGER(iwp) :: j !< grid index along y-direction
INTEGER(iwp) :: k !< grid index along z-direction
INTEGER(iwp) :: m !< running indices for surfaces
INTEGER(iwp) :: char_len !< length of a character string
!
!-- Next statement is to avoid compiler warnings about unused variables
IF ( mode(1:1) == ' ' .OR. two_d ) CONTINUE
found = .FALSE.
char_len = LEN_TRIM( variable )
spec_name = TRIM( variable(4:char_len-3) )
!
!-- Output of emission values, i.e. surface fluxes cssws.
IF ( variable(1:3) == 'em_' ) THEN
local_pf = 0.0_wp
DO lsp = 1, nvar
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
!
!-- No average output for now.
!-- !!! IT NEEDS TO RETHINK - with fully 3D structure, only lower (upper)
!-- !!! upward facing horizontal surfaces should be taken into account here
DO m = 1, surf_lsm_h(0)%ns
local_pf(surf_lsm_h(0)%i(m),surf_lsm_h(0)%j(m),nzb+1) = &
local_pf(surf_lsm_h(0)%i(m),surf_lsm_h(0)%j(m),nzb+1) &
+ surf_lsm_h(0)%cssws(lsp,m)
ENDDO
DO m = 1, surf_usm_h(0)%ns
local_pf(surf_usm_h(0)%i(m),surf_usm_h(0)%j(m),nzb+1) = &
local_pf(surf_usm_h(0)%i(m),surf_usm_h(0)%j(m),nzb+1) &
+ surf_usm_h(0)%cssws(lsp,m)
ENDDO
grid = 'zu'
found = .TRUE.
ENDIF
ENDDO
ELSE
DO lsp=1,nspec
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) .AND. &
( (variable(char_len-2:) == '_xy') .OR. &
(variable(char_len-2:) == '_xz') .OR. &
(variable(char_len-2:) == '_yz') ) ) THEN
IF (av == 0) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( topo_flags(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc_av(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( topo_flags(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ENDIF
grid = 'zu'
found = .TRUE.
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_data_output_2d
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining 3D output variables for chemical species
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do )
USE surface_mod
CHARACTER (LEN=*) :: variable !<
INTEGER(iwp) :: av !<
INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0)
INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d)
LOGICAL :: found !<
REAL(wp) :: fill_value !<
REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf
!
!-- Local variables
CHARACTER(LEN=16) :: spec_name
INTEGER(iwp) :: i
INTEGER(iwp) :: j
INTEGER(iwp) :: k
INTEGER(iwp) :: m !< running indices for surfaces
INTEGER(iwp) :: l
INTEGER(iwp) :: lsp !< running index for chem spcs
found = .FALSE.
IF ( .NOT. (variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_' ) ) THEN
RETURN
ENDIF
spec_name = TRIM( variable(4:) )
IF ( variable(1:3) == 'em_' ) THEN
DO lsp = 1, nvar !!! cssws - nvar species, chem_species - nspec species !!!
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
local_pf = 0.0_wp
!
!-- no average for now
DO l = 0, 1
DO m = 1, surf_usm_h(l)%ns
local_pf(surf_usm_h(l)%i(m),surf_usm_h(l)%j(m),surf_usm_h(l)%k(m)) = &
local_pf(surf_usm_h(l)%i(m),surf_usm_h(l)%j(m),surf_usm_h(l)%k(m)) &
+ surf_usm_h(l)%cssws(lsp,m)
ENDDO
DO m = 1, surf_lsm_h(l)%ns
local_pf(surf_lsm_h(l)%i(m),surf_lsm_h(l)%j(m),surf_lsm_h(l)%k(m)) = &
local_pf(surf_lsm_h(l)%i(m),surf_lsm_h(l)%j(m),surf_lsm_h(l)%k(m)) &
+ surf_lsm_h(l)%cssws(lsp,m)
ENDDO
ENDDO
DO l = 0, 3
DO m = 1, surf_usm_v(l)%ns
local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) = &
local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) &
+ surf_usm_v(l)%cssws(lsp,m)
ENDDO
DO m = 1, surf_lsm_v(l)%ns
local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) = &
local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) &
+ surf_lsm_v(l)%cssws(lsp,m)
ENDDO
ENDDO
found = .TRUE.
ENDIF
ENDDO
ELSE
DO lsp = 1, nspec
IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
IF (av == 0) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( topo_flags(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ELSE
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_do, nzt_do
local_pf(i,j,k) = MERGE( &
chem_species(lsp)%conc_av(k,j,i), &
REAL( fill_value, KIND = wp ), &
BTEST( topo_flags(k,j,i), 0 ) )
ENDDO
ENDDO
ENDDO
ENDIF
found = .TRUE.
ENDIF
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_data_output_3d
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining mask output variables for chemical species
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_data_output_mask( av, variable, found, local_pf, mid )
USE control_parameters
REAL(wp), PARAMETER :: fill_value = -9999.0_wp !< value for the _FillValue attribute
CHARACTER(LEN=16) :: spec_name
CHARACTER(LEN=*) :: variable !<
INTEGER(iwp) :: av !< flag to control data output of instantaneous or
!< time-averaged data
INTEGER(iwp) :: i !< grid index along x-direction
INTEGER(iwp) :: im !< loop index for masked variables
INTEGER(iwp) :: j !< grid index along y-direction
INTEGER(iwp) :: jm !< loop index for masked variables
INTEGER(iwp) :: k !< grid index along z-direction
INTEGER(iwp) :: kk !< masked output index along z-direction
INTEGER(iwp) :: ktt !< k index of lowest non-terrain grid point
INTEGER(iwp) :: lsp
INTEGER(iwp) :: mid !< masked output running index
LOGICAL :: found
REAL(wp), DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: local_pf !<
!
!-- Local variables.
spec_name = TRIM( variable(4:) )
found = .FALSE.
DO lsp=1,nspec
IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN
IF (av == 0) THEN
IF ( .NOT. mask_surface(mid) ) THEN
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
DO k = 1, mask_size(mid,3)
local_pf(i,j,k) = chem_species(lsp)%conc( mask_k(mid,k), &
mask_j(mid,j), &
mask_i(mid,i) )
ENDDO
ENDDO
ENDDO
ELSE
!
!-- Terrain-following masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
!
!-- Get k index of the lowest non-terrain grid point
im = mask_i(mid,i)
jm = mask_j(mid,j)
ktt = MINLOC( MERGE( 1, 0, BTEST( topo_flags(:,jm,im), 5 ) ), &
DIM = 1 ) - 1
DO k = 1, mask_size_l(mid,3)
kk = MIN( ktt + mask_k(mid,k) - 1, nzt+1 )
!
!-- Set value if not in building, else set fill value
IF ( BTEST( topo_flags(kk,jm,im), 6 ) ) THEN
local_pf(i,j,k) = fill_value
ELSE
local_pf(i,j,k) = chem_species(lsp)%conc(kk,jm,im)
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
ELSE
IF ( .NOT. mask_surface(mid) ) THEN
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
DO k = 1, mask_size_l(mid,3)
local_pf(i,j,k) = chem_species(lsp)%conc_av( mask_k(mid,k), &
mask_j(mid,j), &
mask_i(mid,i) )
ENDDO
ENDDO
ENDDO
ELSE
!
!-- Terrain-following masked output
DO i = 1, mask_size_l(mid,1)
DO j = 1, mask_size_l(mid,2)
!
!-- Get k index of the lowest non-terrain grid point
im = mask_i(mid,i)
jm = mask_j(mid,j)
ktt = MINLOC( MERGE( 1, 0, BTEST( topo_flags(:,jm,im), 5 )), &
DIM = 1 ) - 1
DO k = 1, mask_size_l(mid,3)
kk = MIN( ktt + mask_k(mid,k) - 1, nzt+1 )
!
!-- Set value if not in building, else set fill value
IF ( BTEST( topo_flags(kk,jm,im), 6 ) ) THEN
local_pf(i,j,k) = fill_value
ELSE
local_pf(i,j,k) = chem_species(lsp)%conc_av(kk,jm,im)
ENDIF
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
found = .TRUE.
EXIT
ENDIF
ENDDO
RETURN
END SUBROUTINE chem_data_output_mask
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_define_netcdf_grid( var, found, grid_x, grid_y, grid_z )
CHARACTER (LEN=*), INTENT(IN) :: var !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_x !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_y !<
CHARACTER (LEN=*), INTENT(OUT) :: grid_z !<
LOGICAL, INTENT(OUT) :: found !<
found = .TRUE.
IF ( var(1:3) == 'kc_' .OR. var(1:3) == 'em_' ) THEN !< always the same grid for
!< chemistry variables
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
ELSE
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
ENDIF
END SUBROUTINE chem_define_netcdf_grid
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining header output for chemistry model
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_header( io )
CHARACTER (LEN=80) :: docsflux_chr
CHARACTER (LEN=80) :: docsinit_chr
INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file
INTEGER(iwp) :: cs_fixed
INTEGER(iwp) :: lsp !< running index for chem spcs
!
!-- Get name of chemical mechanism from chem_gasphase_mod
CALL get_mechanism_name
!
!-- Write chemistry model header
WRITE( io, 1 )
!
!-- Gasphase reaction status
IF ( chem_gasphase_on ) THEN
WRITE( io, 2 )
ELSE
WRITE( io, 3 )
ENDIF
!
!-- Emission mode info
WRITE( io, 4 ) emiss_read_legacy_mode
!
!-- At the moment the evaluation is done with both emiss_lod and mode_emis but once salsa has been
!-- migrated to emiss_lod the .OR. mode_emis conditions can be removed
IF ( ( emiss_lod == 1 ) .OR. ( mode_emis == 'DEFAULT' ) ) THEN
WRITE ( io, 5 )
ELSEIF ( ( emiss_lod == 0 ) .OR. ( mode_emis == 'PARAMETERIZED' ) ) THEN
WRITE ( io, 6 )
ELSEIF ( ( emiss_lod == 2 ) .OR. ( mode_emis == 'PRE-PROCESSED' ) ) THEN
WRITE ( io, 7 )
ENDIF
!
!-- Photolysis scheme info
IF ( photolysis_scheme == "simple" ) THEN
WRITE( io, 8 )
ELSEIF (photolysis_scheme == "constant" ) THEN
WRITE( io, 9 )
ENDIF
!
!-- Emission flux info
lsp = 1
docsflux_chr ='Chemical species for surface emission flux: '
DO WHILE ( surface_csflux_name(lsp) /= 'novalue' )
docsflux_chr = TRIM( docsflux_chr ) // ' ' // TRIM( surface_csflux_name(lsp) ) // ','
IF ( LEN_TRIM( docsflux_chr ) >= 75 ) THEN
WRITE ( io, 10 ) docsflux_chr
docsflux_chr = ' '
ENDIF
lsp = lsp + 1
ENDDO
IF ( docsflux_chr /= '' ) THEN
WRITE ( io, 10 ) docsflux_chr
ENDIF
!
!-- Initialization of Surface and profile chemical species
lsp = 1
docsinit_chr ='Chemical species for initial surface and profile emissions: '
DO WHILE ( cs_name(lsp) /= 'novalue' )
docsinit_chr = TRIM( docsinit_chr ) // ' ' // TRIM( cs_name(lsp) ) // ','
IF ( LEN_TRIM( docsinit_chr ) >= 75 ) THEN
WRITE ( io, 11 ) docsinit_chr
docsinit_chr = ' '
ENDIF
lsp = lsp + 1
ENDDO
IF ( docsinit_chr /= '' ) THEN
WRITE ( io, 11 ) docsinit_chr
ENDIF
IF ( nesting_chem ) WRITE( io, 12 ) nesting_chem
IF ( nesting_offline_chem .AND. nesting_offline ) WRITE( io, 13 ) nesting_offline_chem
WRITE( io, 14 ) TRIM( bc_cs_b ), TRIM( bc_cs_t ), TRIM( bc_cs_s ), TRIM( bc_cs_n ), &
TRIM( bc_cs_l ), TRIM( bc_cs_r )
!
!-- Number of variable and fix chemical species and number of reactions
cs_fixed = nspec - nvar
WRITE ( io, * ) ' --> Chemical Mechanism : ', cs_mech
WRITE ( io, * ) ' --> Chemical species, variable : ', nvar
WRITE ( io, * ) ' --> Chemical species, fixed : ', cs_fixed
WRITE ( io, * ) ' --> Total number of reactions : ', nreact
WRITE ( io, * ) ' --> Gas phase chemistry solver : ', icntrl(3)
WRITE ( io, * ) ' --> Vector length (vector mode if > 1): ', vl_dim
1 FORMAT (//' Chemistry model information:'/' ----------------------------'/)
2 FORMAT (' --> Chemical reactions are turned on')
3 FORMAT (' --> Chemical reactions are turned off')
4 FORMAT (' --> Legacy emission read mode: ',L3,/, &
' All emissions data will be loaded prior to start of simulation')
5 FORMAT (' --> Emission mode = DEFAULT ')
6 FORMAT (' --> Emission mode = PARAMETERIZED (LOD 0)')
7 FORMAT (' --> Emission mode = PRE-PROCESSED (LOD 2)')
8 FORMAT (' --> Photolysis scheme used = simple ')
9 FORMAT (' --> Photolysis scheme used = constant ')
10 FORMAT (/' ',A)
11 FORMAT (/' ',A)
12 FORMAT (/' Self nesting for chemistry variables (if nested_run): ', L1 )
13 FORMAT (/' Offline nesting for chemistry variables : ', L1 )
14 FORMAT (/' Boundary conditions for chemical species:', / &
' bottom/top: ',A10,' / ',A10, / &
' north/south: ',A10,' / ',A10, / &
' left/right: ',A10,' / ',A10)
END SUBROUTINE chem_header
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod specific arrays
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_init_arrays
!
!-- Please use this place to allocate required arrays
END SUBROUTINE chem_init_arrays
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_init
!
!-- NB introduced additional interfaces for on-demand emission update
! USE chem_emissions_mod, &
! ONLY: chem_emissions_init
USE chem_modules, &
ONLY: emis_generic, emis_domestic, emis_traffic
USE chem_emis_generic_mod, &
ONLY: chem_emis_generic_init
USE chem_emis_domestic_mod, &
ONLY: chem_emis_domestic_init
USE chem_emis_traffic_mod, &
ONLY: chem_emis_traffic_init
USE chem_emissions_mod, &
ONLY: chem_emissions_header_init, chem_emissions_init
USE netcdf_data_input_mod, &
ONLY: init_3d
INTEGER(iwp) :: i !< running index x dimension
INTEGER(iwp) :: j !< running index y dimension
INTEGER(iwp) :: n !< running index for chemical species
IF ( debug_output ) CALL debug_message( 'chem_init', 'start' )
!
!-- Next statement is to avoid compiler warning about unused variables
IF ( ( ilu_arable + ilu_coniferous_forest + ilu_deciduous_forest + ilu_mediterrean_scrub + &
ilu_permanent_crops + ilu_savanna + ilu_semi_natural_veg + ilu_tropical_forest + &
ilu_urban ) == 0 ) CONTINUE
!
!-- NB Calls specific emisisons initialization subroutines for legacy mode and on-demand mode
! IF ( emissions_anthropogenic ) CALL chem_emissions_init
IF ( emissions_anthropogenic ) THEN
IF ( emiss_read_legacy_mode ) THEN
CALL chem_emissions_init
ELSE
CALL chem_emissions_header_init
ENDIF
ENDIF
!
!-- initialize emission modes
IF ( emis_generic ) CALL chem_emis_generic_init ( )
IF ( emis_domestic ) CALL chem_emis_domestic_init ( )
IF ( emis_traffic ) CALL chem_emis_traffic_init ( )
!
!-- Chemistry variables will be initialized if availabe from dynamic input file. Note, it is
!-- possible to initialize only part of the chemistry variables from dynamic input.
IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN
DO n = 1, nspec
IF ( init_3d%from_file_chem(n) ) THEN
DO i = nxlg, nxrg
DO j = nysg, nyng
chem_species(n)%conc(:,j,i) = init_3d%chem_init(:,n)
ENDDO
ENDDO
ENDIF
ENDDO
ENDIF
IF ( debug_output ) CALL debug_message( 'chem_init', 'end' )
END SUBROUTINE chem_init
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine initializating chemistry_model_mod
!> internal workaround for chem_species dependency in chem_check_parameters
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_init_internal
USE pegrid
USE netcdf_data_input_mod, &
ONLY: chem_emis, chem_emis_att, input_pids_dynamic, init_3d, &
netcdf_data_input_chemistry_data
!
!-- Local variables
INTEGER(iwp) :: i !< running index for for horiz numerical grid points
INTEGER(iwp) :: j !< running index for for horiz numerical grid points
INTEGER(iwp) :: lpr_lev !< running index for chem spcs profile level
INTEGER(iwp) :: lsp !< running index for chem spcs
REAL(wp) :: flag !< flag for masking topography/building grid points
!
!-- NB reads netcdf data only under legacy mode
! IF ( emissions_anthropogenic ) THEN
! CALL netcdf_data_input_chemistry_data( chem_emis_att, chem_emis )
! ENDIF
IF ( emissions_anthropogenic ) THEN
IF ( emiss_read_legacy_mode ) THEN
CALL netcdf_data_input_chemistry_data( chem_emis_att, chem_emis )
ENDIF
ENDIF
!
!-- Allocate memory for chemical species
ALLOCATE( chem_species(nspec) )
ALLOCATE( spec_conc_1 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( spec_conc_2 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( spec_conc_3 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) )
ALLOCATE( phot_frequen(nphot) )
ALLOCATE( freq_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nphot) )
ALLOCATE( bc_cs_t_val(nspec) )
!
!-- Initialize arrays
spec_conc_1 (:,:,:,:) = 0.0_wp
spec_conc_2 (:,:,:,:) = 0.0_wp
spec_conc_3 (:,:,:,:) = 0.0_wp
!
!-- Allocate array to store locally summed-up resolved-scale vertical fluxes.
IF ( scalar_advec == 'ws-scheme' ) THEN
ALLOCATE( sums_ws_l(nzb:nzt+1,0:threads_per_task-1,nspec) )
sums_ws_l = 0.0_wp
ENDIF
DO lsp = 1, nspec
chem_species(lsp)%name = spc_names(lsp)
chem_species(lsp)%conc (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1 (:,:,:,lsp)
chem_species(lsp)%conc_p (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2 (:,:,:,lsp)
chem_species(lsp)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_3 (:,:,:,lsp)
ALLOCATE (chem_species(lsp)%cssws_av(nysg:nyng,nxlg:nxrg))
chem_species(lsp)%cssws_av = 0.0_wp
!
!-- The following block can be useful when emission module is not applied. &
!-- If emission module is applied the following block will be overwritten.
ALLOCATE (chem_species(lsp)%flux_s_cs(nzb+1:nzt,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%diss_s_cs(nzb+1:nzt,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%flux_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1))
ALLOCATE (chem_species(lsp)%diss_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1))
chem_species(lsp)%flux_s_cs = 0.0_wp
chem_species(lsp)%flux_l_cs = 0.0_wp
chem_species(lsp)%diss_s_cs = 0.0_wp
chem_species(lsp)%diss_l_cs = 0.0_wp
!
!-- Allocate memory for initial concentration profiles (concentration values come from namelist)
!-- (@todo (FK): Because of this, chem_init is called in palm before check_parameters, since
!-- conc_pr_init is used there.
!-- We have to find another solution since chem_init should eventually be called from
!-- init_3d_model!!)
ALLOCATE ( chem_species(lsp)%conc_pr_init(0:nz+1) )
chem_species(lsp)%conc_pr_init(:) = 0.0_wp
ENDDO
!
!-- For chemistry variables lateral boundary conditions can be set non-cyclic while
!-- the other scalars may have cyclic boundary conditions.
!-- However, large gradients near the boundaries may produce stationary numerical
!-- oscillations near the lateral boundaries when a higher-order scheme is
!-- applied near these boundaries.
!-- To get rid-off this, set-up additional flags that control the order of the scalar advection
!-- scheme near the lateral boundaries for passive scalars with non-cyclic bcs
IF ( scalar_advec == 'ws-scheme' ) THEN
ALLOCATE( cs_advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
!
!-- In case of non-cyclic boundary conditions set topo_flags bit 31
!-- Bit 31 is used to identify extended degradation zones.
!-- Note, since several also other modules like Salsa or other future one may access this bit but
!-- may have other boundary conditions, the original value of topo_flags bit 31 must not
!-- be modified. Hence, store the boundary conditions directly on cs_advc_flags_s.
!-- cs_advc_flags_s will be later overwritten in ws_init_flags_scalar and bit 31 won't be used to
!-- control the numerical order.
!-- Initialize with flag 31 only.
cs_advc_flags_s = 0
cs_advc_flags_s = MERGE( IBSET( cs_advc_flags_s, 31 ), 0, BTEST( topo_flags, 31 ) )
IF ( bc_dirichlet_cs_n .OR. bc_dirichlet_cs_s ) THEN
IF ( nys == 0 ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,nys-i,:) = MERGE( &
IBSET( cs_advc_flags_s(:,nys,:), 31 ), &
IBCLR( cs_advc_flags_s(:,nys,:), 31 ), &
BTEST( cs_advc_flags_s(:,nys,:), 31 ) &
)
ENDDO
ENDIF
IF ( nyn == ny ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,nyn+i,:) = MERGE( &
IBSET( cs_advc_flags_s(:,nyn,:), 31 ), &
IBCLR( cs_advc_flags_s(:,nyn,:), 31 ), &
BTEST( cs_advc_flags_s(:,nyn,:), 31 ) &
)
ENDDO
ENDIF
ENDIF
IF ( bc_dirichlet_cs_l .OR. bc_dirichlet_cs_r ) THEN
IF ( nxl == 0 ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,:,nxl-i) = MERGE( &
IBSET( cs_advc_flags_s(:,:,nxl), 31 ), &
IBCLR( cs_advc_flags_s(:,:,nxl), 31 ), &
BTEST( cs_advc_flags_s(:,:,nxl), 31 ) &
)
ENDDO
ENDIF
IF ( nxr == nx ) THEN
DO i = 1, nbgp
cs_advc_flags_s(:,:,nxr+i) = MERGE( &
IBSET( cs_advc_flags_s(:,:,nxr), 31 ), &
IBCLR( cs_advc_flags_s(:,:,nxr), 31 ), &
BTEST( cs_advc_flags_s(:,:,nxr), 31 ) &
)
ENDDO
ENDIF
ENDIF
!
!-- To initialize advection flags appropriately, pass the boundary flags.
!-- The last argument indicates that a passive scalar is treated, where the horizontal advection
!-- terms are degraded already 2 grid points before the lateral boundary to avoid stationary
!-- oscillations at large-gradients.
!-- Also, extended degradation zones are applied, where horizontal advection of passive scalars
!-- is discretized by first-order scheme at all grid points that in the vicinity of buildings
!-- (<= 3 grid points). Even though no building is within the numerical stencil, first-order
!-- scheme is used.
!-- At fourth and fifth grid point the order of the horizontal advection scheme
!-- is successively upgraded.
!-- These extended degradation zones are used to avoid stationary numerical oscillations, which
!-- are responsible for high concentration maxima that may appear under shear-free stable
!-- conditions.
CALL ws_init_flags_scalar( bc_dirichlet_cs_l .OR. bc_radiation_cs_l, &
bc_dirichlet_cs_n .OR. bc_radiation_cs_n, &
bc_dirichlet_cs_r .OR. bc_radiation_cs_r, &
bc_dirichlet_cs_s .OR. bc_radiation_cs_s, &
cs_advc_flags_s, .TRUE. )
ENDIF
!
!-- Initial concentration of profiles is prescribed by parameters cs_profile and cs_heights in the
!-- namelist &chemistry_parameters.
CALL chem_init_profiles
!
!-- In case there is dynamic input file, create a list of names for chemistry initial input files.
!-- Also, initialize array that indicates whether the respective variable is on file or not.
IF ( input_pids_dynamic ) THEN
ALLOCATE( init_3d%var_names_chem(1:nspec) )
ALLOCATE( init_3d%from_file_chem(1:nspec) )
init_3d%from_file_chem(:) = .FALSE.
DO lsp = 1, nspec
init_3d%var_names_chem(lsp) = init_3d%init_char // TRIM( chem_species(lsp)%name )
ENDDO
ENDIF
!
!-- Initialize model variables
IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. &
TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN
!
!-- First model run of a possible job queue.
!-- Initial profiles of the variables must be computed.
IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN
!
!-- Transfer initial profiles to the arrays of the 3D model
!-- Concentrations within buildings are set to zero.
DO lsp = 1, nspec
DO i = nxlg, nxrg
DO j = nysg, nyng
DO lpr_lev = 1, nz + 1
flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(lpr_lev,j,i), 0 ) )
chem_species(lsp)%conc(lpr_lev,j,i) = chem_species(lsp)%conc_pr_init(lpr_lev)&
* flag
ENDDO
ENDDO
ENDDO
ENDDO
ELSEIF ( INDEX( initializing_actions, 'set_constant_profiles' ) /= 0 .OR. &
INDEX( initializing_actions, 'interpolate_from_parent' ) /= 0 ) THEN
DO lsp = 1, nspec
DO i = nxlg, nxrg
DO j = nysg, nyng
DO lpr_lev = nzb, nz+1
flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(lpr_lev,j,i), 0 ) )
chem_species(lsp)%conc(lpr_lev,j,i) = chem_species(lsp)%conc_pr_init(lpr_lev)&
* flag
ENDDO
ENDDO
ENDDO
ENDDO
ENDIF
!
ENDIF
!
!-- Initial old and new time levels. Note, this has to be done also in restart runs
DO lsp = 1, nvar
chem_species(lsp)%tconc_m = 0.0_wp
chem_species(lsp)%conc_p = chem_species(lsp)%conc
ENDDO
DO lsp = 1, nphot
phot_frequen(lsp)%name = phot_names(lsp)
phot_frequen(lsp)%freq(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => freq_1(:,:,:,lsp)
ENDDO
! CALL photolysis_init ! probably also required for restart
RETURN
END SUBROUTINE chem_init_internal
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining initial vertical profiles of chemical species (given by namelist parameters
!> chem_profiles and chem_heights) --> which should work analogically to parameters u_profile,
!> v_profile and uv_heights)
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_init_profiles
USE chem_modules
!
!-- Local variables
INTEGER :: lpr_lev !< running index for profile level for each chem spcs.
INTEGER :: lsp !< running index for number of species in derived data type species_def
INTEGER :: lsp_usr !< running index for number of species (user defined) in cs_names,
!< cs_profiles etc
INTEGER :: npr_lev !< the next available profile lev
!
!-- Parameter "cs_profile" and "cs_heights" are used to prescribe user defined initial profiles
!-- and heights. If parameter "cs_profile" is not prescribed then initial surface values
!-- "cs_surface" are used as constant initial profiles for each species. If "cs_profile" and
!-- "cs_heights" are prescribed, their values will!override the constant profile given by
!-- "cs_surface".
! IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN
lsp_usr = 1
DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) !'novalue' is the default
DO lsp = 1, nspec !
!
!-- Create initial profile (conc_pr_init) for each chemical species
IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) ) THEN
IF ( cs_profile(lsp_usr,1) == 9999999.9_wp ) THEN
!
!-- Set a vertically constant profile based on the surface conc (cs_surface(lsp_usr)) of
!-- each species
DO lpr_lev = 0, nzt+1
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_surface(lsp_usr)
ENDDO
ELSE
IF ( cs_heights(1,1) /= 0.0_wp ) THEN
message_string = 'The surface value of cs_heights must be 0.0'
CALL message( 'chem_check_parameters', 'PA0717', 1, 2, 0, 6, 0 )
ENDIF
use_prescribed_profile_data = .TRUE.
npr_lev = 1
! chem_species(lsp)%conc_pr_init(0) = 0.0_wp
DO lpr_lev = 1, nz+1
IF ( npr_lev < 100 ) THEN
DO WHILE ( cs_heights(lsp_usr, npr_lev+1) <= zu(lpr_lev) )
npr_lev = npr_lev + 1
IF ( npr_lev == 100 ) THEN
message_string = 'number of chem spcs exceeding the limit'
CALL message( 'chem_check_parameters', 'PA0730', 1, 2, 0, 6, 0 )
EXIT
ENDIF
ENDDO
ENDIF
IF ( npr_lev < 100 .AND. cs_heights(lsp_usr,npr_lev+1) /= 9999999.9_wp ) THEN
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev) + &
( zu(lpr_lev) - cs_heights(lsp_usr, npr_lev) ) / &
( cs_heights(lsp_usr, (npr_lev + 1)) - cs_heights(lsp_usr, npr_lev ) ) *&
( cs_profile(lsp_usr, (npr_lev + 1)) - cs_profile(lsp_usr, npr_lev ) )
ELSE
chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev)
ENDIF
ENDDO
ENDIF
!
!-- If a profile is prescribed explicity using cs_profiles and cs_heights, then
!-- chem_species(lsp)%conc_pr_init is populated with the specific "lsp" based on the
!-- cs_profiles(lsp_usr,:) and cs_heights(lsp_usr,:).
ENDIF
ENDDO
lsp_usr = lsp_usr + 1
ENDDO
! ENDIF
END SUBROUTINE chem_init_profiles
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to integrate chemical species in the given chemical mechanism
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_integrate_ij( i, j )
USE statistics, &
ONLY: weight_pres
USE control_parameters, &
ONLY: dt_3d, intermediate_timestep_count, time_since_reference_point
REAL(wp), PARAMETER :: fr2ppm = 1.0e6_wp !< Conversion factor fraction to ppm
! REAL(wp), PARAMETER :: xm_air = 28.96_wp !< Mole mass of dry air
! REAL(wp), PARAMETER :: xm_h2o = 18.01528_wp !< Mole mass of water vapor
REAL(wp), PARAMETER :: p_std = 101325.0_wp !< standard pressure (Pa)
REAL(wp), PARAMETER :: ppm2fr = 1.0e-6_wp !< Conversion factor ppm to fraction
REAL(wp), PARAMETER :: t_std = 273.15_wp !< standard pressure (Pa)
REAL(wp), PARAMETER :: vmolcm = 22.414e3_wp !< Mole volume (22.414 l) in cm^3
REAL(wp), PARAMETER :: xna = 6.022e23_wp !< Avogadro number (molecules/mol)
INTEGER,INTENT(IN) :: i
INTEGER,INTENT(IN) :: j
!
!-- Local variables
INTEGER(iwp) :: lph !< running index for photolysis frequencies
INTEGER(iwp) :: lsp !< running index for chem spcs.
INTEGER, DIMENSION(20) :: istatus
INTEGER,DIMENSION(nzb+1:nzt) :: nacc !< Number of accepted steps
INTEGER,DIMENSION(nzb+1:nzt) :: nrej !< Number of rejected steps
REAL(wp) :: conv !< conversion factor
REAL(kind=wp) :: dt_chem
REAL(wp),DIMENSION(size(rcntrl)) :: rcntrl_local
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact_i !< conversion factor between
!< molecules cm^{-3} and ppm
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_qvap
REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_temp
REAL(kind=wp), DIMENSION(nzb+1:nzt,nspec) :: tmp_conc
REAL(kind=wp), DIMENSION(nzb+1:nzt,nphot) :: tmp_phot
!
!-- Set chem_gasphase_on to .FALSE. if you want to skip computation of gas phase chemistry
IF (chem_gasphase_on) THEN
nacc = 0
nrej = 0
tmp_temp(:) = pt(nzb+1:nzt,j,i) * exner(nzb+1:nzt)
!
!-- Convert ppm to molecules/cm**3
!-- tmp_fact = 1.e-6_wp*6.022e23_wp/(22.414_wp*1000._wp) * 273.15_wp *
!-- hyp(nzb+1:nzt)/( 101300.0_wp * tmp_temp )
conv = ppm2fr * xna / vmolcm
tmp_fact(:) = conv * t_std * hyp(nzb+1:nzt) / (tmp_temp(:) * p_std)
tmp_fact_i = 1.0_wp/tmp_fact
IF ( humidity ) THEN
IF ( bulk_cloud_model ) THEN
tmp_qvap(:) = ( q(nzb+1:nzt,j,i) - ql(nzb+1:nzt,j,i) ) * &
xm_air/xm_h2o * fr2ppm * tmp_fact(:)
ELSE
tmp_qvap(:) = q(nzb+1:nzt,j,i) * xm_air/xm_h2o * fr2ppm * tmp_fact(:)
ENDIF
ELSE
tmp_qvap(:) = 0.01 * xm_air/xm_h2o * fr2ppm * tmp_fact(:) !< Constant value for q if
!< water vapor is not computed
ENDIF
DO lsp = 1,nspec
tmp_conc(:,lsp) = chem_species(lsp)%conc(nzb+1:nzt,j,i) * tmp_fact(:)
ENDDO
DO lph = 1,nphot
tmp_phot(:,lph) = phot_frequen(lph)%freq(nzb+1:nzt,j,i)
ENDDO
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
cs_time_step = dt_chem
IF ( MAXVAL( rcntrl ) > 0.0 ) THEN ! Only if rcntrl is set
IF( time_since_reference_point <= 2*dt_3d) THEN
rcntrl_local = 0
ELSE
rcntrl_local = rcntrl
ENDIF
ELSE
rcntrl_local = 0
END IF
CALL chem_gasphase_integrate ( dt_chem, tmp_conc, tmp_temp, tmp_qvap, tmp_fact, tmp_phot, &
icntrl_i = icntrl, rcntrl_i = rcntrl_local, xnacc = nacc, xnrej = nrej, istatus=istatus )
DO lsp = 1,nspec
chem_species(lsp)%conc (nzb+1:nzt,j,i) = tmp_conc(:,lsp) * tmp_fact_i(:)
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_integrate_ij
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine defining parin for &chemistry_parameters for chemistry model
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_parin
USE chem_modules
USE control_parameters
USE pegrid
USE statistics
CHARACTER(LEN=100) :: line !< dummy string that contains the current
!< line of the parameter file
CHARACTER(LEN=8) :: solver_type
INTEGER(iwp) :: i !<
INTEGER(iwp) :: io_status !< Status after reading the namelist file
INTEGER(iwp) :: max_pr_cs_tmp !<
LOGICAL :: switch_off_module = .FALSE. !< local namelist parameter to switch off the module
!< although the respective module namelist appears in
!< the namelist file
REAL(wp), DIMENSION(nmaxfixsteps) :: my_steps !< List of fixed timesteps my_step(1) = 0.0
!< automatic stepping
NAMELIST /chemistry_parameters/ &
bc_cs_b, &
bc_cs_l, &
bc_cs_n, &
bc_cs_r, &
bc_cs_s, &
bc_cs_t, &
call_chem_at_all_substeps, &
chem_gasphase_on, &
chem_mechanism, &
cs_heights, &
cs_name, &
cs_profile, &
cs_surface, &
daytype_mdh, &
deposition_dry, &
emis_generic, &
emis_domestic, &
emis_domestic_lod, &
emis_traffic, &
emis_traffic_lod, &
emissions_anthropogenic, &
emiss_lod, &
emiss_factor_main, &
emiss_factor_side, &
emiss_read_legacy_mode, &
icntrl, &
main_street_id, &
max_street_id, &
mode_emis, &
my_steps, &
nesting_chem, &
nesting_offline_chem, &
rcntrl, &
side_street_id, &
photolysis_scheme, &
wall_csflux, &
surface_csflux, &
surface_csflux_name, &
switch_off_module, &
time_fac_type
!
!-- Analogically to chem_names(nspj) we could invent chem_surfaceflux(nspj) and chem_topflux(nspj)
!-- so this way we could prescribe a specific flux value for each species
!> chemistry_parameters for initial profiles
!> cs_names = 'O3', 'NO2', 'NO', ... to set initial profiles)
!> cs_heights(1,:) = 0.0, 100.0, 500.0, 2000.0, .... (height levels where concs will be prescribed for O3)
!> cs_heights(2,:) = 0.0, 200.0, 400.0, 1000.0, .... (same for NO2 etc.)
!> cs_profiles(1,:) = 10.0, 20.0, 20.0, 30.0, ..... (chem spcs conc at height lvls chem_heights(1,:)) etc.
!> If the respective concentration profile should be constant with height, then use "cs_surface( number of spcs)"
!> then write these cs_surface values to chem_species(lsp)%conc_pr_init(:)
!
!-- Read chem namelist
icntrl = 0
rcntrl = 0.0_wp
my_steps = 0.0_wp
photolysis_scheme = 'simple'
atol = 1.0_wp
rtol = 0.01_wp
!
!-- Move to the beginning of the namelist file and try to find and read the namelist named
!-- chemistry_parameters.
REWIND( 11 )
READ( 11, chemistry_parameters, IOSTAT=io_status )
!
!-- Action depending on the READ status
IF ( io_status == 0 ) THEN
!
! chemistry_parameters namelist was found and read correctly. Switch on chemistry model.
IF ( .NOT. switch_off_module ) air_chemistry = .TRUE.
ELSEIF ( io_status > 0 ) THEN
!
!-- chemistry_parameters namelist was found, but contained errors. Print an error message
!-- including the line that caused the problem.
BACKSPACE( 11 )
READ( 11 , '(A)') line
CALL parin_fail_message( 'chemistry_parameters', line )
ENDIF
!
!-- Synchronize emiss_lod and mod_emis only if emissions_anthropogenic is activated in the namelist.
!-- Otherwise their values are "don't care"
IF ( emissions_anthropogenic ) THEN
!
!-- Check for emission mode for chem species
IF ( emiss_lod < 0 ) THEN !- if LOD not defined in namelist
IF ( ( mode_emis /= 'PARAMETERIZED' ) .AND. &
( mode_emis /= 'DEFAULT' ) .AND. &
( mode_emis /= 'PRE-PROCESSED' ) ) THEN
message_string = 'Incorrect mode_emiss option select. Please check spelling'
CALL message( 'chem_parin', 'PA0731', 1, 2, 0, 6, 0 )
ENDIF
ELSE
IF ( ( emiss_lod /= 0 ) .AND. &
( emiss_lod /= 1 ) .AND. &
( emiss_lod /= 2 ) ) THEN
message_string = 'Invalid value for emiss_lod (0, 1, or 2)'
CALL message( 'chem_parin', 'PA0732', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!
!-- Conflict resolution for emiss_lod and mode_emis.
!-- 1) if emiss_lod is defined, have mode_emis assume same setting as emiss_lod
!-- 2) if emiss_lod it not defined, have emiss_lod assuem same setting as mode_emis
!-- This check is in place to retain backward compatibility with salsa until the code is
!-- migrated completely to emiss_lod.
IF ( emiss_lod >= 0 ) THEN
SELECT CASE ( emiss_lod )
!
!-- Synchronize mode_emis to defined emiss_lod (mode_emis will be depreciated in
!-- future releases)
CASE (0) !- parameterized mode
mode_emis = 'PARAMETERIZED'
CASE (1) !- default mode
mode_emis = 'DEFAULT'
CASE (2) !- preprocessed mode
mode_emis = 'PRE-PROCESSED'
END SELECT
ELSE ! if emiss_lod is not set
SELECT CASE ( mode_emis )
CASE ('PARAMETERIZED')
emiss_lod = 0
CASE ('DEFAULT')
emiss_lod = 1
CASE ('PRE-PROCESSED')
emiss_lod = 2
END SELECT
message_string = 'emiss_lod undefined. Using existing mod_emiss setting&' // &
'NOTE - mode_emis will be depreciated in future releases&' // &
'please use emiss_lod to define emission mode'
CALL message( 'chem_parin', 'PA0734', 0, 0, 0, 6, 0 )
ENDIF
!
!-- NB input check for emission read mode.
!-- legacy : business as usual (everything read / set up at start of run)
!-- new : emission based on timestamp, and for lod2 data is loaded on an hourly basis
!
!-- NB handler for emiss_read_legacy_mode
!-- * emiss_read_legacy_mode is defaulted to TRUE
!-- * if emiss_read_legacy_mode is TRUE and LOD is 0 or 1,
!-- force emission_read_legacy_mode to TRUE (not yet implemented)
IF ( .NOT. emiss_read_legacy_mode ) THEN !< if new read mode selected
IF ( emiss_lod < 2 ) THEN !< check LOD compatibility
message_string = 'New emission read mode ' // &
'currently unavailable for LODs 0 and 1.&' // &
'Reverting to legacy emission read mode'
CALL message( 'chem_parin', 'PA0736', 0, 0, 0, 6, 0 )
emiss_read_legacy_mode = .TRUE.
ELSE !< notify new read mode
message_string = 'New emission read mode activated&' // &
'LOD 2 emissions will be updated on-demand ' // &
'according to indicated timestamps'
CALL message( 'chem_parin', 'PA0737', 0, 0, 0, 6, 0 )
ENDIF
ENDIF ! if emiss_read_legacy_mode
ENDIF ! if emissions_anthropengic
t_steps = my_steps
!
!-- Determine the number of user-defined profiles and append them to the standard data output
!-- (data_output_pr)
max_pr_cs_tmp = 0
i = 1
DO WHILE ( data_output_pr(i) /= ' ' .AND. i <= SIZE( data_output_pr ) )
IF ( TRIM( data_output_pr(i)(1:3) ) == 'kc_' ) THEN
max_pr_cs_tmp = max_pr_cs_tmp+1
ENDIF
i = i +1
ENDDO
IF ( max_pr_cs_tmp > 0 ) THEN
cs_pr_namelist_found = .TRUE.
max_pr_cs = max_pr_cs_tmp
ENDIF
!
!-- Set Solver Type
IF ( icntrl(3) == 0 ) THEN
solver_type = 'rodas3' !Default
ELSEIF ( icntrl(3) == 1 ) THEN
solver_type = 'ros2'
ELSEIF ( icntrl(3) == 2 ) THEN
solver_type = 'ros3'
ELSEIF ( icntrl(3) == 3 ) THEN
solver_type = 'ro4'
ELSEIF ( icntrl(3) == 4 ) THEN
solver_type = 'rodas3'
ELSEIF ( icntrl(3) == 5 ) THEN
solver_type = 'rodas4'
ELSEIF ( icntrl(3) == 6 ) THEN
solver_type = 'Rang3'
ELSE
message_string = 'illegal Rosenbrock-solver type'
CALL message( 'chem_parin', 'PA0506', 1, 2, 0, 6, 0 )
END IF
RETURN
END SUBROUTINE chem_parin
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for all grid points
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_actions( location )
USE chem_modules, ONLY : emis_generic, emis_domestic, emis_traffic
USE chem_emis_vsrc_mod, ONLY : chem_emis_vsrc_reset_source, chem_emis_vsrc_cleanup
USE chem_emis_generic_mod, ONLY : chem_emis_generic_update, chem_emis_generic_cleanup
USE chem_emis_domestic_mod, ONLY : chem_emis_domestic_update, chem_emis_domestic_cleanup
USE chem_emis_traffic_mod, ONLY : chem_emis_traffic_update, chem_emis_traffic_cleanup
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
SELECT CASE ( location )
CASE ( 'before_prognostic_equations' )
!
!-- Chemical reactions and deposition
IF ( chem_gasphase_on ) THEN
!
!-- If required, calculate photolysis frequencies -
!-- UNFINISHED: Why not before the intermediate timestep loop?
IF ( intermediate_timestep_count == 1 ) THEN
CALL photolysis_control
ENDIF
ENDIF
CASE ( 'before_timestep' )
!
!-- Set array used to sum-up resolved scale fluxes to zero.
IF ( ws_scheme_sca ) THEN
sums_ws_l = 0.0_wp
ENDIF
CASE ( 'update_emission_sources' )
!
!-- updates emission sources for all activated modes
CALL chem_emis_vsrc_reset_source ( )
IF ( emis_generic ) CALL chem_emis_generic_update ( )
IF ( emis_domestic ) CALL chem_emis_domestic_update ( )
IF ( emis_traffic ) CALL chem_emis_traffic_update ( )
CASE ( 'after_time_integration' )
!
!-- deallocates all dynamic memory
IF ( emis_generic ) CALL chem_emis_generic_cleanup ( )
IF ( emis_domestic ) CALL chem_emis_domestic_cleanup ( )
IF ( emis_traffic ) CALL chem_emis_traffic_cleanup ( )
CALL chem_emis_vsrc_cleanup ( )
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE chem_actions
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for grid points i,j
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_actions_ij( i, j, location )
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
INTEGER(iwp) :: dummy !< call location string
INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction
INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction
IF ( air_chemistry ) dummy = i + j
SELECT CASE ( location )
CASE DEFAULT
CONTINUE
END SELECT
END SUBROUTINE chem_actions_ij
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for all grid points
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_non_advective_processes()
USE chem_emis_vsrc_mod, ONLY : chem_emis_vsrc_assign_source
INTEGER(iwp) :: i !<
INTEGER(iwp) :: j !<
!
!-- Calculation of chemical reactions and deposition.
IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN
IF ( chem_gasphase_on ) THEN
CALL cpu_log( log_point_s(19), 'chem.reactions', 'start' )
!$OMP PARALLEL PRIVATE (i,j)
!$OMP DO schedule(static,1)
DO i = nxl, nxr
DO j = nys, nyn
CALL chem_emis_vsrc_assign_source ( i, j )
CALL chem_integrate( i, j )
ENDDO
ENDDO
!$OMP END PARALLEL
CALL cpu_log( log_point_s(19), 'chem.reactions', 'stop' )
ENDIF
IF ( deposition_dry ) THEN
CALL cpu_log( log_point_s(24), 'chem.deposition', 'start' )
DO i = nxl, nxr
DO j = nys, nyn
CALL chem_depo( i, j )
ENDDO
ENDDO
CALL cpu_log( log_point_s(24), 'chem.deposition', 'stop' )
ENDIF
ENDIF
END SUBROUTINE chem_non_advective_processes
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Call for grid points i,j
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_non_advective_processes_ij( i, j )
USE chem_emis_vsrc_mod, ONLY : chem_emis_vsrc_assign_source
INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction
INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction
!
!-- Calculation of chemical reactions and deposition.
!-- It would have been nice to have time measurements for chemistry and deposition here.
!-- Unfortunately measurements within i,j loops degrade performance ince they are calles so often
!-- and the counter for this measurement gets extremely huge values. Therefore, no measurements
!-- here.
IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN
IF ( chem_gasphase_on ) THEN
CALL chem_emis_vsrc_assign_source ( i, j )
CALL chem_integrate( i, j )
ENDIF
IF ( deposition_dry ) THEN
CALL chem_depo( i, j )
ENDIF
ENDIF
END SUBROUTINE chem_non_advective_processes_ij
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> routine for exchange horiz of chemical quantities
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_exchange_horiz_bounds( location )
USE exchange_horiz_mod, &
ONLY: exchange_horiz
INTEGER(iwp) :: lsp !<
INTEGER(iwp) :: n
CHARACTER (LEN=*), INTENT(IN) :: location !< call location string
SELECT CASE ( location )
CASE ( 'before_prognostic_equation' )
!
!-- Loop over chemical species
CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'start' )
DO lsp = 1, nvar
CALL exchange_horiz( chem_species(lsp)%conc, nbgp, &
alternative_communicator = communicator_chem )
ENDDO
CALL chem_boundary_conditions( horizontal_conditions_only = .TRUE. )
CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'stop' )
CASE ( 'after_prognostic_equation' )
IF ( air_chemistry ) THEN
DO n = 1, nvar
CALL exchange_horiz( chem_species(n)%conc_p, nbgp, &
alternative_communicator = communicator_chem )
ENDDO
ENDIF
CASE ( 'after_anterpolation' )
IF ( air_chemistry ) THEN
DO n = 1, nvar
CALL exchange_horiz( chem_species(n)%conc, nbgp, &
alternative_communicator = communicator_chem )
ENDDO
ENDIF
END SELECT
END SUBROUTINE chem_exchange_horiz_bounds
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine calculating prognostic equations for chemical species (vector-optimized).
!> Routine is called separately for each chemical species over a loop from prognostic_equations.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_prognostic_equations()
INTEGER :: i !< running index
INTEGER :: j !< running index
INTEGER :: k !< running index
INTEGER(iwp) :: ilsp !<
CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'start' )
DO ilsp = 1, nvar
!
!-- Tendency terms for chemical species
tend = 0.0_wp
!
!-- Advection terms
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( ws_scheme_sca ) THEN
sums_wschs_ws_l(nzb:,0:) => sums_ws_l(:,:,ilsp)
CALL advec_s_ws( cs_advc_flags_s, chem_species(ilsp)%conc, 'kc', &
bc_dirichlet_cs_l .OR. bc_radiation_cs_l, &
bc_dirichlet_cs_n .OR. bc_radiation_cs_n, &
bc_dirichlet_cs_r .OR. bc_radiation_cs_r, &
bc_dirichlet_cs_s .OR. bc_radiation_cs_s )
ELSE
CALL advec_s_pw( chem_species(ilsp)%conc )
ENDIF
ELSE
CALL advec_s_up( chem_species(ilsp)%conc )
ENDIF
!
!-- Diffusion terms (the last three arguments are zero)
CALL diffusion_s( chem_species(ilsp)%conc, &
surf_def_h(0)%cssws(ilsp,:), &
surf_def_h(1)%cssws(ilsp,:), &
surf_def_h(2)%cssws(ilsp,:), &
surf_lsm_h(0)%cssws(ilsp,:), &
surf_lsm_h(1)%cssws(ilsp,:), &
surf_usm_h(0)%cssws(ilsp,:), &
surf_usm_h(1)%cssws(ilsp,:), &
surf_def_v(0)%cssws(ilsp,:), &
surf_def_v(1)%cssws(ilsp,:), &
surf_def_v(2)%cssws(ilsp,:), &
surf_def_v(3)%cssws(ilsp,:), &
surf_lsm_v(0)%cssws(ilsp,:), &
surf_lsm_v(1)%cssws(ilsp,:), &
surf_lsm_v(2)%cssws(ilsp,:), &
surf_lsm_v(3)%cssws(ilsp,:), &
surf_usm_v(0)%cssws(ilsp,:), &
surf_usm_v(1)%cssws(ilsp,:), &
surf_usm_v(2)%cssws(ilsp,:), &
surf_usm_v(3)%cssws(ilsp,:) )
!
!-- Prognostic equation for chemical species
DO i = nxl, nxr
DO j = nys, nyn
!following directive is required to vectorize on Intel19
!DIR$ IVDEP
DO k = nzb+1, nzt
chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) &
+ ( dt_3d * &
( tsc(2) * tend(k,j,i) &
+ tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) &
) &
- tsc(5) * rdf_sc(k) &
* ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) &
) &
* MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) )
IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN
chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i)
ENDIF
ENDDO
ENDDO
ENDDO
!
!-- Calculate tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i)
ENDDO
ENDDO
ENDDO
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = - 9.5625_wp * tend(k,j,i) &
+ 5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i)
ENDDO
ENDDO
ENDDO
ENDIF
ENDIF
ENDDO
CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'stop' )
END SUBROUTINE chem_prognostic_equations
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine calculating prognostic equations for chemical species (cache-optimized).
!> Routine is called separately for each chemical species over a loop from prognostic_equations.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_prognostic_equations_ij( i, j, i_omp_start, tn )
INTEGER(iwp),INTENT(IN) :: i, j, i_omp_start, tn
INTEGER(iwp) :: ilsp
!
!-- local variables
INTEGER :: k
DO ilsp = 1, nvar
!
!-- Tendency-terms for chem spcs.
tend(:,j,i) = 0.0_wp
!
!-- Advection terms
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( ws_scheme_sca ) THEN
sums_wschs_ws_l(nzb:,0:) => sums_ws_l(nzb:nzt+1,0:threads_per_task-1,ilsp)
CALL advec_s_ws( cs_advc_flags_s, &
i, &
j, &
chem_species(ilsp)%conc, &
'kc', &
chem_species(ilsp)%flux_s_cs, &
chem_species(ilsp)%diss_s_cs, &
chem_species(ilsp)%flux_l_cs, &
chem_species(ilsp)%diss_l_cs, &
i_omp_start, &
tn, &
bc_dirichlet_cs_l .OR. bc_radiation_cs_l, &
bc_dirichlet_cs_n .OR. bc_radiation_cs_n, &
bc_dirichlet_cs_r .OR. bc_radiation_cs_r, &
bc_dirichlet_cs_s .OR. bc_radiation_cs_s, &
monotonic_limiter_z )
ELSE
CALL advec_s_pw( i, j, chem_species(ilsp)%conc )
ENDIF
ELSE
CALL advec_s_up( i, j, chem_species(ilsp)%conc )
ENDIF
!
!-- Diffusion terms (the last three arguments are zero)
CALL diffusion_s( i, j, chem_species(ilsp)%conc, &
surf_def_h(0)%cssws(ilsp,:), surf_def_h(1)%cssws(ilsp,:), &
surf_def_h(2)%cssws(ilsp,:), &
surf_lsm_h(0)%cssws(ilsp,:), surf_lsm_h(1)%cssws(ilsp,:), &
surf_usm_h(0)%cssws(ilsp,:), surf_usm_h(1)%cssws(ilsp,:), &
surf_def_v(0)%cssws(ilsp,:), surf_def_v(1)%cssws(ilsp,:), &
surf_def_v(2)%cssws(ilsp,:), surf_def_v(3)%cssws(ilsp,:), &
surf_lsm_v(0)%cssws(ilsp,:), surf_lsm_v(1)%cssws(ilsp,:), &
surf_lsm_v(2)%cssws(ilsp,:), surf_lsm_v(3)%cssws(ilsp,:), &
surf_usm_v(0)%cssws(ilsp,:), surf_usm_v(1)%cssws(ilsp,:), &
surf_usm_v(2)%cssws(ilsp,:), surf_usm_v(3)%cssws(ilsp,:) )
!
!-- Prognostic equation for chem spcs
DO k = nzb+1, nzt
chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) + ( dt_3d * &
( tsc(2) * tend(k,j,i) + &
tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) ) &
- tsc(5) * rdf_sc(k) &
* ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) &
) &
* MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 0 ) &
)
IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN
chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i) !FKS6
ENDIF
ENDDO
!
!-- Calculate tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i)
ENDDO
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
DO k = nzb+1, nzt
chem_species(ilsp)%tconc_m(k,j,i) = -9.5625_wp * tend(k,j,i) + &
5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i)
ENDDO
ENDIF
ENDIF
ENDDO
END SUBROUTINE chem_prognostic_equations_ij
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific local restart data arrays (Fortran binary format).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_rrd_local_ftn( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, nxr_on_file, nynf, nync, &
nyn_on_file, nysf, nysc, nys_on_file, tmp_3d, found )
USE control_parameters
INTEGER(iwp) :: k !<
INTEGER(iwp) :: lsp !<
INTEGER(iwp) :: nxlc !<
INTEGER(iwp) :: nxlf !<
INTEGER(iwp) :: nxl_on_file !<
INTEGER(iwp) :: nxrc !<
INTEGER(iwp) :: nxrf !<
INTEGER(iwp) :: nxr_on_file !<
INTEGER(iwp) :: nync !<
INTEGER(iwp) :: nynf !<
INTEGER(iwp) :: nyn_on_file !<
INTEGER(iwp) :: nysc !<
INTEGER(iwp) :: nysf !<
INTEGER(iwp) :: nys_on_file !<
LOGICAL, INTENT(OUT) :: found
REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) &
:: tmp_3d !< 3D array to temp store data
found = .FALSE.
IF ( ALLOCATED( chem_species ) ) THEN
DO lsp = 1, nspec
IF ( restart_string(1:length) == TRIM( chem_species(lsp)%name) ) THEN
IF ( k == 1 ) READ ( 13 ) tmp_3d
chem_species(lsp)%conc(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
found = .TRUE.
ELSEIF (restart_string(1:length) == TRIM( chem_species(lsp)%name ) // '_av' ) THEN
IF ( .NOT. ALLOCATED( chem_species(lsp)%conc_av ) ) THEN
ALLOCATE( chem_species(lsp)%conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg ) )
ENDIF
IF ( k == 1 ) READ ( 13 ) tmp_3d
chem_species(lsp)%conc_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = &
tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp)
found = .TRUE.
ENDIF
ENDDO
ENDIF
END SUBROUTINE chem_rrd_local_ftn
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Read module-specific local restart data arrays (Fortran binary format).
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_rrd_local_mpi
IMPLICIT NONE
INTEGER(iwp) :: lsp !<
LOGICAL :: array_found !<
DO lsp = 1, nspec
CALL rrd_mpi_io( TRIM( chem_species(lsp)%name ), chem_species(lsp)%conc )
CALL rd_mpi_io_check_array( TRIM( chem_species(lsp)%name )//'_av' , found = array_found )
IF ( array_found ) THEN
IF ( .NOT. ALLOCATED( chem_species(lsp)%conc_av ) ) THEN
ALLOCATE( chem_species(lsp)%conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
CALL rrd_mpi_io( TRIM( chem_species(lsp)%name )//'_av', chem_species(lsp)%conc_av )
ENDIF
ENDDO
END SUBROUTINE chem_rrd_local_mpi
!--------------------------------------------------------------------------------------------------!
!> Description:
!> Calculation of horizontally averaged profiles
!> This routine is called for every statistic region (sr) defined by the user,
!> but at least for the region "total domain" (sr=0).
!> quantities.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_statistics( mode, sr, tn )
USE arrays_3d
USE statistics
CHARACTER (LEN=*) :: mode !<
INTEGER(iwp) :: i !< running index on x-axis
INTEGER(iwp) :: j !< running index on y-axis
INTEGER(iwp) :: k !< vertical index counter
INTEGER(iwp) :: l !< direction index counter
INTEGER(iwp) :: lpr !< running index chem spcs
INTEGER(iwp) :: m !< running index for surface elements
!$ INTEGER(iwp) :: omp_get_thread_num !< intrinsic OMP function
INTEGER(iwp) :: sr !< statistical region
INTEGER(iwp) :: surf_e !< end surface index
INTEGER(iwp) :: surf_s !< start surface index
INTEGER(iwp) :: tn !< thread number
REAL(wp) :: flag !< topography masking flag
REAL(wp), DIMENSION(nzb:nzt+1,0:threads_per_task-1) :: sums_tmp !< temporary array used to sum-up profiles
IF ( mode == 'profiles' ) THEN
!
!-- Sum-up profiles for the species
tn = 0
!$OMP PARALLEL PRIVATE( i, j, k, tn, lpr, sums_tmp )
!$ tn = omp_get_thread_num()
!$OMP DO
DO lpr = 1, cs_pr_count_sp
sums_tmp(:,tn) = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt+1
sums_tmp(k,tn) = sums_tmp(k,tn) + &
chem_species(cs_pr_index_sp(lpr))%conc(k,j,i) * &
rmask(j,i,sr) * &
MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 22 ) )
ENDDO
ENDDO
ENDDO
sums_l(nzb:nzt+1,hom_index_spec(lpr),tn) = sums_tmp(nzb:nzt+1,tn)
ENDDO
!$OMP END PARALLEL
!
!-- Sum-up profiles for vertical fluxes of the the species. Note, in case of WS5 scheme the
!-- profiles of resolved-scale fluxes have been already summed-up, while resolved-scale fluxes
!-- need to be calculated in case of PW scheme.
!-- For summation employ a temporary array.
!$OMP PARALLEL PRIVATE( i, j, k, tn, lpr, sums_tmp, flag )
!$ tn = omp_get_thread_num()
!$OMP DO
DO lpr = 1, cs_pr_count_fl_sgs
sums_tmp(:,tn) = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb, nzt
flag = MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 23 ) ) * &
MERGE( 1.0_wp, 0.0_wp, BTEST( topo_flags(k,j,i), 9 ) )
sums_tmp(k,tn) = sums_tmp(k,tn) - &
0.5_wp * ( kh(k,j,i) + kh(k+1,j,i) ) &
* ( chem_species(cs_pr_index_fl_sgs(lpr))%conc(k+1,j,i) - &
chem_species(cs_pr_index_fl_sgs(lpr))%conc(k,j,i) ) * &
ddzu(k+1) * rmask(j,i,sr) * flag
ENDDO
!
!-- Add surface fluxes (?Is the order mandatory or could it be done in one cycle?)
DO l = 0, 1
surf_s = surf_def_h(0)%start_index(j,i)
surf_e = surf_def_h(0)%end_index(j,i)
DO m = surf_s, surf_e
k = surf_def_h(0)%k(m) + surf_def_h(0)%koff
sums_tmp(k,tn) = sums_tmp(k,tn) + surf_def_h(0)%cssws(cs_pr_index_fl_sgs(lpr),m)
ENDDO
ENDDO
DO l = 0, 1
surf_s = surf_lsm_h(0)%start_index(j,i)
surf_e = surf_lsm_h(0)%end_index(j,i)
DO m = surf_s, surf_e
k = surf_lsm_h(0)%k(m) + surf_lsm_h(0)%koff
sums_tmp(k,tn) = sums_tmp(k,tn) + surf_lsm_h(0)%cssws(cs_pr_index_fl_sgs(lpr),m)
ENDDO
ENDDO
DO l = 0, 1
surf_s = surf_usm_h(0)%start_index(j,i)
surf_e = surf_usm_h(0)%end_index(j,i)
DO m = surf_s, surf_e
k = surf_usm_h(0)%k(m) + surf_usm_h(0)%koff
sums_tmp(k,tn) = sums_tmp(k,tn) + surf_usm_h(0)%cssws(cs_pr_index_fl_sgs(lpr),m)
ENDDO
ENDDO
ENDDO
ENDDO
sums_l(nzb:nzt+1,hom_index_fl_sgs(lpr),tn) = sums_tmp(nzb:nzt+1,tn)
ENDDO
!$OMP END PARALLEL
!
!-- Resolved-scale fluxes from the WS5 scheme
IF ( ws_scheme_sca ) THEN
!$OMP PARALLEL PRIVATE( tn, lpr )
!$ tn = omp_get_thread_num()
!$OMP DO
DO lpr = 1, cs_pr_count_fl_res
sums_l(nzb:nzt+1,hom_index_fl_res(lpr),tn) = &
sums_ws_l(nzb:nzt+1,tn,cs_pr_index_fl_res(lpr))
ENDDO
!$OMP END PARALLEL
ENDIF
ELSEIF ( mode == 'time_series' ) THEN
! @todo
ENDIF
END SUBROUTINE chem_statistics
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine for swapping of timelevels for chemical species called out from subroutine
!> swap_timelevel
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_swap_timelevel( level )
INTEGER(iwp), INTENT(IN) :: level
!
!-- Local variables
INTEGER(iwp) :: lsp
IF ( level == 0 ) THEN
DO lsp=1, nvar
chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp)
chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp)
ENDDO
ELSE
DO lsp=1, nvar
chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp)
chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp)
ENDDO
ENDIF
RETURN
END SUBROUTINE chem_swap_timelevel
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to write restart data for chemistry model
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_wrd_local
INTEGER(iwp) :: lsp !< running index for chem spcs.
IF ( TRIM( restart_data_format_output ) == 'fortran_binary' ) THEN
DO lsp = 1, nspec
CALL wrd_write_string( TRIM( chem_species(lsp)%name ) )
WRITE ( 14 ) chem_species(lsp)%conc
IF ( ALLOCATED( chem_species(lsp)%conc_av ) ) THEN
CALL wrd_write_string( TRIM( chem_species(lsp)%name )//'_av' )
WRITE ( 14 ) chem_species(lsp)%conc_av
ENDIF
ENDDO
ELSEIF ( restart_data_format_output(1:3) == 'mpi' ) THEN
DO lsp = 1, nspec
CALL wrd_mpi_io( TRIM( chem_species(lsp)%name ), chem_species(lsp)%conc )
IF ( ALLOCATED( chem_species(lsp)%conc_av ) ) THEN
CALL wrd_mpi_io( TRIM( chem_species(lsp)%name ) // '_av', chem_species(lsp)%conc_av )
ENDIF
ENDDO
ENDIF
END SUBROUTINE chem_wrd_local
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to calculate the deposition of gases and PMs. For now deposition only takes place on
!> lsm and usm horizontal upward faceing surfaces. Default surfaces are NOT considered.
!> The deposition of particlesis derived following Zhang et al., 2001, gases are deposited using
!> the DEPAC module (van Zanten et al., 2010).
!>
!> @TODO: Consider deposition on vertical surfaces
!> @TODO: Consider overlaying horizontal surfaces
!> @TODO: Consider resolved vegetation
!> @TODO: Check error messages
!--------------------------------------------------------------------------------------------------!
SUBROUTINE chem_depo( i, j )
USE control_parameters, &
ONLY: dt_3d, intermediate_timestep_count, latitude, time_since_reference_point
USE arrays_3d, &
ONLY: dzw, rho_air_zw
USE palm_date_time_mod, &
ONLY: get_date_time
USE surface_mod, &
ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_lsm_h, surf_type, surf_usm_h
USE radiation_model_mod, &
ONLY: cos_zenith
INTEGER(iwp) :: day_of_year !< current day of the year
INTEGER(iwp), INTENT(IN) :: i
INTEGER(iwp) :: i_pspec !< index for matching depac gas component
INTEGER(iwp), INTENT(IN) :: j
INTEGER(iwp) :: k !< matching k to surface m at i,j
INTEGER(iwp) :: lsp !< running index for chem spcs.
INTEGER(iwp) :: luv_palm !< index of PALM LSM vegetation_type at current
!< surface element
INTEGER(iwp) :: lup_palm !< index of PALM LSM pavement_type at current
!< surface element
INTEGER(iwp) :: luw_palm !< index of PALM LSM water_type at current
!< surface element
INTEGER(iwp) :: luu_palm !< index of PALM USM walls/roofs at current
!< surface element
INTEGER(iwp) :: lug_palm !< index of PALM USM green walls/roofs at current
!< surface element
INTEGER(iwp) :: lud_palm !< index of PALM USM windows at current surface
!< element
INTEGER(iwp) :: luv_dep !< matching DEPAC LU to luv_palm
INTEGER(iwp) :: lup_dep !< matching DEPAC LU to lup_palm
INTEGER(iwp) :: luw_dep !< matching DEPAC LU to luw_palm
INTEGER(iwp) :: luu_dep !< matching DEPAC LU to luu_palm
INTEGER(iwp) :: lug_dep !< matching DEPAC LU to lug_palm
INTEGER(iwp) :: lud_dep !< matching DEPAC LU to lud_palm
INTEGER(iwp) :: m !< index for horizontal surfaces
INTEGER(iwp) :: pspec !< running index
!
!-- Vegetation !< Assign PALM classes to DEPAC land
!< use classes
INTEGER(iwp) :: ind_luv_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_luv_b_soil = 1 !< assigned to ilu_desert
INTEGER(iwp) :: ind_luv_mixed_crops = 2 !< assigned to ilu_arable
INTEGER(iwp) :: ind_luv_s_grass = 3 !< assigned to ilu_grass
INTEGER(iwp) :: ind_luv_ev_needle_trees = 4 !< assigned to ilu_coniferous_forest
INTEGER(iwp) :: ind_luv_de_needle_trees = 5 !< assigned to ilu_coniferous_forest
INTEGER(iwp) :: ind_luv_ev_broad_trees = 6 !< assigned to ilu_tropical_forest
INTEGER(iwp) :: ind_luv_de_broad_trees = 7 !< assigned to ilu_deciduous_forest
INTEGER(iwp) :: ind_luv_t_grass = 8 !< assigned to ilu_grass
INTEGER(iwp) :: ind_luv_desert = 9 !< assigned to ilu_desert
INTEGER(iwp) :: ind_luv_tundra = 10 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_irr_crops = 11 !< assigned to ilu_arable
INTEGER(iwp) :: ind_luv_semidesert = 12 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_ice = 13 !< assigned to ilu_ice
INTEGER(iwp) :: ind_luv_marsh = 14 !< assigned to ilu_other
INTEGER(iwp) :: ind_luv_ev_shrubs = 15 !< assigned to ilu_mediterrean_scrub
INTEGER(iwp) :: ind_luv_de_shrubs = 16 !< assigned to ilu_mediterrean_scrub
INTEGER(iwp) :: ind_luv_mixed_forest = 17 !< assigned to ilu_coniferous_forest(ave(decid+conif))
INTEGER(iwp) :: ind_luv_intrup_forest = 18 !< assigned to ilu_other (ave(other+decid))
!
!-- Water
INTEGER(iwp) :: ind_luw_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_luw_lake = 1 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_river = 2 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_ocean = 3 !< assigned to ilu_water_sea
INTEGER(iwp) :: ind_luw_pond = 4 !< assigned to ilu_water_inland
INTEGER(iwp) :: ind_luw_fountain = 5 !< assigned to ilu_water_inland
!
!-- Pavement
INTEGER(iwp) :: ind_lup_user = 0 !< ERROR as no class given in PALM
INTEGER(iwp) :: ind_lup_asph_conc = 1 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_asph = 2 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_conc = 3 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_sett = 4 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_pav_stones = 5 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_cobblest = 6 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_metal = 7 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_wood = 8 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_gravel = 9 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_f_gravel = 10 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_pebblest = 11 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_woodchips = 12 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_tartan = 13 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_art_turf = 14 !< assigned to ilu_desert
INTEGER(iwp) :: ind_lup_clay = 15 !< assigned to ilu_desert
!
!-- Particle parameters according to the respective aerosol classes (PM25, PM10)
INTEGER(iwp) :: ind_p_size = 1 !< index for partsize in particle_pars
INTEGER(iwp) :: ind_p_dens = 2 !< index for rhopart in particle_pars
INTEGER(iwp) :: ind_p_slip = 3 !< index for slipcor in particle_pars
INTEGER(iwp) :: nwet !< wetness indicator dor DEPAC; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
INTEGER(iwp) :: part_type !< index for particle type (PM10 or PM25) in particle_pars
REAL(wp) :: conc_ijk_ugm3 !< concentration at i, j, k in ug/m3
REAL(wp) :: dens !< density at layer k at i,j
REAL(wp) :: dh !< vertical grid size
REAL(wp) :: diffusivity !< diffusivity
REAL(wp) :: dt_chem !< length of chem time step
REAL(wp) :: dt_dh !< dt_chem/dh
REAL(wp) :: inv_dh !< inverse of vertical grid size
REAL(wp) :: lai !< leaf area index at current surface element
REAL(wp) :: ppm2ugm3 !< conversion factor from ppm to ug/m3
REAL(wp) :: qv_tmp !< surface mixing ratio at current surface element
REAL(wp) :: r_aero_surf !< aerodynamic resistance (s/m) at current surface element
REAL(wp) :: rb !< quasi-laminar boundary layer resistance (s/m)
REAL(wp) :: rc_tot !< total canopy resistance (s/m)
REAL(wp) :: rh_surf !< relative humidity at current surface element
REAL(wp) :: rs !< Sedimentaion resistance (s/m)
REAL(wp) :: sai !< surface area index at current surface element assumed to be
!< lai + 1
REAL(wp) :: slinnfac
REAL(wp) :: solar_rad !< solar radiation, direct and diffuse, at current surface
!< element
REAL(wp) :: temp_tmp !< temperatur at i,j,k
REAL(wp) :: ts !< surface temperatur in degrees celsius
REAL(wp) :: ustar_surf !< ustar at current surface element
REAL(wp) :: vd_lu !< deposition velocity (m/s)
REAL(wp) :: visc !< Viscosity
REAL(wp) :: vs !< Sedimentation velocity
REAL(wp) :: z0h_surf !< roughness length for heat at current surface element
REAL(wp), DIMENSION(nspec) :: bud !< overall budget at current surface element
REAL(wp), DIMENSION(nspec) :: bud_lud !< budget for USM windows at current surface element
REAL(wp), DIMENSION(nspec) :: bud_lug !< budget for USM green surfaces at current surface
!< element
REAL(wp), DIMENSION(nspec) :: bud_lup !< budget for LSM pavement type at current surface
!< element
REAL(wp), DIMENSION(nspec) :: bud_luu !< budget for USM walls/roofs at current surface
!< element
REAL(wp), DIMENSION(nspec) :: bud_luv !< budget for LSM vegetation type at current surface
!< element
REAL(wp), DIMENSION(nspec) :: bud_luw !< budget for LSM water type at current surface
!< element
REAL(wp), DIMENSION(nspec) :: ccomp_tot !< total compensation point (ug/m3), for now kept to
!< zero for all species!
REAL(wp), DIMENSION(nspec) :: conc_ijk !< concentration at i,j,k
!
!-- Particle parameters (PM10 (1), PM25 (2)) partsize (diameter in m), rhopart (density in kg/m3),
!-- slipcor (slip correction factor dimensionless, Seinfeld and Pandis 2006, Table 9.3)
REAL(wp), DIMENSION(1:3,1:2), PARAMETER :: particle_pars = RESHAPE( (/ &
8.0e-6_wp, 1.14e3_wp, 1.016_wp, & !< 1
0.7e-6_wp, 1.14e3_wp, 1.082_wp & !< 2
/), (/ 3, 2 /) )
LOGICAL :: match_lsm !< flag indicating natural-type surface
LOGICAL :: match_usm !< flag indicating urban-type surface
!
!-- List of names of possible tracers
CHARACTER(LEN=*), PARAMETER :: pspecnames(nposp) = (/ &
'NO2 ', & !< NO2
'NO ', & !< NO
'O3 ', & !< O3
'CO ', & !< CO
'form ', & !< FORM
'ald ', & !< ALD
'pan ', & !< PAN
'mgly ', & !< MGLY
'par ', & !< PAR
'ole ', & !< OLE
'eth ', & !< ETH
'tol ', & !< TOL
'cres ', & !< CRES
'xyl ', & !< XYL
'SO4a_f ', & !< SO4a_f
'SO2 ', & !< SO2
'HNO2 ', & !< HNO2
'CH4 ', & !< CH4
'NH3 ', & !< NH3
'NO3 ', & !< NO3
'OH ', & !< OH
'HO2 ', & !< HO2
'N2O5 ', & !< N2O5
'SO4a_c ', & !< SO4a_c
'NH4a_f ', & !< NH4a_f
'NO3a_f ', & !< NO3a_f
'NO3a_c ', & !< NO3a_c
'C2O3 ', & !< C2O3
'XO2 ', & !< XO2
'XO2N ', & !< XO2N
'cro ', & !< CRO
'HNO3 ', & !< HNO3
'H2O2 ', & !< H2O2
'iso ', & !< ISO
'ispd ', & !< ISPD
'to2 ', & !< TO2
'open ', & !< OPEN
'terp ', & !< TERP
'ec_f ', & !< EC_f
'ec_c ', & !< EC_c
'pom_f ', & !< POM_f
'pom_c ', & !< POM_c
'ppm_f ', & !< PPM_f
'ppm_c ', & !< PPM_c
'na_ff ', & !< Na_ff
'na_f ', & !< Na_f
'na_c ', & !< Na_c
'na_cc ', & !< Na_cc
'na_ccc ', & !< Na_ccc
'dust_ff ', & !< dust_ff
'dust_f ', & !< dust_f
'dust_c ', & !< dust_c
'dust_cc ', & !< dust_cc
'dust_ccc ', & !< dust_ccc
'tpm10 ', & !< tpm10
'tpm25 ', & !< tpm25
'tss ', & !< tss
'tdust ', & !< tdust
'tc ', & !< tc
'tcg ', & !< tcg
'tsoa ', & !< tsoa
'tnmvoc ', & !< tnmvoc
'SOxa ', & !< SOxa
'NOya ', & !< NOya
'NHxa ', & !< NHxa
'NO2_obs ', & !< NO2_obs
'tpm10_biascorr', & !< tpm10_biascorr
'tpm25_biascorr', & !< tpm25_biascorr
'O3_biascorr ' /) !< o3_biascorr
!
!-- Tracer mole mass:
REAL(wp), PARAMETER :: specmolm(nposp) = (/ &
xm_O * 2 + xm_N, & !< NO2
xm_O + xm_N, & !< NO
xm_O * 3, & !< O3
xm_C + xm_O, & !< CO
xm_H * 2 + xm_C + xm_O, & !< FORM
xm_H * 3 + xm_C * 2 + xm_O, & !< ALD
xm_H * 3 + xm_C * 2 + xm_O * 5 + xm_N, & !< PAN
xm_H * 4 + xm_C * 3 + xm_O * 2, & !< MGLY
xm_H * 3 + xm_C, & !< PAR
xm_H * 3 + xm_C * 2, & !< OLE
xm_H * 4 + xm_C * 2, & !< ETH
xm_H * 8 + xm_C * 7, & !< TOL
xm_H * 8 + xm_C * 7 + xm_O, & !< CRES
xm_H * 10 + xm_C * 8, & !< XYL
xm_S + xm_O * 4, & !< SO4a_f
xm_S + xm_O * 2, & !< SO2
xm_H + xm_O * 2 + xm_N, & !< HNO2
xm_H * 4 + xm_C, & !< CH4
xm_H * 3 + xm_N, & !< NH3
xm_O * 3 + xm_N, & !< NO3
xm_H + xm_O, & !< OH
xm_H + xm_O * 2, & !< HO2
xm_O * 5 + xm_N * 2, & !< N2O5
xm_S + xm_O * 4, & !< SO4a_c
xm_H * 4 + xm_N, & !< NH4a_f
xm_O * 3 + xm_N, & !< NO3a_f
xm_O * 3 + xm_N, & !< NO3a_c
xm_C * 2 + xm_O * 3, & !< C2O3
xm_dummy, & !< XO2
xm_dummy, & !< XO2N
xm_dummy, & !< CRO
xm_H + xm_O * 3 + xm_N, & !< HNO3
xm_H * 2 + xm_O * 2, & !< H2O2
xm_H * 8 + xm_C * 5, & !< ISO
xm_dummy, & !< ISPD
xm_dummy, & !< TO2
xm_dummy, & !< OPEN
xm_H * 16 + xm_C * 10, & !< TERP
xm_dummy, & !< EC_f
xm_dummy, & !< EC_c
xm_dummy, & !< POM_f
xm_dummy, & !< POM_c
xm_dummy, & !< PPM_f
xm_dummy, & !< PPM_c
xm_Na, & !< Na_ff
xm_Na, & !< Na_f
xm_Na, & !< Na_c
xm_Na, & !< Na_cc
xm_Na, & !< Na_ccc
xm_dummy, & !< dust_ff
xm_dummy, & !< dust_f
xm_dummy, & !< dust_c
xm_dummy, & !< dust_cc
xm_dummy, & !< dust_ccc
xm_dummy, & !< tpm10
xm_dummy, & !< tpm25
xm_dummy, & !< tss
xm_dummy, & !< tdust
xm_dummy, & !< tc
xm_dummy, & !< tcg
xm_dummy, & !< tsoa
xm_dummy, & !< tnmvoc
xm_dummy, & !< SOxa
xm_dummy, & !< NOya
xm_dummy, & !< NHxa
xm_O * 2 + xm_N, & !< NO2_obs
xm_dummy, & !< tpm10_biascorr
xm_dummy, & !< tpm25_biascorr
xm_O * 3 /) !< o3_biascorr
!
!-- Get current day of the year
CALL get_date_time( time_since_reference_point, day_of_year = day_of_year )
!
!-- Initialize surface element m
m = 0
k = 0
!
!-- LSM or USM horizintal upward facing surface present at i,j:
!-- Default surfaces are NOT considered for deposition
match_lsm = surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i)
match_usm = surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i)
!
!--For LSM surfaces
IF ( match_lsm ) THEN
!
!-- Get surface element information at i,j:
m = surf_lsm_h(0)%start_index(j,i)
k = surf_lsm_h(0)%k(m)
!
!-- Get needed variables for surface element m
ustar_surf = surf_lsm_h(0)%us(m)
z0h_surf = surf_lsm_h(0)%z0h(m)
r_aero_surf = surf_lsm_h(0)%r_a(m)
solar_rad = surf_lsm_h(0)%rad_sw_dir(m) + surf_lsm_h(0)%rad_sw_dif(m)
lai = surf_lsm_h(0)%lai(m)
sai = lai + 1
!
!-- For small grid spacing neglect R_a
IF ( dzw(k) <= 1.0 ) THEN
r_aero_surf = 0.0_wp
ENDIF
!
!-- Initialize lu's
luv_palm = 0
luv_dep = 0
lup_palm = 0
lup_dep = 0
luw_palm = 0
luw_dep = 0
!
!-- Initialize budgets
bud_luv = 0.0_wp
bud_lup = 0.0_wp
bud_luw = 0.0_wp
!
!-- Get land use for i,j and assign to DEPAC lu
IF ( surf_lsm_h(0)%frac(m,ind_veg_wall) > 0 ) THEN
luv_palm = surf_lsm_h(0)%vegetation_type(m)
IF ( luv_palm == ind_luv_user ) THEN
message_string = 'No lsm-vegetation type defined. Please define vegetation type to' //&
' enable deposition calculation'
CALL message( 'chem_depo', 'PA0738', 1, 2, 0, 6, 0 )
ELSEIF ( luv_palm == ind_luv_b_soil ) THEN
luv_dep = 9
ELSEIF ( luv_palm == ind_luv_mixed_crops ) THEN
luv_dep = 2
ELSEIF ( luv_palm == ind_luv_s_grass ) THEN
luv_dep = 1
ELSEIF ( luv_palm == ind_luv_ev_needle_trees ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_de_needle_trees ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_ev_broad_trees ) THEN
luv_dep = 12
ELSEIF ( luv_palm == ind_luv_de_broad_trees ) THEN
luv_dep = 5
ELSEIF ( luv_palm == ind_luv_t_grass ) THEN
luv_dep = 1
ELSEIF ( luv_palm == ind_luv_desert ) THEN
luv_dep = 9
ELSEIF ( luv_palm == ind_luv_tundra ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_irr_crops ) THEN
luv_dep = 2
ELSEIF ( luv_palm == ind_luv_semidesert ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_ice ) THEN
luv_dep = 10
ELSEIF ( luv_palm == ind_luv_marsh ) THEN
luv_dep = 8
ELSEIF ( luv_palm == ind_luv_ev_shrubs ) THEN
luv_dep = 14
ELSEIF ( luv_palm == ind_luv_de_shrubs ) THEN
luv_dep = 14
ELSEIF ( luv_palm == ind_luv_mixed_forest ) THEN
luv_dep = 4
ELSEIF ( luv_palm == ind_luv_intrup_forest ) THEN
luv_dep = 8
ENDIF
ENDIF
IF ( surf_lsm_h(0)%frac(m,ind_pav_green) > 0 ) THEN
lup_palm = surf_lsm_h(0)%pavement_type(m)
IF ( lup_palm == ind_lup_user ) THEN
message_string = 'No lsm-pavement type defined. Please define pavement type to ' // &
'enable deposition calculation'
CALL message( 'chem_depo', 'PA0738', 1, 2, 0, 6, 0 )
ELSEIF ( lup_palm == ind_lup_asph_conc ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_asph ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_conc ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_sett ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_pav_stones ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_cobblest ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_metal ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_wood ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_gravel ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_f_gravel ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_pebblest ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_woodchips ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_tartan ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_art_turf ) THEN
lup_dep = 9
ELSEIF ( lup_palm == ind_lup_clay ) THEN
lup_dep = 9
ENDIF
ENDIF
IF ( surf_lsm_h(0)%frac(m,ind_wat_win) > 0 ) THEN
luw_palm = surf_lsm_h(0)%water_type(m)
IF ( luw_palm == ind_luw_user ) THEN
message_string = 'No lsm-water type defined. Please define water type to enable' // &
' deposition calculation'
CALL message( 'chem_depo', 'PA0738', 1, 2, 0, 6, 0 )
ELSEIF ( luw_palm == ind_luw_lake ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_river ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_ocean ) THEN
luw_dep = 6
ELSEIF ( luw_palm == ind_luw_pond ) THEN
luw_dep = 13
ELSEIF ( luw_palm == ind_luw_fountain ) THEN
luw_dep = 13
ENDIF
ENDIF
!
!-- Set wetness indicator to dry or wet for lsm vegetation or pavement
IF ( surf_lsm_h(0)%c_liq(m) > 0 ) THEN
nwet = 1
ELSE
nwet = 0
ENDIF
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
dh = dzw(k)
inv_dh = 1.0_wp / dh
dt_dh = dt_chem/dh
!
!-- Concentration at i,j,k
DO lsp = 1, nspec
conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i)
ENDDO
!-- Temperature at i,j,k
temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp
ts = temp_tmp - 273.15 !< in degrees celcius
!
!-- Viscosity of air
visc = 1.496e-6 * temp_tmp**1.5 / (temp_tmp + 120.0)
!
!-- Air density at k
dens = rho_air_zw(k)
!
!-- Calculate relative humidity from specific humidity for DEPAC
qv_tmp = MAX( q(k,j,i), 0.0_wp)
rh_surf = relativehumidity_from_specifichumidity(qv_tmp, temp_tmp, hyp(k) )
!
!-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget
!-- for each surface fraction. Then derive overall budget taking into account the surface fractions.
!
!-- Vegetation
IF ( surf_lsm_h(0)%frac(m,ind_veg_wall) > 0 ) THEN
!
!-- No vegetation on bare soil, desert or ice:
IF ( ( luv_palm == ind_luv_b_soil ) .OR. ( luv_palm == ind_luv_desert ) .OR. &
( luv_palm == ind_luv_ice ) ) THEN
lai = 0.0_wp
sai = 0.0_wp
ENDIF
slinnfac = 1.0_wp
!
!-- Get deposition velocity vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luv_dep, &
r_aero_surf, ustar_surf )
bud_luv(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luv_dep , &
r_aero_surf, ustar_surf )
bud_luv(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- Overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( ( luv_dep == ilu_water_sea ) .OR. &
( luv_dep == ilu_water_inland ), z0h_surf, ustar_surf, &
diffusivity, rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, luv_dep, &
2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, &
diffusivity, r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_luv(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / ( r_aero_surf + rb + rc_tot )
bud_luv(lsp) = - ( conc_ijk(lsp) - ccomp_tot(lsp) ) * &
( 1.0_wp - EXP( -vd_lu * dt_dh ) ) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Pavement
IF ( surf_lsm_h(0)%frac(m,ind_pav_green) > 0 ) THEN
!
!-- No vegetation on pavements:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lup_dep, &
r_aero_surf, ustar_surf )
bud_lup(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lup_dep, &
r_aero_surf, ustar_surf )
bud_lup(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE ! 0 ) THEN
!
!-- No vegetation on water:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luw_dep, &
r_aero_surf, ustar_surf )
bud_luw(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity:
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luw_dep, &
r_aero_surf, ustar_surf )
bud_luw(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE ! 0 ) THEN
!
!-- For green urban surfaces (e.g. green roofs assume LU short grass
lug_palm = ind_luv_s_grass
IF ( lug_palm == ind_luv_user ) THEN
message_string = 'No usm-vegetation type defined. Please define vegetation type to' //&
' enable deposition calculation'
CALL message( 'chem_depo', 'PA0738', 1, 2, 0, 6, 0 )
ELSEIF ( lug_palm == ind_luv_b_soil ) THEN
lug_dep = 9
ELSEIF ( lug_palm == ind_luv_mixed_crops ) THEN
lug_dep = 2
ELSEIF ( lug_palm == ind_luv_s_grass ) THEN
lug_dep = 1
ELSEIF ( lug_palm == ind_luv_ev_needle_trees ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_de_needle_trees ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_ev_broad_trees ) THEN
lug_dep = 12
ELSEIF ( lug_palm == ind_luv_de_broad_trees ) THEN
lug_dep = 5
ELSEIF ( lug_palm == ind_luv_t_grass ) THEN
lug_dep = 1
ELSEIF ( lug_palm == ind_luv_desert ) THEN
lug_dep = 9
ELSEIF ( lug_palm == ind_luv_tundra ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_irr_crops ) THEN
lug_dep = 2
ELSEIF ( lug_palm == ind_luv_semidesert ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_ice ) THEN
lug_dep = 10
ELSEIF ( lug_palm == ind_luv_marsh ) THEN
lug_dep = 8
ELSEIF ( lug_palm == ind_luv_ev_shrubs ) THEN
lug_dep = 14
ELSEIF ( lug_palm == ind_luv_de_shrubs ) THEN
lug_dep = 14
ELSEIF ( lug_palm == ind_luv_mixed_forest ) THEN
lug_dep = 4
ELSEIF ( lug_palm == ind_luv_intrup_forest ) THEN
lug_dep = 8
ENDIF
ENDIF
IF ( surf_usm_h(0)%frac(m,ind_veg_wall) > 0 ) THEN
!
!-- For walls in USM assume concrete walls/roofs,
!-- assumed LU class desert as also assumed for pavements in LSM
luu_palm = ind_lup_conc
IF ( luu_palm == ind_lup_user ) THEN
message_string = 'No pavement type defined. Please define pavement type to enable' // &
' deposition calculation'
CALL message( 'chem_depo', 'PA0739', 1, 2, 0, 6, 0 )
ELSEIF ( luu_palm == ind_lup_asph_conc ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_asph ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_conc ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_sett ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_pav_stones ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_cobblest ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_metal ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_wood ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_gravel ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_f_gravel ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_pebblest ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_woodchips ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_tartan ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_art_turf ) THEN
luu_dep = 9
ELSEIF ( luu_palm == ind_lup_clay ) THEN
luu_dep = 9
ENDIF
ENDIF
IF ( surf_usm_h(0)%frac(m,ind_wat_win) > 0 ) THEN
!
!-- For windows in USM assume metal as this is as close as we get, assumed LU class desert as
!-- also assumed for pavements in LSM.
lud_palm = ind_lup_metal
IF ( lud_palm == ind_lup_user ) THEN
message_string = 'No usm-pavement type defined. Please define pavement type to ' // &
'enable deposition calculation'
CALL message( 'chem_depo', 'PA0738', 1, 2, 0, 6, 0 )
ELSEIF ( lud_palm == ind_lup_asph_conc ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_asph ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_conc ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_sett ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_pav_stones ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_cobblest ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_metal ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_wood ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_gravel ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_f_gravel ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_pebblest ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_woodchips ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_tartan ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_art_turf ) THEN
lud_dep = 9
ELSEIF ( lud_palm == ind_lup_clay ) THEN
lud_dep = 9
ENDIF
ENDIF
!
!-- @TODO: Activate these lines as soon as new ebsolver branch is merged:
!-- Set wetness indicator to dry or wet for usm vegetation or pavement
!IF ( surf_usm_h(0)%c_liq(m) > 0 ) THEN
! nwet = 1
!ELSE
nwet = 0
!ENDIF
!
!-- Compute length of time step
IF ( call_chem_at_all_substeps ) THEN
dt_chem = dt_3d * weight_pres(intermediate_timestep_count)
ELSE
dt_chem = dt_3d
ENDIF
dh = dzw(k)
inv_dh = 1.0_wp / dh
dt_dh = dt_chem / dh
!
!-- Concentration at i,j,k
DO lsp = 1, nspec
conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i)
ENDDO
!
!-- Temperature at i,j,k
temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp
ts = temp_tmp - 273.15 !< in degrees celcius
!
!-- Viscosity of air
visc = 1.496e-6 * temp_tmp**1.5 / ( temp_tmp + 120.0 )
!
!-- Air density at k
dens = rho_air_zw(k)
!
!-- Calculate relative humidity from specific humidity for DEPAC
qv_tmp = MAX( q(k,j,i), 0.0_wp )
rh_surf = relativehumidity_from_specifichumidity( qv_tmp, temp_tmp, hyp(k) )
!
!-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget for
!-- each surface fraction. Then derive overall budget taking into account the surface fractions.
!-- Walls/roofs
IF ( surf_usm_h(0)%frac(m,ind_veg_wall) > 0 ) THEN
!
!-- No vegetation on non-green walls:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF (spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luu_dep, &
r_aero_surf, ustar_surf )
bud_luu(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
luu_dep , &
r_aero_surf, ustar_surf )
bud_luu(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
!-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- Overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( ( luu_dep == ilu_water_sea ) .OR. &
( luu_dep == ilu_water_inland ), z0h_surf, ustar_surf, &
diffusivity, rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, luu_dep, &
2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, &
diffusivity, r_aero_surf, rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_luu(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_luu(lsp) = - ( conc_ijk(lsp) - ccomp_tot(lsp) ) * &
( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Green usm surfaces
IF ( surf_usm_h(0)%frac(m,ind_pav_green) > 0 ) THEN
!
!-- No vegetation on bare soil, desert or ice:
IF ( ( lug_palm == ind_luv_b_soil ) .OR. ( lug_palm == ind_luv_desert ) .OR. &
( lug_palm == ind_luv_ice ) ) THEN
lai = 0.0_wp
sai = 0.0_wp
ENDIF
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lug_dep, &
r_aero_surf, ustar_surf )
bud_lug(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, &
vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lug_dep, &
r_aero_surf, ustar_surf )
bud_lug(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas parameter
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- Overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( ( lug_dep == ilu_water_sea ) .OR. &
( lug_dep == ilu_water_inland ), z0h_surf, ustar_surf, &
diffusivity, rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lug_dep, &
2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, &
diffusivity, r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_lug(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / ( r_aero_surf + rb + rc_tot )
bud_lug(lsp) = - ( conc_ijk(lsp) - ccomp_tot(lsp) ) * &
( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ENDIF
ENDIF
ENDDO
ENDIF
!
!-- Windows
IF ( surf_usm_h(0)%frac(m,ind_wat_win) > 0 ) THEN
!
!-- No vegetation on windows:
lai = 0.0_wp
sai = 0.0_wp
slinnfac = 1.0_wp
!
!-- Get vd
DO lsp = 1, nvar
!
!-- Initialize
vs = 0.0_wp
vd_lu = 0.0_wp
rs = 0.0_wp
rb = 0.0_wp
rc_tot = 0.0_wp
IF ( spc_names(lsp) == 'PM10' ) THEN
part_type = 1
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lud_dep, r_aero_surf, ustar_surf )
bud_lud(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSEIF ( spc_names(lsp) == 'PM25' ) THEN
part_type = 2
!
!-- Sedimentation velocity
vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
visc)
CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, &
particle_pars(ind_p_size, part_type), &
particle_pars(ind_p_slip, part_type), &
nwet, temp_tmp, dens, visc, &
lud_dep, &
r_aero_surf, ustar_surf )
bud_lud(lsp) = - conc_ijk(lsp) * ( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ELSE !< GASES
!
!-- Read spc_name of current species for gas PARAMETER
IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN
i_pspec = 0
DO pspec = 1, nposp
IF ( pspecnames(pspec) == spc_names(lsp) ) THEN
i_pspec = pspec
END IF
ENDDO
ELSE
!
!-- For now species not deposited
CYCLE
ENDIF
!
!-- Factor used for conversion from ppb to ug/m3 :
!-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) &
!-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole)
!-- c 1e-9 xm_tracer 1e9 / xm_air dens
!-- thus:
!-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3
!-- Use density at k:
ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3
!
!-- Atmospheric concentration in DEPAC is requested in ug/m3:
!-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole
conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3
!
!-- Diffusivity for DEPAC relevant gases
!-- Use default value
diffusivity = 0.11e-4
!
!-- Overwrite with known coefficients of diffusivity from Massman (1998)
IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4
IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4
IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4
IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4
IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4
IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4
IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4
!
!-- Get quasi-laminar boundary layer resistance rb:
CALL get_rb_cell( ( lud_dep == ilu_water_sea ) .OR. &
( lud_dep == ilu_water_inland ), z0h_surf, ustar_surf, &
diffusivity, rb )
!
!-- Get rc_tot
CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, &
solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lud_dep, &
2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, &
diffusivity, r_aero_surf , rb )
!
!-- Calculate budget
IF ( rc_tot <= 0.0 ) THEN
bud_lud(lsp) = 0.0_wp
ELSE
vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot )
bud_lud(lsp) = - ( conc_ijk(lsp) - ccomp_tot(lsp) ) * &
( 1.0_wp - EXP( - vd_lu * dt_dh ) ) * dh
ENDIF
ENDIF
ENDDO
ENDIF
bud = 0.0_wp
!
!-- Calculate overall budget for surface m and adapt concentration
DO lsp = 1, nspec
bud(lsp) = surf_usm_h(0)%frac(m,ind_veg_wall) * bud_luu(lsp) + &
surf_usm_h(0)%frac(m,ind_pav_green) * bud_lug(lsp) + &
surf_usm_h(0)%frac(m,ind_wat_win) * bud_lud(lsp)
!
!-- Compute new concentration
conc_ijk(lsp) = conc_ijk(lsp) + bud(lsp) * inv_dh
chem_species(lsp)%conc(k,j,i) = MAX( 0.0_wp, conc_ijk(lsp) )
ENDDO
ENDIF
END SUBROUTINE chem_depo
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute total canopy (or surface) resistance Rc for gases
!>
!> DEPAC:
!> Code of the DEPAC routine and corresponding subroutines below from the DEPAC module of the
!> LOTOS-EUROS model (Manders et al., 2017)
!>
!> Original DEPAC routines by RIVM and TNO (2015), for Documentation see van Zanten et al., 2010.
!--------------------------------------------------------------------------------------------------!
SUBROUTINE drydepos_gas_depac( compnam, day_of_year, lat, t, ust, solar_rad, sinphi, rh, lai, sai,&
nwet, lu, iratns, rc_tot, ccomp_tot, p, conc_ijk_ugm3, diffusivity,&
ra, rb )
!
!-- Some of depac arguments are OPTIONAL:
!-- A. compute Rc_tot without compensation points (ccomp_tot will be zero):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot,&
!-- ccomp_tot, [smi])
!-- B. compute Rc_tot with compensation points (used for LOTOS-EUROS):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot,&
!-- ccomp_tot, [smi], c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water)
!--
!-- C. compute effective Rc based on compensation points (used for OPS):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot,&
!-- ccomp_tot, [smi], c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, ra, &
!-- rb, rc_eff)
!-- X1. Extra (OPTIONAL) output variables:
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot,&
!-- ccomp_tot, [smi], c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, ra, &
!-- rb, rc_eff, gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, &
!-- lai_out, sai_out)
!-- X2. Extra (OPTIONAL) needed for stomatal ozone flux calculation (only sunlit leaves):
!-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot,&
!-- ccomp_tot, [smi], c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, ra, &
!-- rb, rc_eff, gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, &
!-- lai_out, sai_out, calc_stom_o3flux, frac_sto_o3_lu, fac_surface_area_2_PLA)
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
!< 'HNO3','NO','NO2','O3','SO2','NH3'
INTEGER(iwp), INTENT(IN) :: day_of_year !< day of year, 1 ... 365 (366)
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio used for SO2:
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
REAL(wp), INTENT(IN) :: conc_ijk_ugm3 !< actual atmospheric concentration (ug/m3), in
!< DEPAC=Catm
REAL(wp), INTENT(IN) :: diffusivity !< diffusivity
REAL(wp), INTENT(IN) :: lai !< one-sidedleaf area index (-)
REAL(wp), INTENT(IN) :: lat !< latitude Northern hemisphere (degrees) (S.
!< hemisphere not possible)
REAL(wp), INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(IN) :: ra !< aerodynamic resistance (s/m)
REAL(wp), INTENT(IN) :: rb !< boundary layer resistance (s/m)
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: sai !< surface area index (-) (lai + branches and
!< stems)
REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3)
! !< [= 0 for species that don't have a compensation
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
!-- Local variables:
!
!-- Component number taken from component name, paramteres matched with include files
INTEGER(iwp) :: icmp
!
!-- Component numbers:
INTEGER(iwp), PARAMETER :: icmp_o3 = 1
INTEGER(iwp), PARAMETER :: icmp_so2 = 2
INTEGER(iwp), PARAMETER :: icmp_no2 = 3
INTEGER(iwp), PARAMETER :: icmp_no = 4
INTEGER(iwp), PARAMETER :: icmp_nh3 = 5
INTEGER(iwp), PARAMETER :: icmp_co = 6
INTEGER(iwp), PARAMETER :: icmp_no3 = 7
INTEGER(iwp), PARAMETER :: icmp_hno3 = 8
INTEGER(iwp), PARAMETER :: icmp_n2o5 = 9
INTEGER(iwp), PARAMETER :: icmp_h2o2 = 10
LOGICAL :: ready !< Rc has been set:
!< = 1 -> constant Rc
!< = 2 -> temperature dependent Rc
!
!-- Vegetation indicators:
LOGICAL :: lai_present !< leaves are present for current land use type
LOGICAL :: sai_present !< vegetation is present for current land use
!< type
REAL(wp) :: csoil !< soil compensation point (ug/m3)
REAL(wp) :: cstom !< stomatal compensation point (ug/m3)
REAL(wp) :: cw !< external leaf surface compensation point
!< (ug/m3)
REAL(wp) :: gc_tot !< total canopy conductance (m/s)
REAL(wp) :: gsoil_eff !< effective soil conductance (m/s)
REAL(wp) :: gstom !< stomatal conductance (m/s)
REAL(wp) :: gw !< external leaf conductance (m/s)
! REAL(wp) :: laimax !< maximum leaf area index (-)
!
!-- Next statement is just to avoid compiler warning about unused variable
IF ( day_of_year == 0 .OR. ( conc_ijk_ugm3 + lat + ra + rb ) > 0.0_wp ) CONTINUE
!
!-- Define component number
SELECT CASE ( TRIM( compnam ) )
CASE ( 'O3', 'o3' )
icmp = icmp_o3
CASE ( 'SO2', 'so2' )
icmp = icmp_so2
CASE ( 'NO2', 'no2' )
icmp = icmp_no2
CASE ( 'NO', 'no' )
icmp = icmp_no
CASE ( 'NH3', 'nh3' )
icmp = icmp_nh3
CASE ( 'CO', 'co' )
icmp = icmp_co
CASE ( 'NO3', 'no3' )
icmp = icmp_no3
CASE ( 'HNO3', 'hno3' )
icmp = icmp_hno3
CASE ( 'N2O5', 'n2o5' )
icmp = icmp_n2o5
CASE ( 'H2O2', 'h2o2' )
icmp = icmp_h2o2
CASE default
!
!-- Component not part of DEPAC --> not deposited
RETURN
END SELECT
!
!-- Inititalize
gw = 0.0_wp
gstom = 0.0_wp
gsoil_eff = 0.0_wp
gc_tot = 0.0_wp
cw = 0.0_wp
cstom = 0.0_wp
csoil = 0.0_wp
!
!-- Check whether vegetation is present:
lai_present = ( lai > 0.0 )
sai_present = ( sai > 0.0 )
!
!-- Set Rc (i.e. rc_tot) in special cases:
CALL rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot )
!
!-- If Rc is not set:
IF ( .NOT. ready ) then
!
!-- External conductance:
CALL rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai,gw )
!
!-- Stomatal conductance:
CALL rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, &
gstom, p )
!
!-- Effective soil conductance:
CALL rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff )
!
!-- Total canopy conductance (gc_tot) and resistance Rc (rc_tot):
CALL rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot )
ENDIF
END SUBROUTINE drydepos_gas_depac
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute total canopy resistance in special cases
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot )
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
LOGICAL, INTENT(OUT) :: ready !< Rc has been set
!< = 1 -> constant Rc
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3)
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
!
!-- Next line is to avoid compiler warning about unused variable
IF ( icmp == 0 ) CONTINUE
!
!-- rc_tot is not yet set:
ready = .FALSE.
!
!-- Default compensation point in special CASEs = 0:
ccomp_tot = 0.0_wp
SELECT CASE( TRIM( compnam ) )
CASE( 'HNO3', 'N2O5', 'NO3', 'H2O2' )
!
!-- No separate resistances for HNO3; just one total canopy resistance:
IF ( t < -5.0_wp .AND. nwet == 9 ) THEN
!
!-- T < 5 C and snow:
rc_tot = 50.0_wp
ELSE
!
!-- All other circumstances:
rc_tot = 10.0_wp
ENDIF
ready = .TRUE.
CASE( 'NO', 'CO' )
IF ( lu == ilu_water_sea .OR. lu == ilu_water_inland ) THEN ! water
rc_tot = 2000.0_wp
ready = .TRUE.
ELSEIF ( nwet == 1 ) THEN !< wet
rc_tot = 2000.0_wp
ready = .TRUE.
ENDIF
CASE( 'NO2', 'O3', 'SO2', 'NH3' )
!
!-- snow surface:
IF ( nwet == 9 ) THEN
!
!-- To be activated when snow is implemented
!CALL rc_snow(ipar_snow(icmp),t,rc_tot)
ready = .TRUE.
ENDIF
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_special', 'PA0740', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_special
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external conductance
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai, gw )
!
!-- Input/output variables:
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio;
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: sai !< one-sided leaf area index (-)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
SELECT CASE( TRIM( compnam ) )
CASE( 'NO2' )
CALL rw_constant( 2000.0_wp, sai_present, gw )
CASE( 'NO', 'CO' )
CALL rw_constant( -9999.0_wp, sai_present, gw ) !< see Erisman et al, 1994 section 3.2.3
CASE( 'O3' )
CALL rw_constant( 2500.0_wp, sai_present, gw )
CASE( 'SO2' )
CALL rw_so2( t, nwet, rh, iratns, sai_present, gw )
CASE( 'NH3' )
CALL rw_nh3_sutton( t, rh, sai_present, gw )
!
!-- Conversion from leaf resistance to canopy resistance by multiplying with sai:
gw = sai * gw
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_gw', 'PA0740', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_gw
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance for SO2
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rw_so2( t, nwet, rh, iratns, sai_present, gw )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio:
!< iratns = 1: low NH3/SO2
!< iratns = 2: high NH3/SO2
!< iratns = 3: very low NH3/SO2
INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
!
!-- Local variables:
REAL(wp) :: rw !< external leaf resistance (s/m)
!
!-- Check if vegetation present:
IF ( sai_present ) THEN
IF ( nwet == 0 ) THEN
!
!-- ------------------------
!-- dry surface
!-- ------------------------
!-- T > -1 C
IF ( t > -1.0_wp ) THEN
IF ( rh < 81.3_wp ) THEN
rw = 25000.0_wp * EXP( -0.0693_wp * rh )
ELSE
rw = 0.58e12 * EXP( -0.278_wp * rh ) + 10.0_wp
ENDIF
ELSE
! -5 C < T <= -1 C
IF ( t > -5.0_wp ) THEN
rw = 200.0_wp
ELSE
! T <= -5 C
rw = 500.0_wp
ENDIF
ENDIF
ELSE
!
!-- ------------------------
!-- wet surface
!-- ------------------------
rw = 10.0_wp !see Table 5, Erisman et al, 1994 Atm. Environment, 0 is impl. as 10
ENDIF
!
!-- Very low NH3/SO2 ratio:
IF ( iratns == iratns_very_low ) rw = rw + 50.0_wp
!
!-- Conductance:
gw = 1.0_wp / rw
ELSE
!
!-- No vegetation:
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_so2
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance for NH3, following Sutton & Fowler, 1993
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rw_nh3_sutton( tsurf, rh,sai_present, gw )
!
!-- Input/output variables:
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: tsurf !< surface temperature (C)
REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s)
!
!-- Local variables:
REAL(wp) :: rw !< external leaf resistance (s/m)
REAL(wp) :: sai_grass_haarweg !< surface area index at experimental site Haarweg
!
!-- Fix sai_grass at value valid for Haarweg data for which gamma_w parametrization is derived
sai_grass_haarweg = 3.5_wp
!
!-- Calculation rw:
!-- 100 - rh
!-- rw = 2.0 * exp(----------)
!-- 12
IF ( sai_present ) THEN
!
!-- External resistance according to Sutton & Fowler, 1993
rw = 2.0_wp * EXP( ( 100.0_wp - rh ) / 12.0_wp )
rw = sai_grass_haarweg * rw
!
!-- Frozen soil (from Depac v1):
IF ( tsurf < 0.0_wp ) rw = 200.0_wp
!
!-- Conductance:
gw = 1.0_wp / rw
ELSE
! no vegetation:
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_nh3_sutton
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute external leaf conductance
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rw_constant( rw_val, sai_present, gw )
!
!-- Input/output variables:
LOGICAL, INTENT(IN) :: sai_present
REAL(wp), INTENT(IN) :: rw_val !< constant value of Rw
REAL(wp), INTENT(OUT) :: gw !< wernal leaf conductance (m/s)
!
!-- Compute conductance:
IF ( sai_present .AND. .NOT. missing(rw_val) ) THEN
gw = 1.0_wp / rw_val
ELSE
gw = 0.0_wp
ENDIF
END SUBROUTINE rw_constant
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute stomatal conductance
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, &
gstom, p )
!
!-- input/output variables:
CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: lu !< land use type , lu = 1,...,nlu
LOGICAL, INTENT(IN) :: lai_present
REAL(wp), INTENT(IN) :: diffusivity !< diffusion coefficient of the gas involved
REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), OPTIONAL,INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(OUT) :: gstom !< stomatal conductance (m/s)
!
!-- Local variables
REAL(wp), PARAMETER :: dO3 = 0.13e-4 !< diffusion coefficient of ozon (m2/s)
REAL(wp) :: vpd !< vapour pressure deficit (kPa)
!
!-- Next line is to avoid compiler warning about unused variables
IF ( icmp == 0 ) CONTINUE
SELECT CASE( TRIM( compnam ) )
CASE( 'NO', 'CO' )
!
!-- For no stomatal uptake is neglected:
gstom = 0.0_wp
CASE( 'NO2', 'O3', 'SO2', 'NH3' )
!
!-- If vegetation present:
IF ( lai_present ) THEN
IF ( solar_rad > 0.0_wp ) THEN
CALL rc_get_vpd( t, rh, vpd )
CALL rc_gstom_emb( lu, solar_rad, t, vpd, lai_present, lai, sinphi, gstom, p )
gstom = gstom * diffusivity / dO3 !< Gstom of Emberson is derived for ozone
ELSE
gstom = 0.0_wp
ENDIF
ELSE
!
!-- No vegetation; zero conductance (infinite resistance):
gstom = 0.0_wp
ENDIF
CASE default
message_string = 'Component '// TRIM( compnam ) // ' not supported'
CALL message( 'rc_gstom', 'PA0740', 1, 2, 0, 6, 0 )
END SELECT
END SUBROUTINE rc_gstom
!--------------------------------------------------------------------------------------------------!
! Description:
! ------------
!> Subroutine to compute stomatal conductance according to Emberson
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_gstom_emb( lu, solar_rad, T, vpd, lai_present, lai, sinp, Gsto, p )
!
!> History
!> Original code from Lotos-Euros, TNO, M. Schaap
!> 2009-08, M.C. van Zanten, Rivm
!> Updated and extended.
!> 2009-09, Arjo Segers, TNO
!> Limitted temperature influence to range to avoid floating point exceptions.
!> Method
!> Code based on Emberson et al, 2000, Env. Poll., 403-413
!> Notation conform Unified EMEP Model Description Part 1, ch 8
!
!> In the calculation of f_light the modification of L. Zhang 2001, AE to the PARshade and PARsun
!> parametrizations of Norman 1982 are applied
!> f_phen and f_SWP are set to 1
!
!> Land use types DEPAC versus Emberson (Table 5.1, EMEP model description)
!> DEPAC Emberson
!> 1 = grass GR = grassland
!> 2 = arable land TC = temperate crops ( lai according to RC = rootcrops)
!> 3 = permanent crops TC = temperate crops ( lai according to RC = rootcrops)
!> 4 = coniferous forest CF = tempareate/boREAL(wp) coniferous forest
!> 5 = deciduous forest DF = temperate/boREAL(wp) deciduous forest
!> 6 = water W = water
!> 7 = urban U = urban
!> 8 = other GR = grassland
!> 9 = desert DE = desert
!
!-- Emberson specific declarations
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu
LOGICAL, INTENT(IN) :: lai_present
REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index
REAL(wp), INTENT(IN) :: sinp !< sin of solar elevation angle
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2)
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: vpd !< vapour pressure deficit (kPa)
REAL(wp), OPTIONAL, INTENT(IN) :: p !< pressure (Pa)
REAL(wp), INTENT(OUT) :: gsto !< stomatal conductance (m/s)
!
!-- Local variables:
REAL(wp), PARAMETER :: p_sealevel = 1.01325e05 !< Pa
REAL(wp) :: bt
REAL(wp) :: f_env
REAL(wp) :: f_light
REAL(wp) :: f_phen
REAL(wp) :: f_temp
REAL(wp) :: f_swp
REAL(wp) :: f_vpd
REAL(wp) :: laishade
REAL(wp) :: laisun
REAL(wp) :: pardiff
REAL(wp) :: pardir
REAL(wp) :: parshade
REAL(wp) :: parsun
REAL(wp) :: pres
REAL(wp) :: sinphi
!
!-- Check whether vegetation is present:
IF ( lai_present ) THEN
! Calculation of correction factors for stomatal conductance
IF ( sinp <= 0.0_wp ) THEN
sinphi = 0.0001_wp
ELSE
sinphi = sinp
END IF
!
!-- Ratio between actual and sea-level pressure is used to correct for height in the computation
!-- of par; should not exceed sea-level pressure therefore ...
IF ( PRESENT( p ) ) THEN
pres = MIN( p, p_sealevel )
ELSE
pres = p_sealevel
ENDIF
!
!-- Direct and diffuse par, Photoactive (=visible) radiation:
CALL par_dir_diff( solar_rad, sinphi, pres, p_sealevel, pardir, pardiff )
!
!-- Par for shaded leaves (canopy averaged):
parshade = pardiff * EXP( -0.5 * lai**0.7 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * &
EXP( -sinphi ) !< Norman,1982
IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN
parshade = pardiff * EXP( -0.5 * lai**0.8 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * &
EXP( -sinphi ) !< Zhang et al., 2001
END IF
!
!-- Par for sunlit leaves (canopy averaged):
!-- alpha -> mean angle between leaves and the sun is fixed at 60 deg -> i.e. cos alpha = 0.5
parsun = pardir * 0.5/sinphi + parshade !< Norman, 1982
IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN
parsun = pardir**0.8 * 0.5 / sinphi + parshade !< Zhang et al., 2001
END IF
!
!-- Leaf area index for sunlit and shaded leaves:
IF ( sinphi > 0 ) THEN
laisun = 2 * sinphi * ( 1 - EXP( -0.5 * lai / sinphi ) )
laishade = lai - laisun
ELSE
laisun = 0
laishade = lai
END IF
f_light = ( laisun * ( 1 - EXP( -1.0_wp * alpha(lu) * parsun ) ) + &
laishade * ( 1 - EXP( -1.0_wp * alpha(lu) * parshade ) ) ) / lai
f_light = MAX(f_light,f_min(lu))
!
!-- Temperature influence; only non-zero within range [tmin,tmax]:
IF ( ( tmin(lu) < t ) .AND. ( t < tmax(lu) ) ) THEN
bt = ( tmax(lu) - topt(lu) ) / ( topt(lu) - tmin(lu) )
f_temp = ( ( t - tmin(lu) ) / ( topt(lu) - tmin(lu) ) ) * &
( ( tmax(lu) - t ) / ( tmax(lu) - topt(lu) ) )**bt
ELSE
f_temp = 0.0_wp
END IF
f_temp = MAX( f_temp, f_min(lu) )
!
!-- Vapour pressure deficit influence
f_vpd = MIN( 1.0_wp, ( ( 1.0_wp - f_min(lu) ) * ( vpd_min(lu) - vpd ) / &
( vpd_min(lu) - vpd_max(lu) ) + f_min(lu) ) )
f_vpd = MAX( f_vpd, f_min(lu) )
f_swp = 1.0_wp
!
!-- Influence of phenology on stom. conductance
!-- Ignored for now in DEPAC since influence of f_phen on lu classes in use is negligible.
!-- When other EMEP classes (e.g. med. broadleaf) are used f_phen might be too important to
!-- ignore.
f_phen = 1.0_wp
!
!-- Evaluate total stomatal conductance
f_env = f_temp * f_vpd * f_swp
f_env = MAX( f_env,f_min(lu) )
gsto = g_max(lu) * f_light * f_phen * f_env
!
!-- gstom expressed per m2 leafarea;
!-- This is converted with lai to m2 surface.
gsto = lai * gsto ! in m/s
ELSE
gsto = 0.0_wp
ENDIF
END SUBROUTINE rc_gstom_emb
!--------------------------------------------------------------------------------------------------!
!> par_dir_diff
!> Weiss, A., Norman, J.M. (1985) Partitioning solar radiation into direct and diffuse, visible
!> and near-infrared components. Agric. Forest Meteorol. 34, 205-213.
!> From a SUBROUTINE obtained from Leiming Zhang,
!> Meteorological Service of Canada
!> Leiming uses solar irradiance. This should be equal to global radiation and
!> Willem Asman set it to global radiation (here defined as solar radiation, dirict+diffuse)
!>
!> @todo Check/connect/replace with radiation_model_mod variables
!-------------------------------------------------------------------------------------------------!
SUBROUTINE par_dir_diff( solar_rad, sinphi, pres, pres_0, par_dir, par_diff )
REAL(wp), INTENT(IN) :: pres !< actual pressure (to correct for height) (Pa)
REAL(wp), INTENT(IN) :: pres_0 !< pressure at sea level (Pa)
REAL(wp), INTENT(IN) :: sinphi !< sine of the solar elevation
REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W m-2)
REAL(wp), INTENT(OUT) :: par_diff !< par diffuse: visible (photoactive) diffuse radiation
!< (W m-2)
REAL(wp), INTENT(OUT) :: par_dir !< par direct : visible (photoactive) direct beam
!< radiation (W m-2)
REAL(wp) :: fv !< par direct beam fraction (dimensionless)
REAL(wp) :: ratio !< ratio measured to potential solar radiation
!< (dimensionless)
REAL(wp) :: rdm !< potential direct beam near-infrared radiation
!< (W m-2); "potential" means clear-sky
REAL(wp) :: rdn !< potential diffuse near-infrared radiation (W m-2)
REAL(wp) :: rdu !< visible (par) direct beam radiation (W m-2)
REAL(wp) :: rdv !< potential visible (par) diffuse radiation (W m-2)
REAL(wp) :: rn !< near-infrared radiation (W m-2)
REAL(wp) :: rv !< visible radiation (W m-2)
REAL(wp) :: sv !< total visible radiation
REAL(wp) :: ww !< water absorption in the near infrared for 10 mm of
!< precipitable water
!
!-- Calculate visible (PAR) direct beam radiation
!-- 600 W m-2 represents average amount of par (400-700 nm wavelength) at the top of the atmosphere;
!-- this is roughly 0.45*solar constant (solar constant=1320 Wm-2)
rdu = 600.0_wp* EXP( -0.185_wp * ( pres / pres_0 ) / sinphi ) * sinphi
!
!-- Calculate potential visible diffuse radiation
rdv = 0.4_wp * ( 600.0_wp - rdu ) * sinphi
!
!-- Calculate the water absorption in the-near infrared
ww = 1320 * 10**( -1.195_wp + 0.4459_wp * LOG10( 1.0_wp / sinphi ) - 0.0345_wp * &
( LOG10( 1.0_wp / sinphi ) )**2 )
!
!-- Calculate potential direct beam near-infrared radiation
rdm = ( 720.0_wp * EXP( -0.06_wp * ( pres / pres_0) / sinphi ) - ww ) * sinphi !< 720 = solar
!< constant - 600
!
!-- Calculate potential diffuse near-infrared radiation
rdn = 0.6_wp * ( 720 - rdm - ww ) * sinphi
!
!-- Compute visible and near-infrared radiation
rv = MAX( 0.1_wp, rdu + rdv )
rn = MAX( 0.01_wp, rdm + rdn )
!
!-- Compute ratio between input global radiation (here defined as solar radiation, dirict+diffuse)
!-- and total radiation computed here.
ratio = MIN( 0.89_wp, solar_rad / ( rv + rn ) )
!
!-- Calculate total visible radiation
sv = ratio * rv
!
!-- Calculate fraction of par in the direct beam
fv = MIN( 0.99_wp, ( 0.9_wp - ratio ) / 0.7_wp ) !< help variable
fv = MAX( 0.01_wp, rdu / rv * ( 1.0_wp - fv**0.6667_wp ) ) !< fraction of par in the direct
!< beam
!
!-- Compute direct and diffuse parts of par
par_dir = fv * sv
par_diff = sv - par_dir
END SUBROUTINE par_dir_diff
!--------------------------------------------------------------------------------------------------!
!> rc_get_vpd: get vapour pressure deficit (kPa)
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_get_vpd( temp, rh, vpd )
!
!-- Input/output variables:
REAL(wp), INTENT(IN) :: rh !< relative humidity (%)
REAL(wp), INTENT(IN) :: temp !< temperature (C)
REAL(wp), INTENT(OUT) :: vpd !< vapour pressure deficit (kPa)
!
!-- Local variables:
REAL(wp) :: esat
!
!-- Fit parameters:
REAL(wp), PARAMETER :: a1 = 6.113718e-01
REAL(wp), PARAMETER :: a2 = 4.43839e-02
REAL(wp), PARAMETER :: a3 = 1.39817e-03
REAL(wp), PARAMETER :: a4 = 2.9295e-05
REAL(wp), PARAMETER :: a5 = 2.16e-07
REAL(wp), PARAMETER :: a6 = 3.0e-09
!
!-- esat is saturation vapour pressure (kPa) at temp(C) following Monteith (1973)
esat = a1 + a2 * temp + a3 * temp**2 + a4 * temp**3 + a5 * temp**4 + a6 * temp**5
vpd = esat * ( 1 - rh / 100 )
END SUBROUTINE rc_get_vpd
!--------------------------------------------------------------------------------------------------!
!> rc_gsoil_eff: compute effective soil conductance
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: icmp !< component index
INTEGER(iwp), INTENT(IN) :: nwet !< index for wetness
!< nwet = 0 -> dry; nwet = 1 -> wet; nwet = 9 -> snow
!< N.B. this routine cannot be called with nwet = 9,
!< nwet = 9 should be handled outside this routine.
INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,..., nlu
REAL(wp), INTENT(IN) :: sai !< surface area index
REAL(wp), INTENT(IN) :: t !< temperature (C)
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(OUT) :: gsoil_eff !< effective soil conductance (m/s)
!
!-- local variables:
REAL(wp) :: rinc !< in canopy resistance (s/m)
REAL(wp) :: rsoil_eff !< effective soil resistance (s/m)
!
!-- Soil resistance (numbers matched with lu_classes and component numbers)
! grs ara crp cnf dec wat urb oth des ice sav trf wai med sem
REAL(wp), PARAMETER :: rsoil(nlu_dep,ncmp) = RESHAPE( (/ &
1000., 200., 200., 200., 200., 2000., 400., 1000., 2000., 2000., 1000., 200., 2000., 200., 400., & !< O3
1000., 1000., 1000., 1000., 1000., 10., 1000., 1000., 1000., 500., 1000., 1000., 10., 1000., 1000., & !< SO2
1000., 1000., 1000., 1000., 1000., 2000., 1000., 1000., 1000., 2000., 1000., 1000., 2000., 1000., 1000., & !< NO2
-999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< NO
100., 100., 100., 100., 100., 10., 100., 100., 100., 1000., 100., 100., 10., 100., 100., & !< NH3
-999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< CO
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< NO3
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< HNO3
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< N2O5
-999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999. /),& !< H2O2
(/nlu_dep,ncmp/) )
!
!-- For o3 so2 no2 no nh3 co no3 hno3 n2o5 h2o2
REAL(wp), PARAMETER :: rsoil_frozen(ncmp) = (/ 2000., 500., 2000., -999., 1000., -999., -999., -999., -999., -999. /)
REAL(wp), PARAMETER :: rsoil_wet(ncmp) = (/ 2000., 10. , 2000., -999., 10. , -999., -999., -999., -999., -999. /)
!
!-- Compute in canopy (in crop) resistance:
CALL rc_rinc( lu, sai, ust, rinc )
!
!-- Check for missing deposition path:
IF ( missing(rinc) ) THEN
rsoil_eff = -9999.0_wp
ELSE
!
!-- Frozen soil (temperature below 0):
IF ( t < 0.0_wp ) THEN
IF ( missing( rsoil_frozen( icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil_frozen( icmp ) + rinc
ENDIF
ELSE
!
!-- Non-frozen soil; dry:
IF ( nwet == 0 ) THEN
IF ( missing( rsoil( lu, icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil( lu, icmp ) + rinc
ENDIF
!
!-- Non-frozen soil; wet:
ELSEIF ( nwet == 1 ) THEN
IF ( missing( rsoil_wet( icmp ) ) ) THEN
rsoil_eff = -9999.0_wp
ELSE
rsoil_eff = rsoil_wet( icmp ) + rinc
ENDIF
ELSE
message_string = 'nwet can only be 0 or 1'
CALL message( 'rc_gsoil_eff', 'PA0741', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
ENDIF
!
!-- Compute conductance:
IF ( rsoil_eff > 0.0_wp ) THEN
gsoil_eff = 1.0_wp / rsoil_eff
ELSE
gsoil_eff = 0.0_wp
ENDIF
END SUBROUTINE rc_gsoil_eff
!--------------------------------------------------------------------------------------------------!
!> rc_rinc: compute in canopy (or in crop) resistance van Pul and Jacobs, 1993, BLM
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_rinc( lu, sai, ust, rinc )
!
!-- Input/output variables:
INTEGER(iwp), INTENT(IN) :: lu !< land use class, lu = 1, ..., nlu
REAL(wp), INTENT(IN) :: sai !< surface area index
REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s)
REAL(wp), INTENT(OUT) :: rinc !< in canopy resistance (s/m)
!
!-- b = empirical constant for computation of rinc (in canopy resistance) (= 14 m-1 or -999 if not
!-- applicable)
!-- h = vegetation height (m) gra ara crop con dec wat urb oth des ice sav trf wai med semi
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: b = (/ -999, 14, 14, 14, 14, -999, -999, -999, -999, -999, -999, 14, -999, &
14, 14 /)
REAL(wp), DIMENSION(nlu_dep), PARAMETER :: h = (/ -999, 1, 1, 20, 20, -999, -999, -999, -999, -999, -999, 20, -999, &
1 , 1 /)
!
!-- Compute Rinc only for arable land, perm. crops, forest; otherwise Rinc = 0:
IF ( b(lu) > 0.0_wp ) THEN
!
!-- Check for u* > 0 (otherwise denominator = 0):
IF ( ust > 0.0_wp ) THEN
rinc = b(lu) * h(lu) * sai/ust
ELSE
rinc = 1000.0_wp
ENDIF
ELSE
IF ( lu == ilu_grass .OR. lu == ilu_other ) THEN
rinc = -999.0_wp !< no deposition path for grass, other, and semi-natural
ELSE
rinc = 0.0_wp !< no in-canopy resistance
ENDIF
ENDIF
END SUBROUTINE rc_rinc
!--------------------------------------------------------------------------------------------------!
!> rc_rctot: compute total canopy (or surface) resistance Rc
!--------------------------------------------------------------------------------------------------!
SUBROUTINE rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot )
!
!-- Input/output variables:
REAL(wp), INTENT(IN) :: gsoil_eff !< effective soil conductance (s/m)
REAL(wp), INTENT(IN) :: gstom !< stomatal conductance (s/m)
REAL(wp), INTENT(IN) :: gw !< external leaf conductance (s/m)
REAL(wp), INTENT(OUT) :: gc_tot !< total canopy conductance (m/s)
REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m)
!
!-- Total conductance:
gc_tot = gstom + gsoil_eff + gw
!
!-- Total resistance (note: gw can be negative, but no total emission allowed here):
IF ( gc_tot <= 0.0_wp .OR. gw < 0.0_wp ) THEN
rc_tot = -9999.0_wp
ELSE
rc_tot = 1.0_wp / gc_tot
ENDIF
END SUBROUTINE rc_rctot
!--------------------------------------------------------------------------------------------------!
!> missing: check for data that correspond with a missing deposition path this data is represented
!> by -999
!--------------------------------------------------------------------------------------------------!
LOGICAL function missing( x )
REAL(wp), INTENT(IN) :: x
!
!-- Bandwidth for checking (in)equalities of floats
REAL(wp), PARAMETER :: eps = 1.0e-5
missing = ( ABS( x + 999.0_wp ) <= eps )
END function missing
ELEMENTAL FUNCTION sedimentation_velocity( rhopart, partsize, slipcor, visc ) RESULT( vs )
!
!-- in/out
REAL(wp), INTENT(IN) :: rhopart !< particle density (kg/m3)
REAL(wp), INTENT(IN) :: partsize !< particle size (m)
REAL(wp), INTENT(IN) :: slipcor !< slip correction factor (m)
REAL(wp), INTENT(IN) :: visc !< viscosity
REAL(wp) :: vs
!
!-- acceleration of gravity:
REAL(wp), PARAMETER :: grav = 9.80665_wp !< m/s2
!-- sedimentation velocity
vs = rhopart * ( partsize**2 ) * grav * slipcor / ( 18.0_wp * visc )
END FUNCTION sedimentation_velocity
!-------------------------------------------------------------------------------------------------!
!> Boundary-layer deposition resistance following Zhang (2001)
!-------------------------------------------------------------------------------------------------!
SUBROUTINE drydepo_aero_zhang_vd( vd, rs, vs1, partsize, slipcor, nwet, tsurf, dens1, viscos1, &
luc, ftop_lu, ustar )
!
!-- in/out
INTEGER(iwp), INTENT(IN) :: luc !< DEPAC LU
INTEGER(iwp), INTENT(IN) :: nwet !< 1=rain, 9=snowcover
REAL(wp), INTENT(IN) :: dens1 !< air density (kg/m3) in lowest layer
REAL(wp), INTENT(IN) :: ftop_lu !< atmospheric resistnace Ra
REAL(wp), INTENT(IN) :: partsize !< particle diameter (m)
REAL(wp), INTENT(IN) :: slipcor !< slip correction factor
REAL(wp), INTENT(IN) :: tsurf !< surface temperature (K)
REAL(wp), INTENT(IN) :: ustar !< friction velocity u*
REAL(wp), INTENT(IN) :: viscos1 !< air viscosity in lowest layer
REAL(wp), INTENT(IN) :: vs1 !< sedimentation velocity in lowest layer
REAL(wp), INTENT(OUT) :: rs !< sedimentaion resistance (s/m)
REAL(wp), INTENT(OUT) :: vd !< deposition velocity (m/s)
!
!-- Constants
REAL(wp), PARAMETER :: grav = 9.80665_wp !< acceleration of gravity (m/s2)
REAL(wp), PARAMETER :: epsilon0 = 3.0_wp
REAL(wp), PARAMETER :: kb = 1.38066E-23_wp
REAL(wp), PARAMETER :: pi = 3.141592654_wp !< pi
REAL(wp), PARAMETER :: alfa_lu(nlu_dep) = &
(/ 1.2_wp, 1.2_wp, 1.2_wp, 1.0_wp, 1.0_wp, 100.0_wp, 1.5_wp, 1.2_wp, 50.0_wp, 100.0_wp, &
1.2_wp, 1.0_wp, 100.0_wp, 1.2_wp, 50.0_wp /)
REAL(wp), PARAMETER :: gamma_lu(nlu_dep) = &
(/ 0.54_wp, 0.54_wp, 0.54_wp, 0.56_wp, 0.56_wp, 0.50_wp, 0.56_wp, 0.54_wp, 0.58_wp, 0.50_wp, &
0.54_wp, 0.56_wp, 0.50_wp, 0.54_wp, 0.54_wp /)
REAL(wp), PARAMETER ::A_lu(nlu_dep) = &
(/ 3.0_wp, 3.0_wp, 2.0_wp, 2.0_wp, 7.0_wp, -99.0_wp, 10.0_wp, 3.0_wp, -99.0_wp, -99.0_wp, &
3.0_wp, 7.0_wp, -99.0_wp, 2.0_wp, -99.0_wp /)
!
!-- grass arabl crops conif decid water urba othr desr ice sav trf wai med sem
!
!-- local
REAL(wp) :: diff_part
REAL(wp) :: ebrown
REAL(wp) :: eimpac
REAL(wp) :: einterc
REAL(wp) :: kinvisc
REAL(wp) :: reffic
REAL(wp) :: schmidt
REAL(wp) :: stokes
!
!-- Kinetic viscosity & diffusivity
kinvisc = viscos1 / dens1 !< only needed at surface
diff_part = kb * tsurf * slipcor / ( 3.0_wp * pi * viscos1 * partsize )
!
!-- Schmidt number
schmidt = kinvisc / diff_part
!
!-- Calculate collection efficiencie E
Ebrown = Schmidt**( -gamma_lu(luc) ) !< Brownian diffusion
!
!-- Determine Stokes number, interception efficiency and sticking efficiency R (1 = no rebound)
IF ( luc == ilu_ice .OR. nwet == 9 .OR. luc == ilu_water_sea .OR. &
luc == ilu_water_inland ) THEN
stokes = vs1 * ustar**2 / ( grav * kinvisc )
einterc = 0.0_wp
reffic = 1.0_wp
ELSE IF ( luc == ilu_other .OR. luc == ilu_desert ) THEN ! Compute quasi-laminar boundary layer resistance as a function of landuse and tracer
!> Original EMEP formulation by (Simpson et al, 2003) is used.
!-------------------------------------------------------------------------------------------------!
SUBROUTINE get_rb_cell( is_water, z0h, ustar, diffusivity, rb )
!
!-- in/out
LOGICAL , INTENT(IN) :: is_water
REAL(wp), INTENT(IN) :: diffusivity !< coefficient of diffusivity
REAL(wp), INTENT(IN) :: ustar !< friction velocity
REAL(wp), INTENT(IN) :: z0h !< roughness length for heat
REAL(wp), INTENT(OUT) :: rb !< boundary layer resistance
!
!-- const
REAL(wp), PARAMETER :: kappa_stab = 0.35 !< von Karman constant
REAL(wp), PARAMETER :: thk = 0.19e-4 !< thermal diffusivity of dry air 20 C
!
!-- Next line is to avoid compiler warning about unused variable
IF ( is_water .OR. ( z0h + kappa_stab ) > 0.0_wp ) CONTINUE
!
!-- Use Simpson et al. (2003)
!-- @TODO: Check rb over water calculation, until then leave commented lines
!-- IF ( is_water ) THEN
!-- org: rb = 1.0_wp / ( kappa_stab * MAX( 0.01_wp, ustar ) ) * LOG( z0h / diffusivity * kappa_stab * MAX( 0.01_wp, ustar ) )
!-- rb = 1.0_wp / ( kappa_stab * MAX( 0.1_wp, ustar ) ) * LOG( z0h / diffusivity * kappa_stab * MAX( 0.1_wp, ustar ) )
!-- ELSE
rb = 5.0_wp / MAX( 0.01_wp, ustar ) * ( thk / diffusivity )**0.67_wp
!-- END IF
END SUBROUTINE get_rb_cell
!--------------------------------------------------------------------------------------------------!
!> Compute water vapor partial pressure (e_w) given specific humidity Q [(kg water)/(kg air)].
!>
!> Use that gas law for volume V with temperature T holds for the total mixture as well as the
!> water part:
!>
!> R T / V = p_air / n_air = p_water / n_water
!>
!> thus:
!>
!> p_water = p_air n_water / n_air
!>
!> Use:
!> n_air = m_air / xm_air
!> [kg air] / [(kg air)/(mole air)]
!> and:
!> n_water = m_air * Q / xm_water
!> [kg water] / [(kg water)/(mole water)]
!> thus:
!> p_water = p_air Q / (xm_water/xm_air)
!--------------------------------------------------------------------------------------------------!
ELEMENTAL FUNCTION watervaporpartialpressure( q, p ) RESULT( p_w )
!
!-- in/out
REAL(wp), INTENT(IN) :: p !< air pressure [Pa]
REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)]
REAL(wp) :: p_w !< water vapor partial pressure [Pa]
!
!-- Const
REAL(wp), PARAMETER :: eps = xm_h2o / xm_air !< mole mass ratio ~ 0.622
!
!-- Partial pressure of water vapor:
p_w = p * q / eps
END FUNCTION watervaporpartialpressure
!--------------------------------------------------------------------------------------------------!
!> Saturation vapor pressure.
!> From (Stull 1988, eq. 7.5.2d):
!>
!> e_sat = p0 exp( 17.67 * (T-273.16) / (T-29.66) ) [Pa]
!>
!> where:
!> p0 = 611.2 [Pa] : reference pressure
!>
!> Arguments:
!> T [K] : air temperature
!> Result:
!> e_sat_w [Pa] : saturation vapor pressure
!>
!> References:
!> Roland B. Stull, 1988
!> An introduction to boundary layer meteorology.
!--------------------------------------------------------------------------------------------------!
ELEMENTAL FUNCTION saturationvaporpressure( t ) RESULT( e_sat_w )
!
!-- in/out
REAL(wp), INTENT(IN) :: t !< temperature [K]
REAL(wp) :: e_sat_w !< saturation vapor pressure [Pa]
!
!-- Const
REAL(wp), PARAMETER :: p0 = 611.2 !< base pressure [Pa]
!
!-- Saturation vapor pressure:
e_sat_w = p0 * EXP( 17.67_wp * ( t - 273.16_wp ) / ( t - 29.66_wp ) ) !< [Pa]
END FUNCTION saturationvaporpressure
!--------------------------------------------------------------------------------------------------!
!> Relative humidity RH [%] is by definition:
!>
!> e_w water vapor partial pressure
!> Rh = -------- * 100
!> e_sat_w saturation vapor pressure
!--------------------------------------------------------------------------------------------------!
ELEMENTAL FUNCTION relativehumidity_from_specifichumidity( q, t, p ) RESULT( rh )
!
!-- in/out
REAL(wp), INTENT(IN) :: p !< air pressure [Pa]
REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)]
REAL(wp), INTENT(IN) :: t !< temperature [K]
REAL(wp) :: rh !< relative humidity [%]
!
!-- Relative humidity:
rh = watervaporpartialpressure( q, p ) / saturationvaporpressure( t ) * 100.0_wp
END FUNCTION relativehumidity_from_specifichumidity
END MODULE chemistry_model_mod